(More Australians choose)

Theoretical Atom Optics

(than any competing brand)

Lectures for the ACQAO Summer School

Joe Hope 61252780, room 103 joseph.hope@anu.edu.au

"An atom laser beam is a coherent beam of atoms"

" 9/243 at lunch (Lehmann 2/42)"

Review

Complete description of multiple bosonic atoms

$$\left|\psi\right\rangle = \sum_{n_1, n_2, n_3, \cdots} f_{n_1, n_2, n_3, \cdots} \left|n_1, n_2, n_3, \cdots\right\rangle$$

Typical Hamiltonian:

$$\hat{H} = \int d\mathbf{x} \,\hat{\psi}^{\dagger}(\mathbf{x}) \left(-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x}) \right) \hat{\psi}(\mathbf{x}) + U \int d\mathbf{x} \,\hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{x}) \hat{\psi}(\mathbf{x})$$

These field operators look familiar

Their Heisenberg equation of motion is *very* familiar:

$$i\hbar \frac{\partial \hat{\psi}(\mathbf{x})}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + U\hat{\psi}^{\dagger}(\mathbf{x})\hat{\psi}(\mathbf{x})\right)\hat{\psi}(\mathbf{x})$$

Don't be fooled - the field operators are *not* the state

- However, they (and their conjugate) can build any operator
- Knowing them is enough to calculate any observable

Q. How would you find the momentum density from $\hat{\psi}(\mathbf{x})$?

Major classes of approximation

Quantum field theory calculations are hard

Approximations ignore either:

- Complexity in the quantum state of each mode
- The number of modes
- Systems with strong interactions –

Perturbative methods: incredibly refined in the world of QED, some branches of condensed matter physics and particle physics. Unfortunately, atom optics is typically highly non-perturbative

Semiclassical approximation

Ignore complexity in the quantum state

$$\left|\psi\right\rangle = \sum_{n_1, n_2, n_3, \cdots} f_{n_1, n_2, n_3, \cdots} \left|n_1, n_2, n_3, \cdots\right\rangle$$

1. Assume it factorises

$$\approx \sum_{n_1, n_2, n_3, \cdots} c_{n_1} c_{n_2} c_{n_3} \cdots | n_1, n_2, n_3, \cdots \rangle$$

$$=\bigotimes_{j}\sum_{n_{j}}c_{n_{j}}\left|n_{j}\right\rangle$$

2. Assume each state is a coherent state

$$\hat{b}_{j}|\beta_{j}\rangle = \beta_{j}|\beta_{j}\rangle \qquad |\beta_{j}\rangle = \sum_{n_{j}} e^{-\frac{|\beta_{j}|^{2}}{2}} \frac{\beta_{j}^{n_{j}}}{\sqrt{n_{j}!}}|n_{j}\rangle$$

$$|\psi\rangle \approx \bigotimes_{j} |\beta_{j}\rangle$$

Semiclassical approximation

$$|\psi\rangle \approx \bigotimes_{j} |\beta_{j}\rangle$$

In the position basis, this looks like $|\psi\rangle \approx \otimes |\psi(\mathbf{x})\rangle$

Just a complex function of space, determining the particular coherent state at each point

Any expectation $\langle \hat{\psi}^{\dagger}(\mathbf{x})\hat{\psi}^{\dagger}(\mathbf{x}')\hat{\psi}(\mathbf{x}')\hat{\psi}(\mathbf{x})\rangle = \psi^{*}(\mathbf{x})\psi^{*}(\mathbf{x}')\psi(\mathbf{x}')\psi(\mathbf{x})$ values are simple: $\langle \hat{\psi}(\mathbf{x})\rangle = \psi(\mathbf{x})$ \leftarrow "Mean-field" (Mean-field approximation)

How would these coherent states evolve?

Semiclassical approximation

$$i\hbar \frac{\partial \hat{\psi}(\mathbf{x})}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + U\hat{\psi}^{\dagger}(\mathbf{x})\hat{\psi}(\mathbf{x})\right)\hat{\psi}(\mathbf{x})$$
$$i\hbar \frac{\partial \langle \hat{\psi}(\mathbf{x}) \rangle}{\partial t} = \left\langle \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + U\hat{\psi}^{\dagger}(\mathbf{x})\hat{\psi}(\mathbf{x})\right)\hat{\psi}(\mathbf{x})\right\rangle$$

$$i\hbar \frac{\partial \psi(\mathbf{x})}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + U|\psi(\mathbf{x})|^2\right)\psi(\mathbf{x})$$

