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This Talk

•      Establishing relative phase between condensates

•     Importance of phase
• single condensate

•  interference of two condensates

• role of quantum measurement

• atom number conservation

•     Quantum phase operator

•     Single quantum trajectory

•  stochastic Schrodinger equation

•     Phase standard, phase transfer, phase locking



Single condensate

Defining characteristic: Phase coherence

Condensate differs fundamentally from a cloud of cold atoms

Issue

Atom detector

• Relative phase predictable

• Position of fringe known in advance

is quantum interference

Experiment of

Hansch group, Munich

Coherence means



Simple demonstration of significance of phase

Homogeneous BEC, N atoms

Divide into k equal boxes

Cannot treat as a collection of boxes,

each with a condensate of N/k atoms

Introduce annihilation operator for box i  ;

annihilation operator for WHOLE condensate



Must contribute significantly

i.e. must have phase correlations

(can show phase difference between any two

points is zero)

or, in terms of field operator

is a mode function

phase correlation is expressed

For all  x, y

Leads to a general definition of a BEC …..(but that’s another story)



A first approach to describing phase properties

Broken symmetry Order parameter (condensate wavefunction)

independent of  x

Make the assumption:

 a particular        is chosen spontaneously

(analogy to ferromagnet)

Atom

detector

Now, the description of

single condensate interference

Ground state wavefunction

similar to  (classical) 

Young’s experiment for light



Two condensates

Relative phase of two condensates ?

But where do the

fringes form?

In this treatment, depends on

the relative phase

What is the

Broken symmetry treatment

Ketterle 1997



Andrews, …, Ketterle, Science 275, 637 (1997)



Problems with the Broken symmetry  approach
1. Unlike ferromagnetic case, there is no small field to align the

phase

2. More importantly, it is not in accord with the requirement of

      particle number conservation

Let’s try to do the calculation more carefully.

Consider a two-mode condensate state, e.g. modes are

Assume initial condensate state is

In second-quantized theory of non-relativistic QM, all observables

commute with the number operator

Leads to  a super selection rule – number of particles is conserved

and



This is uniform (no interference)

because we have calculated an ensemble average.

We need to calculate a single realisation of the experiment

There are a number of different approaches …

The field operator is

The operator for one particle density  is

Let’s get a number for it.  The usual way is …



Quantum Phase Operator
But first let’s understand the

Barnett & Pegg,  J. Mod Opt, 36, 7 (1989)

Consider single harmonic oscillator mode, frequency

Begin by recalling states of precisely defined phase exist

(i) The associated field (e.g. EM) goes to zero at

(ii) Furthermore

Can define (s+1) orthonormal phase states that span the space

(and a series of papers)

Possesses some important properties we’d expect for phase



Hermitian Phase operator

Noncommuting !

e.g.    Consider Fock state

Same as uniform random classical distribution

|N>

So cannot know both phase and number precisely



e.g.    Consider Coherent state

is mean particle number

(Poisson distribution)

i.e. Heisenberg Uncertainty

Phase Operator

allows calculation of mean and width of phase distribution

Emphasize:



We need relative phase

If we ignore the width of the distribution,

simple proxy for the relative phase between two modes

Relative phase of two condensatesproblem of

Number of atoms in condensate is fixed (in any one run)

implies     phase totally undefined

Now, return to



There a number of approaches;    Simplest, for our purposes

( Dunningham & Burnett    PRL, 82,3279 (1999) )

Operators for condensate in mode a

,

Operators for condensate in mode b

,

[Ignore (collisional) interactions]Basic idea:  Condensate in two modes

Allow modes to overlap, detect an atom in such a way

we cannot know which mode it came from

Each initially in number state |N>, i.e initial state is

a b

Creation of Phase by measurement



i.e. apply,

Is a phase that depends on where the atom is detected

Apply detection

Important Points

1. Atom numbers accounted for exactly

2. The two modes are now entangled

3.             is now nonvanishing (coherence is now established)

detect atom in either mode a or mode b

state after measurement



More Formal approach Dunningham & Burnett    PRL, 82,3279 (1999)

Atomic

BeamsplitterAtom

detectors

Noise

Effective Hamiltonian (includes loss due to detection)

Quantum Jump operator

Field operators at output ports
(in frame rotating at       )

Phase shift from

reflection

To realise a single quantum trajectory, use a

Stochastic Schrodinger equation



There is a rigorous basis for this

Comes from Master equation (which gives evolution of whole ensemble)

We are extracting one realisation, in such a way that an ensemble

of realisations will match the predictions of the Master equation

e.g.

