\textbf{p-wave Feshbach resonances in 6Li}

J. Fuchs, P. Dyke, G. Veeravalli, E. Kuhnle, C. Ticknor, W. Rowlands, P. Hannaford and C. J. Vale

ACQAO, Swinburne University of Technology, Australia

The ability to control atom-atom interactions in ultracold gases is possible through magnetically tunable Feshbach resonances. These occur when the energy of two colliding atoms coincides with a bound molecular state for a different combination of internal atomic states. The scattering length diverges at the resonance, being large and positive (repulsive) below resonance where a bound molecular state exists, and large and negative (attractive) above the resonance. To date most experiments, including ours, have utilised s-wave scattering resonances for the production of molecular Bose-Einstein condensates and fermionic superfluids [1].

Feshbach resonances involving scattering with nonzero angular momentum also exist. Higher order scattering is characterised by a centrifugal barrier which usually suppresses collisions at low energy. At resonance, however, this can be overcome and strong interactions and pairing can occur. Recently, the first p-wave ($l = 1$) Feshbach molecules were produced and detected in an ultracold gas of 40K [2]. Condensates of such molecules hold the promise of probing superfluidity based on pairing with higher order partial waves. A limitation for 40K p-wave molecules is that dipolar relaxation limits their lifetime to a few milliseconds. In 6Li there are three p-wave Feshbach resonances corresponding to the different combinations of $|F = 1/2, m_F = \pm 1/2 \rangle (|1\rangle)$ and $|1/2, -1/2 \rangle (|2\rangle)$ states. One of these resonances involves two atoms in the lowest energy spin state, $|1\rangle$, and is thus not susceptible to dipolar relaxation. Hence molecules formed on this resonance have the potential to be much longer lived.

We have recently measured the binding energies of 6Li p-wave molecules using radio frequency (rf) magneto-association spectroscopy for all three resonances. The binding energy increases linearly with magnetic field detuning and our measured values of $113 \pm 7 \mu K/G$, $111 \pm 6 \mu K/G$ and $118 \pm 8 \mu K/G$ for the $|1\rangle$-$|1\rangle$, $|1\rangle$-$|2\rangle$ and $|2\rangle$-$|2\rangle$ resonances, respectively, are in good agreement with theoretical predictions. Figure 1 below shows a typical magneto-association spectrum and the measured binding energies for the $|1\rangle$-$|1\rangle$ resonance with a linear fit. We can also infer near-resonant properties of the scattering states from the measured conversion rates as a function of detuning [3].

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{(a) Magneto-association spectrum showing atom loss for bound and quasibound 6Li molecules ($\nu_{rf} = 300$ kHz). (b) Binding energy of 6Li p-wave molecules vs. magnetic field detuning ($B_0 = 159$ G).}
\end{figure}

References