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Theoretical Atom Optics
(Didn’t we just learn this?)

“Double lectures are always better with a short break”



How do we describe atoms?

 Complete description of multiple bosonic atoms
– Each single particle state     , has a quantum

mode with the structure of a harmonic oscillator

– Hilbert space is the outer product of all those states
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Typical Hamiltonian:



So what is a BEC?

 According to John:
– “Macroscopic occupation of a single quantum state”

Aren’t all collections of atoms in some quantum state?
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–  Cooling a collection of particles approaches BEC

– Yes, but not necessarily with a large number in
some single particle basis



So what is a BEC?

Definition of BEC can be controversial:
– Originally defined only for particles in free space

Does cooling reach the ground state?

 A BEC is made by reaching:
– The ground state of the Hamiltonian

for a given average number of atoms
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The Ground State
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ˆ n j
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"The ground state of
- Has all the atoms in the lowest energy state E0.
- There are still many possibilities

This includes number states, coherent states, squeezed
states, states that spell “Joe is great”, …
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Changing basis

The states on the last slide would be difficult to
describe if the Hamiltonian was

Go back to the original Hamiltonian and change the basis defining
the number states:
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Changing basis via first quantisation

A transformation between states:
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Introduce new annihilation operators        associated with     :
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Changing basis in second quantisation

A transformation between operators:
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This is exactly the same transformation.
Both versions change the single particle basis by a linear transformation

How do we transform into the position basis?
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The field operator

Introduce the operator:
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In position space many of these indices are typically not needed:
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Exercises

1. Show that

2. Find the Heisenberg equation of motion for the field operator

3. What is the interpretation of    ?
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Exercises

4. Write the down the single particle momentum eigenstates

5. Find the momentum space field operator in terms of

6. Find the Hamiltonian in terms of those operators
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Multiple (non-spatial) states
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Our single particle states might include non-spatial degrees
of freedom, such as spin, or the electronic states of atoms:
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Contact Potential

At low temperatures, the particles don’t have the energy to
probe the details of the interparticle interactions, so we can
make a powerful approximation:
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Observables

1. We know the Hamiltonian for a large number of bosons.

2. We can transform basis to make it as simple as possible.

3.  The equation of motion for        is familiar:
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All observables can be written in terms of the field operators



Calculating observable quantities
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All interesting quantities are expectation values of the
field operators:

e.g.

These rarely form closed sets of equations, so we need to
know about the actual fields.



…So Now What?

1. Assume the field is one dimensional
2. Assume there is only relevant electronic level
3. Put the field on a grid of 100 points in that dimension

How many complex numbers describe the state?

4.  What if there are at most 100 atoms?
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With the nonlinear term, exact results are rare.
What about numerical results?



Tomorrow

Now we know the underlying theory:

We need ways to do actual calculations!


