

$$H_{A} = \frac{\hbar\omega_{0}}{2} \{ |e\rangle\langle e| - |g\rangle\langle g| \} + \vec{\wp} \cdot \vec{E} \cos\omega t \{ |e\rangle\langle g| + |g\rangle\langle e| \}$$
$$\vec{\wp} = q\langle e|\vec{r}|g\rangle$$

$$H_{A} = \frac{\mu_{b} D_{0}}{2} \left\{ |\uparrow\rangle\langle\uparrow| - |\downarrow\rangle\langle\downarrow| \right\} + \frac{\mu_{b} D}{2} \cos\omega t \left\{ |\uparrow\rangle\langle\downarrow| + |\downarrow\rangle\langle\uparrow| \right\}$$

$$\frac{\hbar\omega}{2}\left\{\left|e\right\rangle\left\langle e\right|-\left|g\right\rangle\left\langle g\right|\right\}+\frac{\hbar\Delta}{2}\left\{\left|e\right\rangle\left\langle e\right|-\left|g\right\rangle\left\langle g\right|\right\}+\vec{\wp}\bullet\vec{E}\cos\omega t\left\{\left|e\right\rangle\left\langle g\right|+\left|g\right\rangle\left\langle e\right|\right\}\right\}$$

Interaction Picture Reality Check

Commutators

$$\begin{bmatrix} \hat{A}_{S}, \hat{B}_{S} \end{bmatrix} = \hat{C}_{S}$$
$$\hat{A}_{I} = \exp(iH_{0}t/\hbar)\hat{A}_{S}\exp(-iH_{0}t/\hbar) \quad \hat{B}_{I} = \exp(iH_{0}t/\hbar)\hat{B}_{S}\exp(-iH_{0}t/\hbar)$$
$$\begin{bmatrix} \hat{A}_{I}, \hat{B}_{I} \end{bmatrix} = \hat{C}_{I}$$

Expectation Values

 $ig\langle \Psi_{_S} ig| \hat{A}_{_S} ig| \Psi_{_S} ig
angle$

$$= \underbrace{\langle \Psi_{S} | \exp(-iH_{0}t/\hbar) \exp(iH_{0}t/\hbar) \hat{A}_{S} \exp(-iH_{0}t/\hbar) \exp(iH_{0}t/\hbar) | \Psi_{S} \rangle}_{\langle \Psi_{I} |}$$
$$= \langle \Psi_{I} | \hat{A}_{I} | \Psi_{I} \rangle$$

Full Quantum Model

$$H = \underbrace{\hbar\omega(a^{+}a + 1/2)}_{H_{F}} + \underbrace{\frac{\hbar\omega_{0}}{2}\left\{ \left. \left| e \right\rangle \left\langle e \right| - \left| g \right\rangle \left\langle g \right| \right. \right\}}_{H_{A}} + \underbrace{\hbar\Omega_{v}(a|e\rangle \left\langle g| + a^{+}|g\rangle \left\langle e|\right)}_{H_{AF}}$$

Compare With Semiclassical

$$V_{I} = \frac{\hbar\Delta}{2} \left\{ \left| e \right\rangle \! \left\langle e \right| \! - \! \left| g \right\rangle \! \left\langle g \right| \right\} \! + \frac{\hbar\Omega}{2} \left\{ \left| e \right\rangle \! \left\langle g \right| \! + \! \left| g \right\rangle \! \left\langle e \right| \right\} \right\}$$

$$H_F + H_A = \hbar \omega \left(a^+ a + 1/2 \right) + \frac{\hbar \omega_0}{2} \left\{ \left| e \right\rangle \left\langle e \right| - \left| g \right\rangle \left\langle g \right| \right\}$$

$$\hbar\omega(a^{+}a+1/2) + \frac{\hbar\omega_{0}}{2} \{ |e\rangle\langle e| - |g\rangle\langle g| \} + \hbar\Omega_{\nu}(a|e\rangle\langle g| + a^{+}|g\rangle\langle e|)$$

 $\frac{\text{Basis states}}{|n+1\rangle|g\rangle}$ $|n\rangle|e\rangle$

$$H = \frac{\hbar}{2} \begin{pmatrix} \Delta & \Omega_v \sqrt{n+1} \\ \Omega_v \sqrt{n+1} & -\Delta \end{pmatrix}$$