Gross-Pitaevskii equation (GPE), or Non-linear Schrödinger equation

Why "semi-classical"?

$$i\hbar \frac{\partial \psi(\mathbf{x})}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + U|\psi(\mathbf{x})|^2\right)\psi(\mathbf{x})$$

- -Still looks "quantum" Often called a "macroscopic wavefunction"
- We've ignored a lot of the quantum features
- Same approximation often made in quantum optics \Rightarrow Replace a large, coherent mode with E(x,t)

Semiclassical variants

Careful examination of the Hamiltonian shows that the coherent states underlying our version of the mean-field approximation are not stable:

$$\hat{H} = \dots + U \int d\mathbf{x} \, \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{x}) \hat{\psi}(\mathbf{x})$$

conserves atom number, but not "coherent-ness"

There are variants of the derivation shown in this lecture that make a different approximation to the state of the field. The total field is still characterised by $\psi(\mathbf{x})$ (generally called an "order parameter")

$$i\hbar \frac{\partial \psi(\mathbf{x})}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + U|\psi(\mathbf{x})|^2\right)\psi(\mathbf{x})$$

What can we do with the GPE?

$$i\hbar \frac{\partial \psi(\mathbf{x})}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + U|\psi(\mathbf{x})|^2\right)\psi(\mathbf{x})$$

Can't be right all the time, but it's surprisingly useful

- Spatial behaviour of BEC undergoing only linear processes
 - Evolution in any external potential (including time dependent)
 - Coupling between different internal states
 - Can be used to describe weak BEC excitations, BEC manipulation with optical or magnetic potentials, coupling between internal states, atom lasers, vortices, solitons, wave-guiding, feedback, ...

Trap ground state

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + U|\psi(\mathbf{x})|^2\right)\psi(\mathbf{x}) = \mu\psi(\mathbf{x})$$

chemical potential

With U=0, the ground state looks like the ground state of a single particle in a trap. For harmonic traps, (and most are), this is a Gaussian.

Thomas-Fermi approximation

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + U|\psi(\mathbf{x})|^2\right]\psi(\mathbf{x}) = \mu\,\psi(\mathbf{x})$$

For sufficiently strong interactions...

ignore kinetic energy

of atoms

$$\psi(\mathbf{x}) \approx \sqrt{\frac{\mu - V(\mathbf{x})}{U}}$$
 $\int d\mathbf{x} |\psi(\mathbf{x})|^2 = \int d\mathbf{x} \frac{\mu - V(\mathbf{x})}{U} = N$ chemical potential depends
on the number of atoms

Wavefunction like an upside down potential

The atom laser

Magnetic traps work on the magnetic moment of the atoms

Radio waves can cause transitions between neighbouring m_F states How would we model this?

Modelling the atom laser (GPE)

Each component of the field operator approximated by a classical field

$$i\hbar\frac{\partial}{\partial t}\begin{pmatrix}\psi_{2}(\mathbf{x})\\\psi_{1}(\mathbf{x})\\\psi_{0}(\mathbf{x})\\\psi_{-1}(\mathbf{x})\\\psi_{-2}(\mathbf{x})\end{pmatrix} = \begin{pmatrix}-\frac{\hbar^{2}}{2m}\nabla^{2} + U\rho(\mathbf{x}) + \begin{pmatrix}V_{2}(\mathbf{x}) & \hbar\Omega & 0 & 0 & 0\\\hbar\Omega & V_{1}(\mathbf{x}) & \sqrt{6}\hbar\Omega/2 & 0 & 0\\0 & \sqrt{6}\hbar\Omega/2 & V_{0}(\mathbf{x}) & \sqrt{6}\hbar\Omega/2 & 0\\0 & 0 & \sqrt{6}\hbar\Omega/2 & V_{-1}(\mathbf{x}) & \hbar\Omega\\0 & 0 & 0 & \hbar\Omega & V_{-2}(\mathbf{x})\end{pmatrix}\end{pmatrix}\begin{pmatrix}\psi_{2}(\mathbf{x})\\\psi_{1}(\mathbf{x})\\\psi_{0}(\mathbf{x})\\\psi_{-1}(\mathbf{x})\\\psi_{-2}(\mathbf{x})\end{pmatrix}$$
$$\rho(\mathbf{x}) = \left|\psi_{2}(\mathbf{x})\right|^{2} + \left|\psi_{1}(\mathbf{x})\right|^{2} + \left|\psi_{0}(\mathbf{x})\right|^{2} + \left|\psi_{-1}(\mathbf{x})\right|^{2} + \left|\psi_{-2}(\mathbf{x})\right|^{2}$$

This is almost five lines of the GPE we derived earlier

- coupling between the different fields
- identical interactions between each component

Easy to put on a grid, and solve!

