- Quantising the laser field
- A quantum formalism
for continuous
laser beams

Quantisation of a laser beam

Start with the quantisation of one mode:

Consider the EM field => standing wave
Energy of the field: $\varepsilon_{0} E_{x}{ }^{2}(z, t)+1 / \mu 0 H_{y}{ }^{2}(z, t)$
=> operators E and $\mathrm{H} \Rightarrow$ possible but complex
use physics of the simple harmonic oscillator
=> Excitation of particle in harmonic potential
=> equally spaced Energy eigenvalues
\Rightarrow ground state $=1 / 2 h v$

2

Number or Fock state

eigenstate $\ln >$ eigenvalue $h v(n+1 / 2)$ of the operator $a^{\dagger} \hat{a}$
\hat{a}^{\dagger} â $\ln >=n \ln >=n \ln >$
groundstate $10>$ cannot be lowered further

$$
\text { âln> }=\sqrt{ } n \ln -1>\quad \hat{a}^{\dagger} \ln >=\sqrt{ }(n+1) \quad \ln +1>
$$

create all possible eigen states by $\ln >=\left(\hat{a}^{\dagger}\right)^{n} / \sqrt{n}!\quad|0\rangle$
number states are orthogonal and complete
photon number is certain
$<\Delta n^{2}>=V n=<n\left|\Delta n^{2} \ln >=<n\right| n \dagger n \ln >-<n \ln \left|n>^{2}=n^{2}<n\right| n>-n^{2}<n \ln >=0$
useful where \mathbf{n} is small $=>\quad \gamma$-rays, single photon optics not useful for a laser where \mathbf{n} is large

Coherent state la>

We like: Eigenstate of operator â , clearly defined energy Minimum uncertainty in intensity and phase Closest approximation to ideal laser beam

Requires: Displacement operator $D(\alpha)$ that describes changes in the photon number via detection or loss:
$D(\alpha)=\exp \left(\alpha\right.$ â - $\left.\alpha^{*} \hat{a ̂}^{\dagger}\right) \quad \mid \alpha>=D(\alpha)$ 10>
it can be shown that â $|\alpha>=\alpha| \alpha>\quad \alpha^{2}=$ photon number
Expanding over number states $\operatorname{la}>=\Sigma \alpha^{n} / \sqrt{ } n!\exp \left(-1 / 2|\alpha|^{2}\right) I n>$
coherent states are not exactly orthogonal
$\left|<\alpha_{1}\right| \alpha_{2}>\left.\right|^{2}=|<0| D^{\dagger}\left(\alpha_{1}\right) D\left(\alpha_{2}\right) \mid 0>I^{2}=\exp \left(-\left|\alpha_{1}-\alpha_{2}\right|^{2}\right)$
R. Glauber Phys.Rev.131, 2766 (1962)

Photon number distribution

Phase operator

We want to describe the phase of the light, but there is No direct operator, only approximation. For details see:
D.Pegg, S.M.Barnett J.of Mod. Optics 44, 225 (1997)

$$
\text { use } \quad \hat{a}=(x 1+i \times 2) / 2
$$

x1 = quadrature amplitude

$$
\mathbf{x} 1=\hat{a}+\hat{a}^{\dagger}
$$

$x 2=-i\left(a ̂-\hat{a}^{\dagger}\right)$
x 1 and x 2 are hermitian $<=>$ uncertainty principle applies
$\left\langle\Delta x 1^{2}\right\rangle\left\langle\Delta x 2^{2}\right\rangle=1$ minimum uncertainty (pure state)
and $\left\langle\Delta x 1^{2}\right\rangle=\left\langle\Delta x 2^{2}\right\rangle$ symmetric uncertainty

Cavity modes and propagating beams

In side the cavity we have the operators
â $=(x 1+i x 2) / 2$ with $\hat{a}^{\dagger} \hat{a}$ in units of photons
Outside a cavity with a freely propagating beam we have:
$A=(X 1+i X 2) / 2$ with $A^{\dagger} A$ in units of photons per sec
X 1 = quadrature amplitude $\quad \mathrm{X} 2$ = quadrature phase $X 1=A+A^{\dagger} \quad X 2=-i\left(A-A^{\dagger}\right)$
Note: more recently the notation is $\mathrm{X}^{+}=\mathrm{X} 1, \mathrm{X}^{-}=\mathrm{X} 2$
X1 and X2 are hermitian <=> uncertainty principle applies
$\left\langle\Delta X 1^{2}\right\rangle\left\langle\Delta X 2^{2}\right\rangle=1 \quad$ minimum uncertainty (pure state)
and $\left\langle\Delta X 1^{2}\right\rangle=\left\langle\Delta X 2^{2}\right\rangle$ symmetric uncertainty

