Phase-space methods for quantum simulations

Peter Drummond

Australian Centre for Quantum Atom Optics,

University of Queensland, AUSTRALIA

1st December 2004

The problem: complexity

How can we calculate quantum dynamics?

BEC: 10^{100000} states, 10^6 qubits in Hilbert space

X Real time path integrals **don't converge**

- X Mean field methods don't give quantum statistics
- X Direct computation needs **don't fit into memory**!

Phase-space representations

- \checkmark Quantum dynamics \rightarrow stochastic motion + sampling
- **X** Classical phase-space: Wigner, P-, Q, d dimensions
- ✓ Quantum phase-space: Positive-P, 2d dimensions
- ✓ Stochastic gauge: adds a weight to the trajectory

Phase-Space Representations

Expand the density matrix $\widehat{\rho}$, using operators $\widehat{\Lambda}(\overrightarrow{\lambda})$:

$$\widehat{\rho} = \int P(\overrightarrow{\lambda}) \widehat{\Lambda}(\overrightarrow{\lambda}) d\overrightarrow{\lambda}$$

Quantum dynamics \rightarrow Trajectories in $\overrightarrow{\lambda}$.

Different basis choice $\widehat{\Lambda}(\overrightarrow{\lambda}) \rightarrow$ different representation

General *M***-mode Gaussian operator**

Normally-ordered exponential of a general quadratic form in the 2*M*-vector mode operator $\delta \underline{\hat{a}} = (\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}) - \underline{\alpha}$, where $\underline{\alpha}$ is a 2*M*-vector c-number and $\hat{\mathbf{a}}$ is the vector of annihilation operators. For algebraic reasons, it is useful to employ normal ordering, and to introduce a compact notation using a generalized covariance $\underline{\sigma}$:

$$\widehat{\Lambda}(\overrightarrow{\lambda}) = \frac{\Omega}{\sqrt{|\underline{\sigma}|}} : \exp\left[-\delta \underline{\widehat{a}}^{\dagger} \underline{\sigma}^{-1} \delta \underline{\widehat{a}}/2\right] : .$$

In this case, the phase-space is described by the complex variables $\overrightarrow{\lambda} = (\Omega, \underline{\alpha}, \underline{\sigma}) = (\Omega, \alpha)$.

What is the covariance?

$$\underline{\mathbf{\sigma}} = \begin{bmatrix} \mathbf{I} + \mathbf{n} & \mathbf{m} \\ \mathbf{m}^+ & \mathbf{I} + \mathbf{n}^T \end{bmatrix} .$$

The representation phase space is $\overrightarrow{\lambda} = (\Omega, \alpha, \alpha^+, \mathbf{n}, \mathbf{m}, \mathbf{m}^+)$

- Ω = weight factor
- α, α^{\dagger} = amplitude
- \mathbf{n} = number correlation (complex $M \times M$ matrix).
- \mathbf{m}, \mathbf{m}^+ = squeezing (symmetric complex $M \times M$ matrices)

What are the moments physically?

$$egin{aligned} &\langle\widehat{a}_i
angle &= \langle\Omegalpha_i
angle_P\ &\left<\widehat{a}_i^\dagger
ight> &= \langle\Omegalpha_i^+
ight>_P\ &\left<\widehat{a}_i\widehat{a}_j
ight> &= \langle\Omega(lpha_ilpha_j+m_{ij})
ight>_P\ &\left<:\widehat{a}_i\widehat{a}_j^\dagger:
ight> &= \langle\Omega(lpha_ilpha_j^++n_{ij})
ight>_P\ &\left<\widehat{a}_i^\dagger\widehat{a}_j^\dagger
ight> &= \langle\Omega(lpha_i^+lpha_j^++m_{ij}^+)
ight>_P. \end{aligned}$$

Standard Phase-space Representations

What about the text-book phase-space representations?