The pumped atom laser

Pump atoms into the BEC while coupling them out - continuous beam

How do we model this?

- A two-component quantum field, each with a different potential
- Hamiltonian with kinetic energy, potential energy, coupling between fields, and interactions between components
- Use semiclassical approximation \rightarrow two classical fields
- Extra effects added phenomenologically

The pumped atom laser

$$i\hbar\frac{\partial}{\partial t}\psi_{t}(\mathbf{x}) = \left(-\frac{\hbar^{2}}{2m}\nabla^{2} + V_{trap}(\mathbf{x}) + U_{tt}\left|\psi_{t}\right|^{2} + U_{tu}\left|\psi_{u}\right|^{2} - i\hbar\gamma_{tt}^{(1)} - i\hbar\gamma_{tt}^{(2)}\left|\psi_{t}\right|^{2} - i\hbar\gamma_{tu}^{(2)}\left|\psi_{u}\right|^{2} + i\kappa\rho\right)\psi_{t} + \hbar\Omega e^{i\mathbf{k}\cdot\mathbf{x}}\psi_{u}$$

$$i\hbar\frac{\partial}{\partial t}\psi_{u}(\mathbf{x}) = \left(-\frac{\hbar^{2}}{2m}\nabla^{2} + V_{gravity}(\mathbf{x}) + U_{uu}\left|\psi_{u}\right|^{2} + U_{tu}\left|\psi_{t}\right|^{2} - i\hbar\gamma_{u}^{(1)} - i\hbar\gamma_{uu}^{(2)}\left|\psi_{u}\right|^{2} - i\hbar\gamma_{tu}^{(2)}\left|\psi_{t}\right|^{2}\right)\psi_{u} + \hbar\Omega e^{-i\mathbf{k}\cdot\mathbf{x}}\psi_{t}$$

$$\frac{\partial}{\partial t}\rho(\mathbf{x}) = r - \gamma_{res}\rho - \kappa\left|\psi_{t}\right|^{2}\rho + \lambda\nabla^{2}\rho$$

- BEC-BEC, beam-beam and BEC-beam interactions
- BEC-BEC, beam-beam and BEC-beam inelastic scattering
- Gravity, trapping potentials, background gas losses
- Momentum kick during output coupling
- Spatial coupling and pumping

Mode selectivity?

No interactions, strong pumping

Stability of a pumped atom laser

Stability depends on scattering length and pumping rate

Feedback

Exercises

$$\hat{H} = \int d\mathbf{x} \,\hat{\psi}^{\dagger}(\mathbf{x}) \left(-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x}, t) \right) \hat{\psi}(\mathbf{x}) + \frac{U(t)}{2} \int d\mathbf{x} \,\hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{x}) \hat{\psi}(\mathbf{x})$$
$$V(\mathbf{x}, t) = V_{trap}(\mathbf{x}) + V_{feedback}(\mathbf{x}, t) \qquad U(t) = U_0 + U_{feedback}(t)$$

- 1. Show that this Hamiltonian leads to the following GPE: $i\hbar \frac{\partial}{\partial t}\psi(\mathbf{x}) = \left(-\frac{\hbar^2}{2m}\nabla^2 + V_{trap}(\mathbf{x}) + V_{feedback}(\mathbf{x},t) + \left(U_0 + U_{feedback}(t)\right)|\psi|^2\right)\psi$
- 2. Show the following results

$$E_{0} = \left\langle \hat{H} \right\rangle \Big|_{U_{feedback}(\mathbf{x},t)=0}^{V_{feedback}(\mathbf{x},t)=0} = \int \left(-\frac{\hbar^{2}}{2m} \psi^{*} \nabla^{2} \psi + V_{trap} \left| \psi \right|^{2} + \frac{U_{0}}{2} \left| \psi \right|^{4} \right) d\mathbf{x}$$
$$\frac{\partial E_{0}}{\partial t} = -\frac{\partial}{\partial t} \left(\int V_{feedback}(\mathbf{x},t) \left| \psi \right|^{2} d\mathbf{x} + \int U_{feedback}(t) \left| \psi \right|^{4} d\mathbf{x} \right)$$

Feedback

Tomorrow

Methods of doing calculations where the quantum nature of the fields is important

- Atom lasers of the future