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Review

Complete description of multiple bosonic atoms

— The basis states of the total Hilbert space have a
given occupation number for each single particle
mode:
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Typical Hamiltonian:
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These field operators look familiar

Their Heisenberg equation of motion 1s very familiar:
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Don’t be fooled - the field operators are not the state

 However, they (and their conjugate) can build any operator
* Knowing them is enough to calculate any observable

Q. How would you find the momentum density from y(x) ?



Major classes of approximation

Quantum field theory calculations are hard
Approximations ignore either:
— Complexity in the quantum state of each mode
— The number of modes

— Systems with strong interactions ?

Perturbative methods: incredibly refined in the world of QED, some
branches of condensed matter physics and particle physics.
Unfortunately, atom optics is typically highly non-perturbative



Semiclassical approximation

Ignore complexity in the quantum state
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2. Assume each state 1S a coherent state
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Semiclassical approximation
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In the position basis, this looks like |y) = ®|y(x))

Just a complex function of space, determining/‘

the particular coherent state at each point

Any expectation (¥ CO% COPEN0) =y (0w (K (X Wp(x)

values are simple: <1];(x)> —P(X) ~=_ “Mean-field”
(Mean-field approximation)

How would these coherent states evolve?



Semiclassical approximation
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Gross-Pitaevskiil equation (GPE), or
Non-linear Schrodinger equation




Why “semi-classical™?

2

ifi WX) _ ——V +V(x)+ U‘w(x)‘z Y(X)
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-Still looks “quantum”
Often called a “macroscopic wavetunction”

- We’ve 1gnored a lot of the quantum features

- Same approximation often made in quantum optics
= Replace a large, coherent mode with E(X,t)



Semiclassical variants

Careful examination of the Hamiltonian shows that the coherent
states underlying our version of the mean-field approximation
are not stable:

H=-+U [ dx ' (09 0PxPx)

conserves atom number, but not “coherent-ness”

There are variants of the derivation shown in this lecture that make a
different approximation to the state of the field. The total field is
still characterised by 1 (x) (generally called an “order parameter”™)
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What can we do with the GPE?

ih WX _ —— V> +V(x)+ U‘w(x)‘z Y(X)
ot 2m

Can’t be right all the time, but 1t’s surprisingly useful

 Spatial behaviour of BEC undergoing only linear processes
- Evolution in any external potential (including time dependent)
- Coupling between different internal states
- Can be used to describe weak BEC excitations, BEC
manipulation with optical or magnetic potentials, coupling
between internal states, atom lasers, vortices, solitons, wave-
guiding, feedback, ...



Trap ground state

-2—V2 + V() + UlpX)[ [ 9(x) = pp(x)
m f
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chemical potential

With U=0, the ground state looks like the ground state of a single

particle in a trap. For harmonic traps, (and most are), this 1s a Gaussian.
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Thomas-Fermi approximation

(— VZ+V(x)+ U\w(x)\z) P(x) = uP(x)

For sufficiently strong interactions... ignore kinetic energy
W(X) ~ u-V(x) [ dx ool = [ dx u-Vx) _ chemical potential depends
U on the number of atoms

Wavefunction like an \O/ O
upside down potential

approximate exact




The atom laser

Magnetic traps work on the magnetic moment of the atoms

— v, (@)
strongly trapped \/ mp
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Radio waves can cause transitions between neighbouring mg. states

How would we model this?



Modelling the atom laser (GPE)

Each component of the field operator approximated by a classical field
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This 1s almost five lines of the GPE we derived earlier
- coupling between the different fields

- identical interactions between each component

Easy to put on a grid, and solve!
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Why don’t these fall?

This 1s a real effect...



The pumped atom laser

Pumping from an incoherent reservoir

% coupling

Pump atoms into the BEC while

coupling them out - continuous beam

How do we model this? /

- A two-component quantum field, each with a different potential

- Hamiltonian with kinetic energy, potential energy, coupling
between fields, and interactions between components

- Use semiclassical approximation — two classical fields

- Extra effects added phenomenologically



The pumped atom laser
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e BEC-BEC, beam-beam and BEC-beam interactions

e BEC-BEC, beam-beam and BEC-beam inelastic scattering
e Gravity, trapping potentials, background gas losses

* Momentum kick during output coupling

e Spatial coupling and pumping



Atomic Density

0 sec Time 1.4 sec
Detector R

~150um

Probe Laser

Mode selectivity?



No interactions, weak pumping
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Stability of a pumped atom laser

Stability depends on scattering length and pumping rate

Stable
Unstable

Pump rate (atoms/s)
o

10" 10°
Scattering length (m)



Feedback
A A

A\ \ Detector
\ “‘\‘i\ (measures condensate density)

p(x) =, ()] = (] ()9, (%))

\“n

y -

Use this information to

Controls for
potential

control potential.

wr




Exercises

H = [ dx @*(x)(—;—mvz + V<x,z)) h(x) + %t) J dx 9 09 PP

V) =V, X+ Vi (X51) U@) =U+U p, gy (1)

trap

1. Show that this Hamiltonian leads to the following GPE:

0 n
lhgw(X) ) (_%Vz + Vtmp (X) + eredback(x’ t) + (UO+Ufeedback(t))‘lp‘2)w

2. Show the following results

A 2 *
EO = <H> V feedback (X1)=0 f(_zh—mw Vzw + Vtmp

U feedback(t)= 0

yf + %\wr‘)dx

Jd

E J
0’)1'0 - _E(Ieredback(Xat)

lp‘z dX + j‘(]feealback(t)‘l/}‘4 dX)



Feedback

Sloshing? Breathing?
Offset potential Adjust strength of potential




Tomorrow

Methods of doing calculations where
the quantum nature of the fields 1s
important

- Atom lasers of the future