Property:	Variance (n)	Operator	Phase-space	
Repn.		Order		
Ρ	0	Normal	Classical	
W	1/2	Symmetric	Classical	
Q	1	Antinormal	Classical	
+P	0	Normal	Classical×2	
G	n	Any (Classical)		

TYPES OF PROBLEM

There are three main types of problems studied:

- ✓ Master equations damping + coherent evolution
- Canonical ensembles 'imaginary time' thermal equilibrium
- ✓ Quantum dynamics purely coherent nonlinear evolution

OUTLINE

- 1. **PROBLEM:** $\partial \hat{\rho} / \partial t = \hat{L}[\hat{\rho}]$
- 2. Define: *p*-dimensional complex space: $\vec{\lambda} = (\Omega, \alpha)$
- 3. Basis $\widehat{\Lambda}(\overrightarrow{\lambda})$: $\widehat{\rho} = \int P(\overrightarrow{\lambda}) \widehat{\Lambda}(\overrightarrow{\lambda}) d^{2p} \overrightarrow{\lambda}$
- 4. Identities: $\partial \widehat{\rho} / \partial t = \int P(\overrightarrow{\lambda}) \mathcal{L}_A \widehat{\Lambda}(\overrightarrow{\lambda}) d^{2p} \overrightarrow{\lambda}$
- 5. Diffusion and drift gauge: $\mathbf{g}^{d}(\boldsymbol{\alpha}), \mathbf{g}(\boldsymbol{\alpha})$
- 6. STOCHASTICS:

$$\frac{d\Omega}{\partial t} = \Omega \left[U + \mathbf{g} \cdot \boldsymbol{\zeta} \right]$$
$$\frac{d\Omega}{\partial t} = \mathbf{A} + \mathbf{B}(\boldsymbol{\zeta} - \mathbf{g})$$

CENTRAL RESULT

Stochastic equations: trajectory α , quantum amplitude Ω :

Gauge $d\Omega/\partial t = \Omega \left[Udt + \mathbf{g}(\alpha) \cdot \boldsymbol{\zeta}(t) \right]$

Trajectory $d\alpha/\partial t = \mathbf{A} + \mathbf{B}[\zeta(t) - \mathbf{g}(\alpha)]$

- Noise correlations: $\langle \zeta_i(t)\zeta_j(t')\rangle = \delta_{ij}\delta(t-t')$
- Gauges chosen freely to optimize simulations
- Provided no boundary terms, all gauges EQUIVALENT
- Works for either bosons or fermions
- Sign changes for fermions and NO amplitude terms

COMPUTATIONAL STRATEGIES

League Table of Representations

How do the known phase-space representations compare?

Property:	Finite?	2nd	Pos.	SDE ?	Stable?
Repn.		Order	Def.?		
Ρ	No	-	-	-	-
W	Yes	No	-	-	-
R	Yes	Yes	No	-	-
Q	Yes	Yes	Yes	No	-
+P	Yes	Yes	Yes	Yes	No
G	Yes	Yes	Yes	Yes	Yes

I: CANONICAL BOSE-HUBBARD MODEL

Nonlinear interactions at each site + linear interactions coupling different sites:

- $\widehat{H}(\mathbf{a}, \mathbf{a}^{\dagger}) = \hbar \left[\sum \sum \omega_{ij} a_i^{\dagger} a_j + \sum : \widehat{n}_j^2 : \right].$
- ω_{ij} nonlocal coupling, includes chemical potential.
- Boson number: $\widehat{n}_i = a_i^{\dagger} a_i$.
- Grand canonical ensemble: $\hat{\rho}_u = e^{-(\hat{H} \mu \hat{N})/k_B T} = e^{-\hat{K}\tau}$.