Linearisation

Fluctuations are small => linearise around fixed value of a

X1

$$
A=\alpha+\delta A(t) \quad(\alpha \text { always real, along X1 axis) }
$$

photon flux $N=A^{\dagger}(t) A(t)=\left(\alpha+\delta A^{\dagger}(t)\right)(\alpha+\delta A(t))$ $=\alpha^{2}+\alpha \delta A^{\dagger}(t)+\alpha \delta A(t)+\delta A^{\dagger}(t) \delta A(t)$

$$
=\alpha^{2}+\alpha \delta X 1(t)
$$

we find expectation values such as

$$
\mathrm{N}=\langle\alpha \mathrm{IN} \mid \alpha\rangle=\alpha^{2}
$$

$\mathrm{VN}=<\alpha \mathrm{I} \mathrm{A}^{\dagger} \mathrm{A}^{\dagger} \mathrm{A}^{\dagger} \mathrm{Al}$ l $>-<\alpha \mathrm{I} \mathrm{A}^{\dagger}$ A l $\alpha>^{2}$ (we measure)
$\mathrm{V} 1=<\alpha \mathrm{X} 1^{\dagger} \mathrm{X} 1 \mathrm{l} \alpha>-<\alpha \mathrm{l}$ X1 $\mathrm{l} \alpha>^{2}=\mathrm{VN} / \mathrm{N}$ (we calculate)

Spectral operators

The information is contained in certain frequency bands

$$
A(\Omega)=\alpha \delta(0)+\delta A(\Omega)
$$

$\delta X 1(\Omega)=\delta A(\Omega)+\delta A^{\dagger}(\Omega), \quad \delta X 2(\Omega)=-i\left(\delta A(\Omega)-\delta A^{\dagger}(\Omega)\right)$

$$
\mathrm{N}=\alpha^{2} \delta(0)+\alpha \delta \mathrm{X} 1(\Omega)
$$

$$
\operatorname{VN}(\Omega)=\alpha^{2}\langle\alpha| \delta \times 1(\Omega)^{2} \mid \alpha>=\alpha^{2} \operatorname{V1}(\Omega)
$$

for quantum noise limited beam V1 =1
All probability distribution functions, in particular the Wigner Functions, are Gaussian. The variance is the only value required, no higher order momentsare possible.

We can measure VN experimentally and calculate V1.
We deduce everything from measurements of VN.

Ouasi Probabilitv distribution

Q - function

$Q \Psi(\alpha)=I<\alpha \mid \Psi>I^{2} / \pi$
If $\mid \psi>$ is another coherent state $\mid \beta>$
$Q \beta(\alpha)=\exp \left(-|\alpha-\beta|^{2}\right) / \pi$
which is a $\mathbf{2}$ dim Gaussian

Quantum noise C.W.Gardiner Springer 1991
Quantum optics D.F.Walls, G.J.Milburn Springer 1994
Quantum optics M.O.Scully, M.S.Zubairy Cambridge 1997

Wigner Function

Wigner - function, which is preferred in theory papers.
$W \Psi(\alpha)=I<\alpha\left|D\left(\alpha_{1}\right) \Pi D\left(\alpha_{2}\right)\right| \Psi>I^{2} / \pi$
Π is the Parity operator
$\Pi\left(c_{0}\left|0>+c_{1}\right| 1>+c_{2} \mid 2>+..\right)=\left(c_{0}\left|0>-c_{1}\right| 1>+c_{2} \mid 2>+..\right)$
If $|\psi\rangle$ is another coherent state $I \beta>$
$\mathrm{W} \beta(\alpha)=2 \exp \left(-2|\alpha-\beta|^{2}\right) / \pi$ which also is a $\mathbf{2} \operatorname{dim}$ Gaussian

For nonclassical light the Wigner function has negative components.

Quantum noise C.W.Gardiner, Springer 1991

Representation of coherent states

All these images are equivalent:

12/14/04

Transfer function

We can show that for all experiments we have:

$$
\begin{aligned}
\mathrm{V} 1_{\text {out }}(\Omega) & =\mathrm{c} 1 \mathrm{~V} 1_{\mathrm{in} 1}(\Omega)+\mathrm{c} 2 \mathrm{~V} 1_{\mathrm{in} 2}(\Omega)+\mathrm{c} 3 \mathrm{~V} 1_{\mathrm{in} 3}(\Omega)+ \\
& +\mathrm{d} 1 \mathrm{~V} 2_{\mathrm{in} 1}(\Omega)+\mathrm{d} 2 \mathrm{~V} 2_{\mathrm{in} 2}(\Omega)+\mathrm{d} 3 \mathrm{~V} 2_{\mathrm{in} 3}(\Omega)+\ldots \ldots \\
\mathrm{V} 2_{\text {out }}(\Omega) & =\mathrm{c} 1 \mathrm{~V} 2_{\mathrm{in} 1}(\Omega)+\mathrm{c} 2 \mathrm{~V} 2_{\mathrm{in} 2}(\Omega)+\mathrm{c} 3 \mathrm{~V} 2_{\mathrm{in} 3}(\Omega)+\ldots \\
& +\mathrm{d} 1 \mathrm{~V} 1_{\mathrm{in} 1}(\Omega)+\mathrm{d} 2 \mathrm{~V} 1_{\mathrm{in} 2}(\Omega)+\mathrm{d} 3 \mathrm{~V} 1_{\mathrm{in} 3}(\Omega)+\ldots \ldots
\end{aligned}
$$

And for all systems without resonances (that means no optical cavities $)=>\mathrm{di}=0$,

This means V1 and V2 are independent: no rotation of the quadratures.

Simplest example: beamsplitter

All the difference to classical waves is in the vacuum beam

$$
\mathrm{V} 1_{\mathrm{vac}}(\Omega)=1
$$