Compare Full Quantum and Semi-classical

Full quantum

$$H = \frac{\hbar}{2} \begin{pmatrix} \Delta & \Omega_v \sqrt{n+1} \\ \Omega_v \sqrt{n+1} & -\Delta \end{pmatrix}$$

Semi-classical

$$V_I = \frac{\hbar}{2} \begin{pmatrix} \Delta & \Omega \\ \Omega & -\Delta \end{pmatrix}$$

Two Level Atom in the (an) Interaction Picture

$$|\Psi(t)\rangle = C_e(t)|e\rangle + C_g(t)|g\rangle$$

Solving for the dynamics of the two level atom with boundary Condition Cg(0) = 1, Ce(0) = 0 gives:

$$C_e \Big|^2 = \frac{\Omega^2}{\Omega^2 + \Delta^2} \sin^2 \left(\sqrt{\Omega^2 + \Delta^2} t \right)$$

(question 2)

Solving for the dynamics of the two level atom with boundary Condition Cg(0) = 1, Ce(0) = 0 gives:

Simple discussion of RF evaporation

Position

Semi-classical Dressed States

$$V_I = \frac{\hbar}{2} \begin{pmatrix} \Delta & \Omega \\ \Omega & -\Delta \end{pmatrix}$$

This Hamiltonian has eigenvalues

$$E = \pm \frac{\hbar}{2} \sqrt{\Omega^2 + \Delta^2}$$

$$E \approx \pm \frac{\hbar}{2} \Delta \left[1 + \frac{1}{2} \left(\frac{\Omega}{\Delta} \right)^2 \right]$$

And eigenstates.....

$$|1\rangle = \cos\theta |e\rangle + \sin\theta |g\rangle \qquad E = \frac{\hbar}{2}\sqrt{\Omega^2 + \Delta^2}$$
$$|2\rangle = \sin\theta |e\rangle - \cos\theta |g\rangle \qquad E = -\frac{\hbar}{2}\sqrt{\Omega^2 + \Delta^2}$$
$$\Delta$$

$$\Delta \to -\infty \qquad \cos \theta = 1 \quad \sin \theta = 0 \qquad |1\rangle \to |e\rangle \qquad |2\rangle \to |g\rangle$$
$$\Delta \to +\infty \qquad \cos \theta = 0 \quad \sin \theta = 1 \qquad |1\rangle \to |g\rangle \qquad |2\rangle \to |e\rangle$$

Dressed States and Avoided Crossings

Dressed States and Avoided Crossings

Schroedinger Picture

Position

Interaction Picture

Position (and detuning)

Interaction Picture

Position (and detuning)

Dressed States and Avoided Crossings

Landau Zener and Adiabatic Following

$$V_{I} = \frac{\hbar}{2} \begin{pmatrix} \Delta(t) & \Omega \\ \Omega & -\Delta(t) \end{pmatrix}$$

$$|\psi(t)\rangle = C_1(t)|1\rangle + C_2(t)|2\rangle$$

Probablity of a non-adiabatic transition

$$P = \exp(-2\pi\Gamma)$$
$$\Gamma = \frac{\Omega^2}{\left(\frac{d\Delta}{dt}\right)_{t_c}}$$

Light Potentials

$$|1\rangle = \cos\theta |e\rangle + \sin\theta |g\rangle \qquad E = \frac{\hbar}{2}\sqrt{\Omega^2 + \Delta^2}$$
$$|2\rangle = \sin\theta |e\rangle - \cos\theta |g\rangle \qquad E = -\frac{\hbar}{2}\sqrt{\Omega^2 + \Delta^2}$$

$$\cos 2\theta = -\frac{\Delta}{\sqrt{\Omega^2 + \Delta^2}} \qquad \qquad \sin 2\theta = \frac{\Omega}{\sqrt{\Omega^2 + \Delta^2}}$$

$$\Delta > 0 \quad \Omega \to 0 \qquad \cos\theta = 0 \quad \sin\theta = 1 \qquad |1\rangle \to |g\rangle$$
$$E \approx \frac{\hbar}{2} |\Delta|^2 \left[1 + \frac{1}{2} \left(\frac{\Omega}{\Delta} \right)^2 \right] \qquad V(\vec{r}) = \frac{\hbar \Omega^2(\vec{r})}{4\Delta}$$