Stochastic gauge equations

Choose n = 0 then \rightarrow Imaginary time Gross- Pitaevskii equations with weighting and quantum noise:

$$\frac{d\alpha_i}{d\tau} = -\left[\alpha_i^{\dagger}\alpha_i + ig_i\right]\alpha_i - \sum_{j=1}^M \omega_{ij}\alpha_j/2 + i\alpha_i\zeta_i(\tau)$$
$$\frac{d\Omega}{d\tau} = \left[-K(\tau)d\tau + \sum_{i=1}^M g_i\zeta_i(\tau)\right]\Omega$$

STABILISING GAUGE: $g_j = i(Re(\alpha_i^{\dagger}\alpha_i) - |\alpha_i^{\dagger}\alpha_i|)$,

Single-well, interacting case

Antibunching: single Bose mode, NOTE: $\tau =$ Inverse temperature

Simulations vs exact energy and density

Complete agreement with exact solutions

- at all temperatures calculated!

Spatial correlations

Spatial correlations, $g^{(2)}(x)$ can be calculated from gauge simulations:

II: REAL-TIME BOSE-HUBBARD MODEL

• n = 0 (positive-P) \rightarrow Real time Gross- Pitaevskii equations with quantum noise:

$$\frac{d\alpha_i}{dt} = -i \left[n_i + \sum_{j=1}^{2M} \omega_{ij} \alpha_j + \sqrt{i} \zeta_i(\tau) \right] \alpha_i$$

• n = 1/2 (*Wigner*) \rightarrow *Approximate* Gross- Pitaevskii equations with $\langle \alpha_i^{0*} \alpha_i^0 \rangle = 1/2$

$$\frac{d\alpha_i}{dt} = -i \left[n_i + \sum_{j=1}^{2M} \omega_{ij} \alpha_j \right] \alpha_i$$

BEC evaporative cooling (1998): 10^5 qubits

t = 100

III: NONCLASSICAL QUANTUM DYNAMICS:

Coherent molecular down-conversion

- Coherent process of molecular dissociation
- Overall effective Hamiltonian term in one dimension of

$$\hat{H} = \hat{H}_0 - i\frac{\hbar\chi(t)}{2} \int dx \left[e^{i\omega t} \hat{\Psi}_2^{\dagger} \hat{\Psi}_1^2 - e^{-i\omega t} \hat{\Psi}_2 \hat{\Psi}_1^{\dagger 2} \right],$$

• $\chi(t)$ is the bare atom-molecule coupling; ω is a detuning

Stochastic Equations

$$\begin{split} \frac{\partial \Psi_1}{\partial \tau} &= i \frac{\partial^2 \Psi_1}{\partial \xi^2} - (\gamma + i\delta) \Psi_1 + \kappa \Psi_2 \Psi_1^+ + \sqrt{\kappa \Psi_2} \eta_1 , \\ \frac{\partial \Psi_1^+}{\partial \tau} &= -i \frac{\partial^2 \Psi_1^+}{\partial \xi^2} - (\gamma - i\delta) \Psi_1^+ + \kappa \Psi_2^+ \Psi + \sqrt{\kappa \Psi_2} \eta_1^+ , \\ \frac{\partial \Psi_2}{\partial \tau} &= \frac{i}{2} \frac{\partial^2 \Psi_2}{\partial \xi^2} - i v(\xi, \tau) \Psi_2 - \frac{\kappa}{2} \Psi_1^2 + \sqrt{-iu} \Psi_2 \eta_2 , \\ \frac{\partial \Psi_2^+}{\partial \tau} &= -\frac{i}{2} \frac{\partial^2 \Psi_2^+}{\partial \xi^2} + i v(\xi, \tau) \Psi_2^+ - \frac{\kappa}{2} \Psi_1^{+2} + \sqrt{iu} \Psi_2^+ \eta_2^+ . \end{split}$$

Twin atom correlations

ACQAO

We have a new Australian Research Council Centre of Excellence in Quantum Atom Optics - with open theoretical and experimental positions for graduate students and postdocs - at;

✔ BRISBANE

- ✓ CANBERRA
- ✓ MELBOURNE
- SEE: WWW.ACQAO.ORG

(Free software: WWW.XMDS.ORG)