Lecture 4

 What is squeezed light ?

e Formalism

e Properties

* Examples of experiments
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Other possible states

Coherent state Squeezed state
Vi =V2 V1 £V2
Viv2=1 Viv2=1
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Squeezed states

Theoretically they are a different class:

lo,E> = S(E) D(a) 10>

2 photon correlated state, displace first,
then apply squeezing operator Yuen

la,E> = D(a) S(E)I0>

squeezed state , squeeze first,
then apply displacement operator Walls

E = I degree of squeezing, @s squeezing angle
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Photon disribution for squeezed light
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Comparison of coherent state with squeezed state (r=1) , for three different
mean photon numbers: lal? =4, 36 and 1000. For low photon numbers
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BQere is structure , for high photon numbers we get a narrower Gaussian. 4



A model for squeezing

A

VL—Q VL VL+Q

The two sidebands are no longer independent. The nonlinear

process couples, correlates , the two side bands. These are
both contributing to the beat frequency detected at Q.

The two contribution can cancel each other => noise < QNL

11/2 There are now extra photons in the sideband.



Squeezing properties

The noise depends on the detection angle 6

Var (X(®) = cosh?(r)- Isinh(r) exp(i2(©+0,)I?

it is best to go into a rotated frame of reference

VY1 =Var (X(6,) = exp (-2r)

VY2 =Var (X(0.+ n/2) = exp (2r)

and note that both 6_(<2) and r (€2) depend on
the detection frequency
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Plotting Var (X(©.)

(a) 10

VY1 =Var (X(©.) = exp (-2r)

VY2 =Var (X(O+ n/2) = exp ( 2r)

Vig) [dB]

(a) linear scale, both
squeezing and anti-squeezing

(b) logarithmic scale
squeezing occurs in a very
narrow range of projections (b)

(c) polar plots of Var (X(©.)
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Different types of squeezed states

Im o,
dX2(Q)
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coherent
state
Reo, §X1(RQ)
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- >

Rea, 5X1(Q)
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The tools for squeezing

- Is it possible to change the shape of the minimum
uncertainty circle using some optical tools?

X2

A

e Can we make a light state that is quieter than the vacuum
11/29/04 state of light? --- A Squeezed Vacuum o



7~  First squeezing results (4WM in Na )
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The first squeezing results, obtained at Bell labs by 4WM in a sodium vapour
and later results after optimisation. Solid line: theory prediction.

R.E.Slusher, L.W.Hollberg, B.Yurke, J.C.Mertz, J.F.Valley, PRL 55, 2409 (1985)
R.E.Slusher, B.Yurke, P.Grangier, A.LaPorta, D.F.Walls, M.Reid, J.O.S,A. B4, 1453 (1987)



Squeezing with nonlinear processes
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The Kerr effect

n(a) = Ng+ N, o?

The Kerr effect links D= 27 L/ A (ng+ n, (a+3X1)>?)
the fluctuations in the
intensity to changes 6Xzout = 6X2in + 2 Feerr 0X1 in rkerr=2 U r"0“2" a? /A

in the refractive index.

outputE2

The Kerr effect does not
preserve minimum
uncertainty states. It
adds noise.

But: in one direction
the noise is below
the quantum limit.

Histogram
Histogram
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Kerr effect in a fibre
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First experimental results with Kerr effect: long fibre , cooled to suppress noise,
many modes to avoid Brillouin scattering, detected by rotating the quadratures with
a cavity. M.Levenson, R.M.Shelby, S.H.Perimutter, Opt.Lett. 514 ( 1985)



First Kerr squeezing results
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The minimum of the noise is at an angle rotated to X1 and X2. This can be measured
by using a detuned cavity to rotate the quadratures. The noise suppression is small,

but reproducible and fits the theoretical prediction.
G.J.Milburn, M.D.Levenson, R.M.Shelby, S.H.Perlmutter, R.G.deVoe, D.F.Walls
J.O.S.A. B 4, 1476 (1987)
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SHG squeezing idea

>
1063 nm 932 nm

Nonlinear crystal can convert from v1 to 2wvi

cavity which is resonant for fundamental (1063 nm)
has one reflector for the second harmonic ( 532 nm)

d as/dt =- (Kf-l + iAf) ag + 1/2 € an as + \/2 K1 AS1 +\/2K2 ASZ + \/2 k|OSS A loss

Vis (Q) = 1- 8 Kn|2 - 8 KnI¥nf (V1 '1) /[ (3 Knl +an) 2 + (2 J'CQ) 2]

las

Kpl = % / 2KS lal?
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SHG squeezing apparatus

dichroic
mirror

modecleaner y

detector
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SHG results
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Details of the SHG experiment

PD A
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The principle of the OPO

EPR 1

: hv

pump light W
20 WIS
crystal /m hv

A device with phase dependent EPR 2
gain.

e  When vacuum fluctuation is in :
phase with the pump, it is \ i
amplified.

*  When vacuum fluctuation is out-of-

phase with the pump, it is de- )
amplified.

e It works even with a vacuum
seed.
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OPO squeezing
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V2(Q)=1- nad/[(1+d)2 +(2 x Q )?]
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The experimental layout

SHU |



Results from OPO squeezing
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A complete experiment
i Wil

11/29/04 Example : Squeezing experiment at ANU P.K.Lametal. 23



Effect of a beam splitter on squeezed light
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Quantitative effect of loss
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The quantitative effect of efficiencies h on the minimum
variance. The squeezing values V, and V_ are given in [dB],
which is defined as 10 log (V). Deep squeezing is very
sensitive to any losses.
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[dB]

SQUEEZING HISTORY
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Effect of a beam splitter on squeezed light?

yes




Quantum Optics 1. level
e R ————————————

Quantum Noise limit
QNL

Photon statistics

Quantum noise
in photo current

Arrival times

Poissonian Limit to
Bunching

Anti-bunching

signal to noise ratio
SNR reduces with power

Limits to opt.
Instruments
(shot noise limit)

Application :
Q. - cryptography
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