Light Potentials (blue detuning)

position

Light Potentials (red detuning)

position

Coherence and the Density Operator

$$|\Psi\rangle = C_e |e\rangle + C_g e^{i\delta} |g\rangle$$

 $\langle \Psi | A | \Psi \rangle = |C_e|^2 \langle e | A | e \rangle + |C_g|^2 \langle g | A | g \rangle + \underbrace{2 \operatorname{Re} \left[C_e C_g \langle g | A | e \rangle \right] \cos \delta - 2 \operatorname{Im} \left[C_e C_g \langle g | A | e \rangle \right] \sin \delta}_{Interference \ terms}$

Consider a mixed state where the probability of finding an atom in state $|\xi_i\rangle$ is P_i

$$\langle A \rangle = \sum_{i} P_{i} \langle \xi_{i} | A | \xi_{i} \rangle = \sum_{j} \sum_{i} P_{i} \langle \xi_{i} | A | \phi_{j} \rangle \langle \phi_{j} | \xi_{i} \rangle = \sum_{j} \langle \phi_{j} | \underbrace{\left(\sum_{i} P_{i} | \xi_{i} \rangle \langle \xi_{i} | \right)}_{\hat{\rho}} | \phi_{j} \rangle$$

$$P_{i} \langle \xi_{i} | A | \xi_{i} \rangle = \sum_{j} \sum_{i} P_{i} \langle \xi_{i} | A | \phi_{j} \rangle \langle \phi_{j} | \xi_{i} \rangle = \sum_{j} \langle \phi_{j} | \underbrace{\left(\sum_{i} P_{i} | \xi_{i} \rangle \langle \xi_{i} | \right)}_{\hat{\rho}} | \phi_{j} \rangle$$
Density operator

Density Operator Dynamics

$$\frac{\partial \hat{\rho}}{\partial t} = \frac{\partial}{\partial t} \sum_{i} P_{i} |\xi_{i}\rangle \langle \xi_{i}$$

$$\frac{\partial \hat{\rho}}{\partial t} = \frac{-i}{\hbar} [H, \hat{\rho}]$$
$$\langle A \rangle = Tr(\hat{\rho}A)$$

For an arbitrary pure state of our two level atom $|\Psi\rangle = C_e |e\rangle + C_g |g\rangle$

$$\hat{\rho} = |\psi\rangle\langle\psi| = |C_e|^2 |e\rangle\langle e| + C_e C_g^* |e\rangle\langle g| + C_g C_e^* |g\rangle\langle e| + |C_g|^2 |g\rangle\langle g|$$

Calculating time evolution using the equation on the previous page And taking matrix elements:

$$\dot{\rho}_{ee} = -\gamma \rho_{ee} + \frac{i}{2} \left(\Omega^* \rho_{eg} - \Omega \rho_{ge} \right)$$

$$\dot{\rho}_{gg} = \gamma \rho_{ee} + \frac{i}{2} \left(\Omega \rho_{ge} - \Omega^* \rho_{eg} \right)$$

$$\dot{\rho}_{eg} = -\frac{\gamma}{2} \rho_{eg} - i\Delta \rho_{eg} + \frac{i\Omega}{2} \left(\rho_{ee} - \rho_{gg} \right)$$

$$\dot{\rho}_{ge} = -\frac{\gamma}{2} \rho_{ge} + i\Delta \rho_{ge} + \frac{i\Omega}{2} \left(\rho_{gg} - \rho_{ee} \right)$$

<u>Steady State Solutions: $\dot{\rho} = 0$ </u>

scattering rate =
$$\gamma \rho_{ee} = \left(\frac{s_0}{1+s_0}\right) \frac{\gamma/2}{1+(2\Delta/\gamma')^2}$$
 $\gamma' = \gamma \sqrt{1+s_0}$
 $s_0 = \frac{\Omega^2}{\gamma^2 + \Delta^2}$

We can manipulate cold atoms with light potentials by detuning the lasers far off resonance and raising the intensity. As the potential scales as I/Δ and the scattering rate scales as I/Δ^2 , an arbitrarily deep (or high) potential can be achieved with an arbitrarily low scattering rate. This is the basis of optical traps optical spoons etc.