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(Yummy, yummy, yummy, I’ve got)

Theoretical Atom Optics
(in my tummy)

“There has been an alarming increase in the number of things I do not know”



Review

 Complete description of multiple bosonic atoms
– The basis states of the total Hilbert space have a

given occupation number for each single particle
mode:
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Major classes of approximation

 Quantum field theory calculations are hard
Approximations ignore either:

– Complexity in the quantum state of each mode

– The number of modes

– Systems with strong interactions

Perturbative methods: incredibly refined in the world of QED, some
branches of condensed matter physics and particle physics.
Unfortunately, atom optics is typically highly non-perturbative



Single mode approximation

Ignore all the irrelevant modes
- Very common in quantum optics
- Applicable to spatially “simple” systems
- Depends on initial state and Hamiltonian
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In some well-chosen basis, we may
be able to consider only a finite
(small) number of these modes
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Optical lattices

Optical lattices make periodic potentials for atoms

http://www.physik.uni-mainz.de/quantum/bec/experiments/opticallattices.html   
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Atom laser

We saw yesterday a semiclassical pumped atom
laser model reaching a nice, stable steady state.

Let’s build a quantum model of this system:
- Two electronic components
- Different potential for each component
- Interactions between atoms
- Coupling between the two components
- Pumping into the trapped component



Atom laser
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Excellent model Way too hard to solve(well done)



The trouble with semi-classical
Yesterday, we made the semiclassical approximation

- Are the quantum features important?
- What is the most interesting feature of an atom beam?

Suppose a semi-classical model reaches steady state:

Almost by definition, the far
field is in an eigenstate.

Pumping from an incoherent reservoir

Semiclassical model predicts
infinitely narrow linewidth



Change trapped basis
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Choose basis for trapped atoms
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New atom laser Hamiltonian
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Did we choose well?

The hope is that most of the     modes can be ignored.
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We have reduced the number of indices. Is it soluble?
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The single mode atom laser
The dynamics of the output quantum field          are
still complicated.  How do we simplify the dynamics?
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- Ignore interactions in the output field
- Ignore interactions with output field
- Choose eigenstate basis for output field
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The single mode atom laser
We have simplified the output dynamics, but we still
can’t model them numerically.

Is there an analytical result?
- Output modes all come from a simple interaction term
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Atom laser output

The spectrum of the output atom laser flux

All interesting observables depend only
on the dynamics of the lasing mode!



The atom laser

Looking back at our simple model:

The dynamics of the lasing mode depend on the trap Hamiltonian,
back action from the output and the pumping process.

coupling

Pumping from an incoherent reservoir Assuming a single, self-
consistent mode in the trap,
the lasing mode, and low
output density, we can solve
the problem without any
further approximations



Exercise

Q.  What is the linewidth of the atom laser if there are initially no
atoms in the output?
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The pumped (atom) laser

Optical outcoupling is blessed by the constant
(high) speed of light.  This leads to Markovian
models, where there is no back action.

• The linewidth of a laser is limited by “quantum noise”
• The model we developed works equally well for an optical laser
• The remaining step is to calculate the dynamics of the lasing mode

Atomic lasers deal with atoms taking significant
time to get out of the coupling region

⇒ This leads to non-Markovian models
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The pumped (atom) laser

• The properties of the beam depend very strongly on the details of
the pumping process.  They are all theoretical for atom lasers

• The goal is to produce stable phase in the lasing mode
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a.k.a. two-time correlation
temporal coherence
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The gain-narrowed (atom) laser

With the right pumping mechanism (must be continuous), the
output spectrum narrows as the flux increases!

This is called gain-narrowing, and we want it

Requirements
- Continuous pumping mechanism (irreversible)
- Stable, single mode operation

Output flux      Output linewidth
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Summary

Quantum field theory fundamentals - how to build models

Semiclassical approximation - how to build models
- www.

Single mode approximations - how to build models

Atom laser models as an example of each
- current experimental models
- pumped atom laser multimode stability
- feedback (needs detection)
- gain-narrowing (needs continuous pumping)

xmds.org(the numerics)


