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Theoretical Atom Optics
(as seen on TV)

“Bosons like to be in the same state”

“Bose-Einstein Condensation occurs when all the
particles go into the same quantum state”



How do we describe atoms?

 Classical description of N atoms
– State {xj, pj}

Quantum description of 1 atom
– State
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Quantum description of 2 atoms
– State is much more than twice as large
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(unless the state is separable)

Quantum description of N atoms?
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Warm-up Exercises

1. If   , what is       in terms of         ?

2. For what modes uj(x) is this transformation the identity?

3. Write down a general quantum state for N atoms in the
continuous variable (position space) basis.
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Indistinguishability

The states we just defined are a little too general, as we
haven’t included some restrictions.

e.g.  Swapping any two fundamental particles should not
change the physics.  In other words, the labels we put on the
state are arbitrary.

Define a switching operator
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Consequences of
indistinguishability

Switching two particles twice must be the identity:
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Symmetric wavefunctions
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We have two and only two choices:
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Anti-symmetric wavefunctions

Bosons Fermions



Fermions have anti-symmetric wavefunctions:

“Fermions don’t like to be in the
same state”

Where
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Now what if          for any two indices?
(i.e. any two particles are in the same state)
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Bosons have symmetric wavefunctions:

“Bosons like to be in the same
state”

Where
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1. Bosons can be in the same state.
2. There is an enormous redundancy in this description

whenever more than one particle is in the same state.
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Consider two atoms (a and b) undergoing a change of state
from 2 to 1:

Bose enhancement
Pauli blocking

Hamiltonian
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Bose enhancement
Pauli blocking
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Bose enhancement for N bosons
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Suppose we start with N particles in state 1 and one in state 2?

  

! 

"
init

=
1

N +1
2
x
1

1
x
2

L 1
x
N+1

+ 1
x
1

2
x
2

L 1
x
N+1

+L+ 1
x
1

L 1
x
N

2
x
N+1( )

  

! 

ˆ H "
init

= U
1

N +1
N +1( )1

x
1

1
x

2

L 1
x

N +1

+ 2
x

1

2
x

2

1
x

3

L 1
x

N +1

+L( )

! 

" final
ˆ H " init

2

= N +1( ) U
2

Bose enhancement:  Transition into a state already
containing N bosons is enhanced by a factor of (N+1)

all other combinations
with two atoms in state 2



Occupation number notation
(Only showing detail for Bosons)
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We can simplify things dramatically by collecting
all the states with identical coefficients:
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Occupation number notation
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All the symmetry of the states is built into this notation.  This
means that writing them down becomes enormously simpler.



Second Quantisation

The new notation is very clean, but to use it we will have to
translate the Hamiltonian so that it deals easily with them.
To this end, we introduce annihilation and creation operators
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Second Quantisation

is often called the number operator
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These annihilation and creation operators form a complete set of
operators for systems of bosons, and they operate simply on
number states, but we still have to find the Hamiltonian in terms
of these operators.

These operators may be familiar from the analysis of harmonic
oscillators.  It is a coincidence that systems of bosons have the
same underlying structure as sets of coupled harmonic oscillators.
(But it does go some way to explaining our strange fascination for
harmonic oscillators)



Second Quantised Hamiltonian

This has terms acting on single particles and pairwise interactions.
This form enforces the indistinguishability of the particles.

A general translation could be quite onerous.  Fortunately, most
Hamiltonians can be written in the form
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Second Quantised Hamiltonian

A straightforward calculation with far too many indices shows
that the operators in brackets are very simple in our new notation:

We change the order of the summation
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So, we pick a basis and can easily write the Hamiltonian in
“second quantised” form.



Exercises

1. Is there any state in first-quantized form that cannot be
written in the occupation number notation?

2. Is there any state in the occupation number notation that
cannot be written in the first quantized notation?

3. The occupation number states are normalised by definition.
Show that they are orthogonal.

4. Repeat the demonstration of Bose enhancement using a
second quantised Hamiltonian and number states.



Fixed number of atoms?

! 

1,1 + i 1,0

With our new notation, we have slipped in the possibility of
including states with different numbers of atoms.
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This can be useful concept for systems interacting with an
environment and exchanging particles.

Note that for a closed system, the Hamiltonian usually conserves
the number of particles:


