From EPR objections (intuitions)
to quantum information:
amazing entanglement
Canberra, december 03, 2004

Alain Aspect
Laboratoire Charles Fabry de l'Institut d'optique
http//atomoptic.iota.upsud.fr

A review on Bell's inequalities: AA quant-ph/0402001

From EPR objections (intuitions) to quantum information: amazing entanglement

Part 1: EPR paper (1935), Bell's theorem (1965), experimental tests (1972-): entanglement as a conceptual question (quantum non locality)

Part 2: Quantum cryptography, entanglement on demand, quantum computing: entanglement as a resource for quantum information

EPR original question: Can quantum mechanics

 be considered complete?Is it possible (necessary?) to explain the probabilistic character of Quantum Mechanics predictions with underlying supplementary parameters (hidden variables)?

It is suggested by the Einstein-Podolsky-Rosen argument, but denied by Bohr (1935)

Bell's theorem allows one to give an experimental answer.

From EPR to tests of Bell's inequalities: a_{s} entanglement as a conceptual question The point of view of a naive experimentalist*

- Einstein-Podolsky-Rosen correlations

The Einstein-Bohr debate (1935-1955)

- Bell's theorem (1965)

From epistemology back to physics

- Experimental tests: a brief review (1972-2002)

Towards the ideal experiment

- Conclusion

Quantum non locality: A real problem?

* AA quant-ph/0402001

Einstein-Podolsky-Rosen GedankenExperiment with photons correlated in polarization

-Photons in the entangled state: $\left|\Psi\left(v_{1}, v_{2}\right)\right\rangle=\frac{1}{\sqrt{2}}\{|x, x\rangle+|y, y\rangle\}$
-Quantum Mechanics predictions:

$$
P_{+}(\mathbf{a})=P_{-}(\mathbf{a})=\frac{1}{2} \quad ; \quad P_{+}(\mathbf{b})=P_{-}(\mathbf{b})=\frac{1}{2} \quad \text { Single results random }
$$

$P_{++}(\mathbf{a}, \mathbf{b})=P_{--}(\mathbf{a}, \mathbf{b})=\frac{1}{2} \cos ^{2}(\mathbf{a}, \mathbf{b})$
$P_{+-}(\mathbf{a}, \mathbf{b})=P_{-+}(\mathbf{a}, \mathbf{b})=\frac{1}{2} \sin ^{2}(\mathbf{a}, \mathbf{b})$
Strong correlations $(\mathbf{a}, \mathbf{b})=0 \Rightarrow P_{++}=P_{--}=\frac{1}{2}$ $P_{+-}=P_{-+}=0$

Einstein-Podolsky-Rosen GedankenExperiment with photons correlated in polarization

-Photons in the EPR entangled state: $\quad\left|\Psi\left(v_{1}, v_{2}\right)\right\rangle=\frac{1}{\sqrt{2}}\{|x, x\rangle+|y, y\rangle\}$

- Quantum Mechanics predicts a strong polarization correlation

Correlation coefficient $\quad E(\mathbf{a}, \mathbf{b})=P_{++}+P_{--}-P_{+-}-P_{-+}$

$$
E_{\mathrm{MQ}}(\mathbf{a}, \mathbf{b})=\cos 2(\mathbf{a}, \mathbf{b}) \quad \Rightarrow E_{\mathrm{MQ}}(0)=1 ; E_{\mathrm{MQ}}(90)=-1
$$

How to understand the EPR correlations? How to make an image?

- Derive it from the calculation algorithm?

Global (straightforward) calculation:

$$
P_{++}(\mathbf{a}, \mathbf{b})=\left|\left\langle+_{\mathbf{a}},+_{\mathbf{b}} \mid \Psi\left(v_{1}, v_{2}\right)\right\rangle\right\rangle^{2}
$$

Hard to make a picture in real space:

- $\left|\Psi\left(v_{1}, v_{2}\right)\right\rangle$ is a global 2-particles wave vector
- calculation done in an abstract space, without direct correspondence in real space

Classical explanation for correlations between distant results of measurements

- Common property λ of both particles of the same pair
- λ randomly determined in S at the emission time

How to understand the EPR correlations? How to make an image?
2-steps calculation (standard QM) +

- $1^{\text {rst }}$ step: measure at polarizer I

\Rightarrow result +1 (pol. along a) \Rightarrow projection of the state vector

$$
\text { or } \Rightarrow P_{+_{\mathbf{a}}}\left|\Psi\left(v_{1}, v_{2}\right)\right\rangle=\left|+_{\mathbf{a}},+_{\mathbf{a}}\right\rangle \quad \text { Photons polarized along } \mathbf{a}
$$

$$
\Rightarrow \text { resul| }{ }^{\text {nd }} 1 \text { stepribin peap }
$$

$$
\Rightarrow \text { result -1 (pol. perp. to a) } \Rightarrow \text { projection of the state vector }
$$

$$
\Rightarrow P_{-\mathbf{a}}\left|\Psi\left(v_{1}, v_{2}\right)\right\rangle=\left|-_{\mathbf{a}},-_{\mathbf{a}}\right\rangle \quad \text { Photons polarized perp to a }
$$

What a picture! Polarization of v_{2} instantaneously affected by the result of measurement on $v_{1} \ldots$ which is far away.

Can't we try a less bizarre image?

Simple image, but..
completes the formalism of quantum mechanics: supplementary parameters λ («hidden variables »)

From EPR to tests of Bell's inequalities: ©/s entanglement as a conceptual question

The point of view of a naive experimentalist*

- Einstein-Podolsky-Rosen correlations

The Einstein-Bohr debate (1935-1955)

- Bell's theorem (1965)

From epistemology back to physics

- Experimental tests: a brief review (1972-2002)

Towards the ideal experiment

- Conclusion

Quantum non locality: A real problem ?

* AA quant-ph/0402001

Bell's theorem

ass

Local Hidden Variable Theories \Rightarrow Bell's inequalities

$$
-2 \leq S \leq 2 \text { with } S=E(\mathbf{a}, \mathbf{b})-E\left(\mathbf{a}, \mathbf{b}^{\prime}\right)+E\left(\mathbf{a}^{\prime}, \mathbf{b}\right)+E\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)
$$

Quantum Mechanics, in orientations $\quad(\mathbf{a}, \mathbf{b})=\left(\mathbf{b}, \mathbf{a}^{\prime}\right)=\left(\mathbf{a}^{\prime}, \mathbf{b}\right)=\frac{\pi}{8}$

$$
E_{\mathrm{MQ}}(\mathbf{a}, \mathbf{b})=\cos 2(\mathbf{a}, \mathbf{b})
$$

$$
S_{\mathrm{QM}}=2 \sqrt{2}
$$

CONFLICT ! The possibility of completing QM with Hidden Variables is no longer a matter of taste. It has become an experimental question.

Hypotheses for Bell's inequalities
(\Rightarrow conflict with Q. M.)

Hidden variables (supplementary parameters)
or some «classical» explanation - «à la Einstein » - for the EPR correlations, involving physical reality

$$
\text { Locality } \quad A(\lambda, \mathbf{a}, \mathbf{p}) \quad B(\lambda, \mathbf{q}, \mathbf{b}) \quad \rho(\lambda, \mathbf{4}, \mathbf{p})
$$

Bell's inequalities hold for any
Local Realist Theory
Hypotheses for Bell's inequalities
$(\Rightarrow$ conflict with Q. M.)

From EPR to tests of Bell's inequalities: $9 / s$ entanglement as a conceptual question The point of view of a naive experimentalist*

- Einstein-Podolsky-Rosen correlations The Einstein-Bohr debate (1935-1955)
- Bell's theorem (1965)

From epistemology back to physics

- Experimental tests: a brief review (1972-2002) Towards the ideal experiment

First experiments with EPR pairs

aks

Experiments with γ photons $(0.5 \mathrm{MeV})$ produced in positronium desintegration
Experiments with protons (proton scattering on a target)

- Conclusion

Quantum non locality: A real problem ?

* AA quant-ph/0402001

Visible photons EPR pairs produced in C / s some atomic radiative cascades	
Polarizers do exist for visible photons	
EPR pairs produced in radiative cascades (Clauser, Horne, Shimony, Holt, 1969)	$J=0 \rightarrow J=1 \rightarrow J=$
	$\sum_{v_{1}}^{0}$
$\left.\Psi\left(v_{1}, v_{2}\right)\right\rangle=\frac{1}{\sqrt{2}}\{\|x, x\rangle+\mid y, y$	0^{12}
Any computable extra effect (finite solid angle, hyperfine structure...) leads to a decrease or even a cancellation of the conflict between Bell's inequalities and Quantum Mechanics.	
The experiment must be as ideal as possible	

First experiments with visible photons C / s mond produced in atomic radiative cascades

$1^{\text {rst }}$ generation	
• Clauser \& Freedman (Berkeley, 1972)	
${ }^{40} \mathrm{Ca} \quad 200$ hours	M. Q.
Holt \& Pipkin (Harvard, 1973) ${ }^{200} \mathrm{Hg}$ 200 hours	B. I.

$2^{\text {nd }}$ generation (laser excitation ${ }^{* * *}$)

- Fry \& Thompson (Texas A\&M, 1976)

$$
{ }^{200} \mathrm{Hg} \quad 80 \mathrm{mn} \quad \text { M. Q. }
$$

[^0]

Experiment with 1- channel polarizers O / s

$$
\text { AA, P. Grangier, G. Roger, PRL } 1981
$$

High grade pile of plates polarizers, but only one channel (+1)

> | - Excellent agreement with QM. |
| :--- |
| - Violation of Bell's inequalities by 9σ |
| - No change in the results with polarizers at a distance $(6 \mathrm{~m})$ |
| larger than the coherence length of $\mathrm{v}_{2}(1.5 \mathrm{~m})$ |

Experiment with 2- channels polarizerscoks

Fourfold coincidence system: the 4 coincidence rates are measured during the same run \Rightarrow coefficient of correlation
$E(\mathbf{a}, \mathbf{b})=\frac{N_{++}(\mathbf{a}, \mathbf{b})-N_{+-}(\mathbf{a}, \mathbf{b})-N_{-+}(\mathbf{a}, \mathbf{b})+N_{--}(\mathbf{a}, \mathbf{b})}{N_{++}(\mathbf{a}, \mathbf{b})+N_{+-}(\mathbf{a}, \mathbf{b})+N_{-+}(\mathbf{a}, \mathbf{b})+N_{--}(\mathbf{a}, \mathbf{b})}$

Experiment with optical switches $0 / 8$

In the 1982 Orsay experiment, each switch C_{1} and C_{2} worked in a quasi-periodic way, not truly random.

But the two switches were driven by two different generators, drifting independently.

Towards the ideal experiment

- Perrie et al. (1985): pair of UV photons (metastable deuterium desexcitation)
- $4^{\text {th }}$ generation: entanoled photons by parametric splitting

Alley, Mandel, Rarity, Martiensen, Kimble, Gisin, Zeilinger (super source by Kwiat, Weinfurter et al.)

- Perfect correlation: violation of BI by 100σ (Innsbruck 1998)
- Other observables: time / energy; position /momentum
- Use of optical fibers
\Rightarrow large distances (Malvern, Geneva)
\Rightarrow experiments with active random polarizers (Innsbruck 1998) Strong enforcement of the locality condition
- Implemented in laboratory classes at Institut d’Optique: $S_{\text {typ }}>2.5$
$\left.\begin{array}{|l}\text { Towards the ideal experiment } \\ \text { - Perrie et al. (1985): pair of UV photons (metastable deuterium desexcitation) }\end{array}\right\}$
experiment with optical switches: results\%ss

Reduced signal (limited aperture of the switches)
\Rightarrow Averaging necessary (15 hours)

Violation of the relevant Bell's inequality $\quad \delta \leq 0$ $\delta_{\text {exp }}=0.064 \pm 0.01$

Good agreement with QM :

$$
\delta_{\mathrm{QM}}=0.059
$$

Strong violation of Bell's inequalities, agreement with QM

Towards the ideal experiment

- $4^{\text {th }}$ generation bis: massive particles pairs
- Rydberg atoms and RF photons (ENS Paris 2000)
- Trapped ions (Boulder, 2000)
\Rightarrow experiments with 100% detection efficiency closure of the "detection loophole"
- $4^{\text {th }}$ generation ter: continuous variables
- Quadratures of macroscopic light beams (Caltech, Orsay, Canberra) $\Rightarrow 99 \%$ detection efficiency; sophisticated schemes \Rightarrow locality condition «easy » to enforce
- Ultimate experiment (200?)
detection loophole closed and locality enforced

From EPR to tests of Bell's inequalities: ©/s entanglement as a conceptual question The point of view of a naive experimentalist*

- Einstein-Podolsky-Rosen correlations

The Einstein-Bohr debate (1935-1955)

- Bell's theorem (1965)

From epistemology back to physics

- Experimental tests: a brief review (1972-2002)

Towards the ideal experiment

- Conclusion

Quantum non locality: A real problem ?

* AA quant-ph/0402001

Failure of Einstein's local realism c/s

If the EPR conclusion was not correct then one should...

- either drop the need of the independence of the physical realities present in different parts of space
- or accept that the measurement of S_{1} changes
A. Einstein (instantaneously) the real situation of S_{2} "

The violation of Bell's inequalities show that we must renounce
Einstein's local realism:

- independence of physical realities of separated (in a relativistic sense) subsystems;
- no faster than light connection

Not really independent hypotheses
Quantum non locality

Violation of Bell's inequalities: what can we conclude? (conceptual issue)

- Failure of local realism à la Einstein: quantum non locality
- Accept negative probabilities (???)
- Is it a real problem?
We must abandon Einstein's local realism:
•independence of physical realities of separated (in a relativistic
sense) subsystems;
•no faster than light connection
Do NOT conclude that one can use entanglement to send
faster than light signals

No faster than light signaling with EPR entangled pairs $\sigma_{s} /$

Arthur changes the setting of polarizer I from a to \mathbf{a}^{\prime} : can Beatrice instantaneously observe a change on its measurements at II ?

Single detections: $\quad P_{+}(\mathbf{b})=P_{-}(\mathbf{b})=1 / 2 \quad$ No information about a

Joint detections:
$P_{++}(\mathbf{a}, \mathbf{b})=P_{--}(\mathbf{a}, \mathbf{b})=\frac{1}{2} \cos ^{2}(\mathbf{a}, \mathbf{b})$ etc.
Instantaneous change!
Faster than light signaling ?

5 No faster than light signaling with EPR entangled pairs O / s

Arthur changes the setting of polarizer I from a to \mathbf{a}^{\prime} : can Beatrice instantaneously observe a change on its measurements at II ?

Joint detections:

$$
P_{++}(\mathbf{a}, \mathbf{b})=P_{--}(\mathbf{a}, \mathbf{b})=\frac{1}{2} \cos ^{2}(\mathbf{a}, \mathbf{b}) \text { etc. }
$$

Instantaneous change ! Faster than light signaling ?
To measure $P_{++}(\mathbf{a}, \mathbf{b})$ Beatrice must compare her results to the results at I: the transmission of these results from I to Beatrice is done on a classical channel, not faster than light.
cf. role of classical channel in quantum teleportation.

View a posteriori onto the experiment:
During the runs, Arthur and Beatrice carefully record the time and result of each measurement.

After completion of the experiment, they meet and compare their data...
\ldots and they find that $P_{++}(\mathbf{a}, \mathbf{b})$ had changed instantaneously when Arthur had changed his polarizers orientation...

Non locality is there, but it cannot be used for «practical telegraphy»

- Is it a real problem?
«It has not yet become obvious to me that there is no real
problem. I cannot define the real problem, therefore I
suspect there's no real problem, but I am not sure there is
no real problem. So that's why I like to investigate
things. »
R. Feynman
Int. Journ. of Theoret. Phys. 21, 467 (1982)*

Entanglement as a resource for ocs quantum information

The properties of a pair of entangled photons are more than the sum of the properties of the individual photons (failure of Enstein's local realism)

At the root of new concepts in information theory («Information is physical»: P. Shor)

$$
\begin{array}{|ll|}
\hline \text { Quantum information } & \cdot \text { Quantum cryptography } \\
& \cdot \text { Quantum processing } \\
\hline
\end{array}
$$

Quantum cryptography with entangled pairs (A. Ekert)

The goal: distribute to two partners (Alice and Bob) two identical random sequences (encoding keys), while being sure that no eavesdropper (Eve) has got a copy of the key.

Alice and Bob randomly select an orientation out of \downarrow or \nearrow and make a measurement on a photon belonging to an EPR pair. Repeat.

Then they communicate on a public channel :

- All the chosen orientations
- A sample of results of measurements

Quantum cryptography with entangled pairs (A. Ekert)

Alice and Bob randomly select an orientation out of \downarrow or \nearrow and make a measurement on a photon belonging to an EPR pair. Repeat.
Then they communicate on a public channel :

- All the chosen orientations
- A sample of results of measurements

When the orientations are the same the outcome are identical: they have two identical keys.
With the transmitted results, they can make tests (for instance of Bell's inequalities) to be sure that there was no eavesdropper on the path.

The basic idea behind quantum cryptography

It is impossible to make a measurement on a quantum system without leaving a footprint (no cloning theorem). Also true for the Bennet Brassard protocole.

The key does not exist until the moment when the measurements by Alice and Bob are done (otherwise there would be hidden variables).
There seems to be nothing to spy in between!

