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Lecture 2

• Quantising the laser
field

• A quantum formalism

for continuous

laser beams
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Quantisation of a laser beam

Start with the quantisation of one mode: 

Consider the EM field => standing wave
Energy of the field:  !0 E x

2(z,t)  +1/µ0 Hy
2(z,t)

=> operators E and H   =>    possible but complex

use physics of the simple harmonic oscillator

=> Excitation of particle in harmonic potential
=> equally spaced Energy eigenvalues
=>  ground state = 1/2 h "
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Number or Fock state

eigenstate   |n>         eigenvalue   h" (n+1/2)   of the operator  â† â

            
â† â |n>  = n |n>   = n |n>

groundstate |0>  cannot be lowered further
â|n>  = !n |n-1>            â† |n> = !(n+1)  |n+1>

create all possible eigen states by    |n> = (â†)n /!n!   |0>

number states are orthogonal and complete

photon number is certain
<#n2>= Vn = <n| #n2 |n> = <n| n†n |n> - <n|n|n>2= n2<n|n> -n2<n|n> = 0

useful where n is small   =>    $ -rays,  single photon optics

not useful for a laser where n is large
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Coherent state |a>

We like:  Eigenstate of operator â  , clearly defined energy
                Minimum uncertainty in intensity and phase
                Closest approximation to ideal laser beam

Requires: Displacement operator D(%) that describes changes 

in the photon number via detection or loss:
D(%) = exp (% â - %* â†)                  |% > = D (%)  |0>

it can be shown that   â |% > =  % |% >       %2  = photon number

Expanding over number states   |a> = & %n/!n! exp(-1/2|%|2) |n>

coherent states are not exactly orthogonal
|<%1|%2>|2 =  |<0| D†(%1) D(%2) |0> |2 = exp(- | %1- %2| 

2 )

R. Glauber Phys.Rev.131, 2766 (1962)
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Photon number distribution

P% (n)  =   |< n |% >|2  =  |%|2 / n!    exp( -| % |2 )          #n2 = n%

For larger % =>  Gaussian distribution of width   Vn = n%

Poissonian distribution of photon number for 3 coherent states
n%= 4    n%= 36                 n%= 1000
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Phase operator

We want to describe the phase of the light, but there is 
No direct operator, only approximation.  For details see: 

D.Pegg, S.M.Barnett       J.of Mod. Optics 44, 225 (1997)

     use     â = (x1  + i x2 ) / 2

x1 = quadrature amplitude               x2 = quadrature phase
x1 = â + â†  x2 = -i (â - â†)

x1  and x2  are hermitian <=>  uncertainty principle applies

   <#x12> <#x22> = 1      minimum uncertainty (pure state)

             and   <#x12> = <#x22>  symmetric uncertainty
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Cavity modes and propagating beams

In side the cavity we have the operators
  â = (x1  + i x2 ) / 2     with  â† â    in units of photons

Outside a cavity with a freely propagating beam we have:
 A = (X1  + i X2 ) / 2     with  A† A  in units of photons per sec

X1 = quadrature amplitude               X2 = quadrature phase
X1 = A + A†  X2 = -i  (A - A†)

Note:    more recently the notation is X+ = X1,  X- = X2

X1  and X2  are hermitian <=>  uncertainty principle applies

   <#X12> <#X22> = 1      minimum uncertainty (pure state)

             and   <#X12> = <#X22>  symmetric uncertainty
 

     



12/14/04 8

Linearisation

Fluctuations are small  =>  
linearise around fixed value of a

A = % + ' A(t)   (% always real, along X1 axis )

    photon flux  N = A† (t) A (t) = (% + ' A†(t) ) (% + ' A(t))
= %2 + % ' A†(t) + % ' A(t)  + ' A†(t) ' A(t)

= %2 + %  ' X1(t)

we  find  expectation values such as

N  = <%|N|%> =  %2  

  
VN = <%| A† A A† A |%> - <%| A† A |%> 2  ( we measure )

V1 = <%| X1† X1 |%> - <%| X1 |%> 2 = VN/N ( we calculate)

dX2(()

dX2(()

X2

X1

%
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Spectral operators

The information is contained in certain frequency bands 
A(() =  %  '(0)  + 'A(()

'X1 (() = 'A(() + 'A†((),          'X2 (() = -i ('A(() - 'A†(())

N =  %2  '(0)  + % 'X1 (()

VN (()  = %2   <%|  'X1 (() 2 | % >  =  %2   V1 (()

for quantum noise limited beam  V1 =1

All probability distribution functions, in particular the Wigner 
Functions, are Gaussian. The variance is the only value required,

no higher order momentsare  possible.

We can measure VN experimentally and calculate V1. 
 

We deduce everything from measurements of VN.  
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Quasi Probability distribution

Q - function

Q) (%) =   | < % | ) > |2 / *

If  |+> is another coherent
state |,>

Q, (%)    =   exp( - |%-,|2) / *

which is a 2 dim Gaussian

   

Quantum noise  C.W.Gardiner   Springer 1991

Quantum optics   D.F.Walls, G.J.Milburn  Springer 1994

Quantum optics   M.O.Scully, M.S.Zubairy  Cambridge 1997
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Wigner Function

Wigner - function, which is preferred in theory papers.

W) (%) =   | < % | D(%1) -  D(%2)| ) > |2 / *

- is the Parity operator 
- ( c0 |0> +c1 |1> +c2 |2> + ..) = ( c0 |0> - c1 |1> +c2 |2> + ..)

If |+> is  another coherent state |,>
W, (%) =   2 exp( - 2 |%-,|2) / *

which also is a 2 dim Gaussian

For nonclassical light the Wigner function has 
negative components.

   

Quantum noise  C.W.Gardiner,    Springer 1991
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Representation of coherent states

All these images are equivalent:

P(n)

#I2

t

I(t)

'I(()

 (

VN(()

X2

X1

#X1

#X1
t

'X2

'X1

(

 (

V1(()

V2(()
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Transfer function

We can show that for all experiments we have:

V1 out(() = c1 V1 in1 (() + c2 V1 in2 (() + c3 V1 in3 (() +

                        + d1 V2 in1 (() + d2 V2 in2 (() + d3 V2 in3 (() +… …

V2 out(() = c1 V2 in1 (() + c2 V2 in2 (() + c3 V2 in3 (() +…

                      + d1 V1 in1 (() + d2 V1 in2 (() + d3 V1 in3 (() +… …

And for all systems without resonances   

( that means no optical cavities ) =>  di = 0,

 

This means V1 and V2 are independent: 

no rotation of the quadratures. 
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All the difference to classical waves is in the vacuum beam

Simplest example: beamsplitter

V1 out(() = . V1 in(() + (1- .) V1 vac(()

Beamsplitter with intensity reflection  .

V1 in(()

V1 vac(()

V1 out(()

V1 vac(()  = 1