Carmichael, An Open Systems Approach to Quantum Optics  Springer

Lecture Notes in Physics, (1993)

Gardiner & Zoller Quantum Noise (2nd Edition) Springer

See,



Implementation of quantum trajectory method

1. Calculate probability atom is detected at port i in time interval

2. Generate uniform random numbers ri       0< ri <1

3. If ri <Pi a detection is made in port i, and system jumps to

4. If r1 >P1 and  r2 >P2 no detection in the interval.

Propagate system as

5. Repeat until reach final time



For convenience, consider temporal fringes, instead of spatial fringes

 (allows us to use trap eigenstates instead of momentum eigenstates)

Relative phase between a and b

Can relate to difference in number of atoms detected in each port

Use

Detection rate per unit time



Numerical simulation

(Removed deterministic phase         )

Results:

At the end of the detection process (say 10% atoms lost)

modes a and b are entangled

Measurement has created the phase

l atoms detected

Initial state

N=1000

Phase initially

undefined



Phase Standard

All phase is relative. However, can we seek a

reference condensate
with which other condensates can be compared ?

b

a c

measure phase

infer phase

measure phase

Extend previous calculation



Initial state
1. Use 10% of atoms in a and b to establish

a and b now entangled

2. Now detect on second beamsplitter

Important points:
1. entanglement between a and b maintained

2. And now a,b and c are entangled

3. Must keep a isolated from other systems (e.g. environment)



Numerical simulationResults:

and check that



Phase Transfer [Dunningham & Burnett    J Phys B, 33,3807 (2000)]

Coherent coupling b - c

e.g. Raman to different hyperfine state

e.g. Josephson tunnelling to nearby well

Hamiltonian for transfer (neglecting condensate collisional interaction)

Driving frequencyCoupling strength



In interaction picture

Evolution operator

After transfer

Calculate Hence determine

Procedure:

1. measure phase       (i.e. establish a as reference)

2. transfer b -> c

3.

Deterministic evolution



Results: First consider

Find from simulations,

that b always leads c by

Get same result for two (Josephson) coupled

modes

i.e.            has the value          for all times except

(population all in one mode)

Analytic calculation



Results: Numerical simulation

Scaled time

Phase can be controlled by  choice of

   (with careful choice of transfer time)



Phase Locking (i) (with measurement)

Same setup, but now do

measurement (a-b)

and

coherent transfer (b-c)

simultaneously

Initial state



Results: Numerical simulation

For this single

realisation,

Phase locks to

zero phase

difference

Symmetric superposition of trap modes

detect about 30

atoms



Results: Numerical simulation

For this single

realisation,

Phase locks to

phase difference of

Antisymmetric superposition of trap modes

In each case, measurement causes relaxation to eigenstate



Phase Locking (ii) (with dissipation)

Relevant to output coupler experiment of Kasevich

• Dissipation (rather than measurement) can cause phase locking

• Every trajectory settles to the same phase difference

• Still can’t know which mode the lost atom came from (due to coupling)

• Nonlinear interactions also assist in establishing phase

• Same phase locked in regardless of initial state



The Mott Insulator Experiment

Greiner, …, Bloch, Nature 415, 29, (2002)

See also Hadzibabic, …, Dalibard, condmat 0405113



0 Erecoil

22 Erecoil

13 Erecoil

Experiment:  Bloch et al    Max Planck Munich 2001

Momentum Distribution for Different Potential Depths

Reversible

Increasing lattice depth


