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Theoretical Atom Optics
(than any competing brand)

“An atom laser beam is a coherent beam of atoms”

“ 9/243 at lunch  (Lehmann 2/42)”



Review

 Complete description of multiple bosonic atoms
– The basis states of the total Hilbert space have a

given occupation number for each single particle
mode:
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Typical Hamiltonian:
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These field operators look familiar

Their Heisenberg equation of motion is very familiar:
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 Don’t be fooled - the field operators are not the state

• However, they (and their conjugate) can build any operator
• Knowing them is enough to calculate any observable

 Q.  How would you find the momentum density from    ?
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Major classes of approximation

 Quantum field theory calculations are hard
Approximations ignore either:

– Complexity in the quantum state of each mode

– The number of modes

– Systems with strong interactions

Perturbative methods: incredibly refined in the world of QED, some
branches of condensed matter physics and particle physics.
Unfortunately, atom optics is typically highly non-perturbative



Semiclassical approximation

Ignore complexity in the quantum state
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1. Assume it factorises

2. Assume each state is a coherent state
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Semiclassical approximation
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In the position basis, this looks like
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Just a complex function of space, determining
the particular coherent state at each point
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Any expectation
values are simple:

How would these coherent states evolve?! 
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“Mean-field”
(Mean-field approximation)



Semiclassical approximation
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Gross-Pitaevskii equation (GPE), or
Non-linear Schrödinger equation
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Why “semi-classical”?
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-Still looks “quantum”
  Often called a “macroscopic wavefunction”

- We’ve ignored a lot of the quantum features

- Same approximation often made in quantum optics
⇒ Replace a large, coherent mode with E(x,t)



Semiclassical variants
Careful examination of the Hamiltonian shows that the coherent
states underlying our version of the mean-field approximation
are not stable:

There are variants of the derivation shown in this lecture that make a
different approximation to the state of the field.  The total field is
still characterised by           (generally called an “order parameter”)

  

! 

ˆ H =L+ U dx" ˆ # †(x) ˆ # †(x) ˆ # (x) ˆ # (x)

conserves atom number, but not “coherent-ness”
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What can we do with the GPE?

Can’t be right all the time, but it’s surprisingly useful
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• Spatial behaviour of BEC undergoing only linear processes
- Evolution in any external potential (including time dependent)
- Coupling between different internal states
- Can be used to describe weak BEC excitations, BEC

manipulation with optical or magnetic potentials, coupling
between internal states, atom lasers, vortices, solitons, wave-
guiding, feedback, …



Trap ground state

With U=0, the ground state looks like the ground state of a single
particle in a trap.  For harmonic traps, (and most are), this is a Gaussian.
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Thomas-Fermi approximation

For sufficiently strong interactions…
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The atom laser

Magnetic traps work on the magnetic moment of the atoms

F=2
mF=-2 mF=-1 mF=0 mF=1 mF=2

strongly trapped

untrapped
anti-trapped
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Radio waves can cause transitions between neighbouring mF states

How would we model this?



Modelling the atom laser (GPE)

  

! 

ih
"

"t

#2(x)

#1(x)

#0(x)

#$1(x)

#$2(x)

% 

& 

' 
' 
' 
' 
' ' 

( 

) 

* 
* 
* 
* 
* * 

= $
h
2

2m
+2

+U ,(x) +

V2(x) h- 0 0 0

h- V1(x)
6h-

2
0 0

0 6h-
2

V0(x)
6h-

2
0

0 0 6h-
2

V$1(x) h-

0 0 0 h- V$2(x)

% 

& 

' 
' 
' 
' 
' 
' 
' 

( 

) 

* 
* 
* 
* 
* 
* 
* 

% 

& 

' 
' 
' 
' 
' 
' 
' 

( 

) 

* 
* 
* 
* 
* 
* 
* 

#2(x)

#1(x)

#0(x)

#$1(x)

#$2(x)

% 

& 

' 
' 
' 
' 
' ' 

( 

) 

* 
* 
* 
* 
* * 

! 

"(x) = #
2
(x)

2
+ #

1
(x)

2
+ #

0
(x)

2
+ #$1(x)

2
+ #$2(x)

2

This is almost five lines of the GPE we derived earlier
   - coupling between the different fields
   - identical interactions between each component

Each component of the field operator approximated by a classical field

Easy to put on a grid, and solve!
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Outcoupled atoms
falling under gravity

Why don’t these fall?

This is a real effect…



The pumped atom laser

Pump atoms into the BEC while
coupling them out - continuous beam

How do we model this?

coupling
Pumping from an incoherent reservoir

- A two-component quantum field, each with a different potential
- Hamiltonian with kinetic energy, potential energy, coupling

between fields, and interactions between components
- Use semiclassical approximation → two classical fields
- Extra effects added phenomenologically



The pumped atom laser
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• BEC-BEC, beam-beam and BEC-beam interactions
• BEC-BEC, beam-beam and BEC-beam inelastic scattering
• Gravity, trapping potentials, background gas losses
• Momentum kick during output coupling
• Spatial coupling and pumping



Mode selectivity?



No interactions, weak pumping



No interactions, strong pumping



Moderate interactions, weak pumping



Moderate interactions, strong pumping
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Stability depends on scattering length and pumping rate

Stability of a pumped atom laser

Stable
Unstable



Feedback

laser

ANU atom laser 

Detector
(measures condensate density)

Use this information to
control potential.Controls for

potential
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Exercises

1. Show that this Hamiltonian leads to the following GPE:
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2.   Show the following results
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Feedback



Tomorrow

Methods of doing calculations where
the quantum nature of the fields is
important

    - Atom lasers of the future