L'ordinateur quantique?

On a pu montrer (P. Shore) qu'un ordinateur quantique permettrait de mettre en œuvre des algorithmes spécifiques permettant de réaliser dans des temps raisonnables des calculs défiant la puissance des ordinateurs classiques (décomposition en facteurs premiers)

Un matériel conceptuellement différent permet l'émergence de logiciels conceptuellement différents (cf. cryptographie)

Que serait un ordinateur quantique?
Un ensemble de portes logiques quantiques interconnectées, travaillant sur des bits quantiques (Q bits)

Système travaillant avec des états intriqués: \Rightarrow Parallélisme massif En effet, l'espace des états produit tensoriel de N qbits a une dimension 2^{N} ! L'essentiel de cet espace est constitué d'états intriqués.

Entanglement as a resource for quantum information:

Quantum cryptography

Quantum processing

Quantum processing

A system of N qbits (two level systems) is described in a enormous Hilbert space

Massively parallel calculations possible
$\rightarrow 2^{N}$ values calculated simultaneously

The complexity of a problem can be drastically reduced.
Example: factorization (P. Shor). Time of calculation grows polynomially rather than exponentially with the size of the number.

One must use quantum gates to combine qbits:
entanglement on demand requested (immune of decoherence!)

Entanglement and quantum gates
(2 qbits)
Example of a CNOT gate, combining q_{1} and q_{2}

Apply it to a «rotated » qbit

$$
\begin{aligned}
\left(\frac{|0\rangle_{1}+|1\rangle_{1}}{\sqrt{2}}\right)\left|0_{2}\right\rangle \xrightarrow{\text { cnot }} & \frac{1}{\sqrt{2}}\left(\left|0_{1}\right\rangle\left|0_{2}\right\rangle+\left|1_{1}\right\rangle\left|1_{2}\right\rangle\right) \\
& \text { Bell (maximally entangled) state }
\end{aligned}
$$

[^1] entanglement on demand

Entanglement on demand in Cavity QED

2 level atom (qbit q_{1}) interacting with a single mode of the field with 0 or 1 photon (qbit q_{2}) Example (Haroche et al.): Rydberg atom interacting with a RF field in a supraconducting cavity

Controlled interaction time: $\pi / 2$ or π evolution time for the interacting system

$$
\begin{array}{|c|}
|\mathrm{e}\rangle|0\rangle \xrightarrow{\pi}|g\rangle|1\rangle \\
|\mathrm{g}\rangle|1\rangle \xrightarrow{\pi}-|\mathrm{e}\rangle|0\rangle \\
|\mathrm{g}\rangle|0\rangle \xrightarrow{\pi}|\mathrm{g}\rangle|0\rangle
\end{array}
$$

Entanglement on demand in Cavity QED

First interaction: $\quad\left|e_{1}\right\rangle|0\rangle \xrightarrow{\pi / 2} \frac{1}{\sqrt{2}}\left(\left|e_{1}\right\rangle|0\rangle+\left|g_{1}\right\rangle|1\rangle\right)$

Entanglement on demand with two
trapped ions

Analogy to Cavity QED scheme:
When it changes its internal state (under the effect of Raman lasers) each 2 level atom is coupled to the collective center of mass motion restricted to fundamental or first excited vibrational levels

$$
\text { Ion qbit: } \quad\{|\mathrm{g}\rangle,|\mathrm{e}\rangle\}
$$

Collective motion qbit: $\left\{\left|\mathrm{n}_{\mathrm{v}}=0\right\rangle,\left|\mathrm{n}_{\mathrm{v}}=1\right\rangle\right\}$

Theoretical proposal: Cirac and Zoller (1995); refined by Moelmer and Soerensen

Experimental implementation: Boulder, Innsbruck.

The amazing properties of entanglement

Since the EPR paper (1935), it took more than 40 years (and the genius of John Bell) for a significant fraction of the physicists to recognise non locality of entangled pairs as a new amazing concept in quantum mechanics.
It took another decade to discover that entanglement can be a physical resource for new ways of handling information.

We have certainly not yet discovered all the amazing properties of entanglement, and the most efficient ways of using entanglement remain probably to be invented.
There are plenty of possibilities with photons, ions, atoms, supra conductor or semi conductor nanochips... to develop the applications of the new quantum revolution.

[^0]: In these experiments, single channel polarizers : indirect reasoning, auxiliary calibrations required.

[^1]: To develop quantum gates, one must be able to implement

