4 Lectures on

 Quantum Optics

 Quantum Optics with photons and continuous laser beams

by Hans-A.Bachor

Australian Centre of Excellence for
Quantum Atom Optics
Canberra, Australia

More details can be found in:
A guide to experiments in quantum optics
H-A.Bachor \& T.C.Ralph, VCH-Wiley 2004

Lecture 1

- Overview of the concepts and ideas
- Classical model for laser beams \& applications
- Define quantum optics

A mode of light

$$
\begin{gathered}
\text { Intensity I } \\
\text { Direction } \mathrm{z} \\
\text { Size } \mathrm{w}_{0} \\
\text { Polarisation P } \\
\text { Frequency } v \\
\text { Phase } \Phi(\text { relative to second mode })
\end{gathered}
$$

Information is sent in the form of modulation of any one of these parameters

Classical waves

An electromagnetic wave can be described by the harmonic function at the Optical frequency v and the dimensionless complex amplitudes $\alpha(\mathbf{r}, \mathrm{t})$

$$
\mathbf{E}(\mathrm{r}, \mathrm{t}) \sim\left[\alpha(\mathbf{r}, \mathrm{t}) \exp (i 2 \pi v \mathrm{t})+\alpha^{*}(\mathbf{r}, \mathrm{t}) \exp (-i 2 \pi v \mathrm{t})\right] \mathbf{p}(\mathbf{r}, \mathrm{t})
$$

Phase is an important concept expanding the complex amplitude into The magnitude $\alpha_{0}(\mathbf{r}, \mathrm{t})$ and the phase $\phi(\mathbf{r}, \mathrm{t})$

$$
\alpha(\mathbf{r}, \mathrm{t})=\alpha_{0}(\mathbf{r}, \mathrm{t}) \exp (i \phi(\mathbf{r}, \mathrm{t}))
$$

The spatial distribution of the phase $\phi(\mathbf{r}, \mathrm{t})$, or wavefront, determines the shape of the wave; plane wave: $\phi(\mathbf{r}, \mathrm{t})=\mathbf{k} \mathbf{r}, \alpha(\mathrm{z})=\mathrm{a}_{0} \exp (i \mathrm{kz})$ spherical wave: $\alpha(r, t)=\alpha_{0} / r \exp (i k r)$

Quadrature amplitudes

We can describe the same wave using quadrature amplitudes X 1 and X 2 .

$$
E(r, t) \sim[X 1(r, t) \cos (2 \pi v t)+X 2(r, t) \sin (2 \pi v t)] \mathbf{p}(r, t)
$$

With the definition for X 1 and X 2 :
$\mathrm{X} 1(\mathbf{r}, \mathrm{t})=\alpha(\mathbf{r}, \mathrm{t})+\alpha^{*}(\mathbf{r}, \mathrm{t}) \quad \mathrm{X} 2(\mathbf{r}, \mathrm{t})=\mathrm{I}\left[\alpha(\mathbf{r}, \mathrm{t})-\alpha^{*}(\mathbf{r}, \mathrm{t})[\right.$

Each wave can be represented by a wave in a phasor diagram :

Phasor diagrams

In a phasor diagram each complex amplitude is represented by a vector. (phase space representation)

A beam with fluctuating magnitude and phase will provide quadratures that lie within an uncertainty area.

Gaussian beam

The shape and the total energy of a Gaussian beam remains fixed, but the beam broadens. The shape is preserved. Lenses and mirrors transform the Gaussian size and wavefront. (paraxial approximation)

This is the ideal TEMoo output mode from a laser or the mode created inside a cavity. In reality a beam has imperfections. These can be expressed as higher order modes. TEM ij.

Mode-matching refers to overlapping two beams with the same mode, That means the same size and mode curvature. Interference with high fringe visibility requires mode-matching.

Modulation

Amplitude modulation AM

$$
\begin{aligned}
\alpha(t)= & \alpha_{0}\left(1-M / 2\left(1-\cos \left(2 \pi \Omega_{\bmod } t\right)\right) \exp \left(i 2 \pi v_{L} t\right)\right. \\
= & \alpha_{0}(1-M / 2) \exp \left(i 2 \pi v_{L} t\right) \\
& +\alpha_{0} M / 4\left[\exp \left(i 2 \pi\left(v_{L}+\Omega_{\bmod }\right) t\right)+\exp \left(i 2 \pi\left(v_{L}-\Omega_{\bmod }\right) t\right)\right]
\end{aligned}
$$

Phase or frequency modulation FM

$$
\begin{aligned}
& \alpha(t)=\alpha_{0} \exp \left(i M \cos \left(2 \pi \Omega_{\bmod } t\right) \exp \left(i 2 \pi v_{L} t\right)\right. \\
& \quad=\alpha_{0}\left\{1-M^{2} / 4+\ldots\right) \exp \left(i 2 \pi v_{L} t\right) \\
& +i(M / 2+\ldots)\left[\exp \left(i 2 \pi\left(v_{L}+\Omega_{\bmod }\right) t\right)+\exp \left(i 2 \pi\left(v_{L}-\Omega_{\bmod }\right) t\right]\right. \\
& \left.-\left(M^{2} / 8+\ldots\right)\left[\exp \left(i 2 \pi\left(v_{L}+2 \Omega_{\bmod }\right) t\right)-\exp \left(i 2 \pi\left(v_{L}-2 \Omega_{\bmod }\right) t\right)\right]+\ldots\right\}
\end{aligned}
$$

Graphical presentation of the sidebands

Both types of modulation (AM and FM) produces sidebands. For a laser at optical frequency v_{L} and a modulation frequency $\Omega_{\text {mod }}$ these are at $v_{\mathrm{L}}+/-\Omega_{\text {mod }}$

Noise spectrum

Example of a noise spectrum showing noise at many frequencies and two modulations at Ω_{1} and Ω_{2}. This plot has a logarithmic y scale and the signal to noise ratio (SNR) can be read of directly if the modulation depth $\mathrm{M}(\Omega) \gg \operatorname{Var}(\mathrm{I}(\Omega)$.

Quantum Optics 0. order

Processes: spontaneous \& stimulated emission and absorption

$$
\begin{aligned}
& \text { Light as an electromagnetic wave } \\
& \text { and atoms are quantised } \\
& \mathrm{E}_{2}-\mathrm{E}_{1}=\mathrm{h} v \quad \Delta \mathrm{E}_{1}+\Delta \mathrm{E}_{2}=\mathrm{h} \Delta v
\end{aligned}
$$

Lifetimes τ of atoms are given by dipole moments
Find these as the solutions of the Schrödinger equation of the atom

Beams of photons

Entangled photons

Quantum noise in communication

$\mathbf{i}+\boldsymbol{i} \mathbf{(t)}$

Sending information

Photons \& laserbeams: what we observe

Laserbeams
Photocurrent
Information:
Modulation \& Noise
Correlations between
two photocurrents

Quantum Optics 1. level

Quantum Noise: Real spectrum of a laser

Quantum noise in communication

Observe beat signals

Special properties of quantum noise

Quantum Optics 2. Level

> Measurements below the QNL noise < QNL <=> squeezed light

Measurements without noise penalty
Quantum non demolition experiments QND

Generate one photon at a time (number or Fock states)
==> elusive single shoton source

Quantum Optics 3. level:

Entanglement
 Two modes which allow information to be (perfectly) inferred

Pairs of photons

Two squeezed beams

Scientific goals:
Teleportation of information Quantum logic ???
Transfer of entanglement light <=> atoms ???

A complete experiment ... many losses

Experiment versus Theory

