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Ability to separate details

XIXth century : Lord Rayleigh

Gemini north dome,
Hawaii

how accurately can I separate
two objects in space ?

Resolution is limited by spot size
Diffraction theory : resolution limited by the wavelength !

Resolution ?



XXIst century : image sensor : diode arrays, CCD cameras, …

Object plane
a(y)

Image plane
e(x)

Imaging device
with pupil 

X

There exist eigenmodes of the system (prolate spheroidal functions),
fk(x) with eigenvalues tk  (transmission coefficient).

The knowledge of these functions, together with e(x), allows the
‘perfect’ reconstruction of the object

CCD
camera

Resolution ?



Object plane
a(y)

Image plane
e(x)

Imaging device
with pupil 

X
CCD
camera

Quality of the detectors : size, number of pixel,

response,…
Classical noise (vibrations, thermal noise,…)

Technical

limits

Fundamental

limit
Quantum nature of light (quantum noise)

Limits to resolution



Optical resolution vs. information extraction

Optical resolution

No a-priori information on the image : smallest details measurable.

Crossing the standard quantum limits requires very multimode quantum
light, i.e. many resources.

In many practical cases : the Rayleigh criteria.



Information extraction

A lot of a-priori information : presence and/or modification of a given pattern.

We will show that crossing the standard quantum limit requires a
limited amount of resources.

Quantum limit easier to reached : orders of magnitude smaller than the
Rayleigh criteria.

Optical read out

Optical resolution vs. information extraction



Outline

Quantum limits to resolution

Few modes approach : the quantum laser pointer

Many modes approach : multimode cavities

Single mode versus multimode light
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Modal decomposition of light

Paraxial approximation

A beam of light is the result of the excitation of an infinite set of harmonic
oscillators.
The electric field distribution can be expanded over a transverse mode basis :

 - plane waves basis : very suitable for calculation

However, for the propagation of a beam of light, we make several approximations :
 - the light is monochromatic : "(k)! "0

 - the direction of propagation is well defined : k ! kz

Where                  is the slowly varying envelope of the fields that satisfies the
propagation equation in the vacuum, projected onto the polarisation axis :



Transverse modes basis

Modal decomposition of light

can be expanded on a transverse modes
basis such as :

orthonormality

completeness

shape of mode i

There is then a unique set of coefficient #i such as :

It contains all the image information

field amplitude in mode i

Remark :
As the modes have to satisfy the propagation equation, their knowledge
at z=0 is enough.



y

x

z

Modal decomposition of light

Examples

- Pixel basis : 

Advantages : very natural to describe random images
convenient for numerical simulation

Drawbacks : mode diffraction is very important
predicting the field shape under propagation is difficult 

light beam

At z=0,



Gaussian modes

Hermite-Gauss modes

Laguerre-Gauss modes

Gaussian modes basis : eigen modes of the propagation

These modes have a
transverse shape that
remain constant under
propagation.
They are adapted for light
coming out of a cavity
(such as laser beams).



Single mode vs. multimode classical light ?

Possible to compute the number of modes ?

It depends on the choice of the basis !

For a field coming out of a cavity, one will naturally choose the
Hermite Gauss or Laguerre Gauss basis.

Single mode basis

We have a given image :

We choose the first mode such as :

It is always possible to choose the other modes to satisfy the completeness
and orthonormality conditions

In that basis : 

No intrinsic definition of multimode at the classical level



Quantum description of the field

Each mode is treated as a single harmonic oscillator

We associate to each mode a set of creation and annihilation operator

It allows to define the number of photon in each mode

The electric field operator

classical value quantum fluctuations



Signal given by a detector

light beam

y

x

z

Detector covering a transverse area D

Detector : signal proportional to the number of photons

Signal and noise

The signal is given by the
mean number of photon

The noise is the variance of the number of photons



Single mode quantum field

Annihilation operators

Single mode field

The field state in all the modes except the first one is a coherent vacuum

It then corresponds to the single mode quantum optics studied in the
lecture of Hans Bachor.

Electric field operator

Known classical image

It exists a proper definition of single mode at the quantum level

It is based on the quantum fluctuations
The same can be done for a statistical superposition of modes
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Quantum limits to resolution

Few modes approach : the quantum laser pointer
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Single mode versus multimode light



Quantum limits to resolution

Light used in the experiment is single-mode coherent light

modes

0 ( )u r
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1( )u r
r
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n
u r
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Quantum state

Coherent state |#0>

vacuum

vacuum

Classical light !

light beamImage carried by 
a Coherent state

i1(t)

i2(t)

i3(t)

i4(t)

Measurement performed



Photon picture of coherent single mode light

Usual quantum optics description

V

t

Continuous wave regime (1mW ˜ 1017photons/s)

Photon number : Poisson statistic (also called white noise)

!N = N Shot noise

Random transverse distribution

Spatial quantum optics description

i1(t)

i2(t)

i3(t)

i4(t)

Each detectors sees Poissonian noise

i i
N N! = Local Shot noise
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•Beam of 1mW
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Dimensionless quantity

Two pixels case

Smallest displacement detectable

Signal scales with

Noise scales with

i1 and i2 not correlated :
Noise of the difference=noise of the sum

N
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CCD camera

intensity

Transverse position

Relevant quantity :

)(!N = N photons per m2
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Image characterisation



dsql =
!

N
Ssql ! 2

L
var

N(")

1 dimension 2 dimensions

Image characteristic length

Shot noise or photon noise

Improve the sensitivity : Increase the beam intensity
Reduce the photon noise

Standard quantum limit to resolution



Standard quantum limit in object reconstruction

!=
n

n
n

n
object f

t

c
E

there exists eigenstates fn of the imaging device, with transmission tn

!=
n

nnimage fcE

nobject fE = nnimage ftE =

if the coefficients  cn are perfectly known,
object shape can be reconstructed without limitation due to diffraction

Object plane Image plane

d

X
CCD
camera

Classical optics



Cannot be known
for n>nmax

nmax depends on Shannon
number dX/!f of the set-up

Standard quantum limit in object reconstruction

Object plane Image plane

d

X
CCD
camera

Quantum optics

The knowledge of coefficients Cn is not perfect.

One can show that ( )2$
nc

do not depend on n.
!=
n

n
n

n
object f

t

c
E

n small : 1!nt
n large : 1<<nt

Standard quantum limit in image reconstruction maxmin / nXx !"

“Superresolution” very difficult in practice



Outline
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detector

Detection noise :
        shot noise

Photons randomly distributed in time and space

Use single mode squeezed light ?

Single-mode coherent light



detector

Photons ordered in
time : detection
noise below the
shot noise

Photons ordered in time but randomly distributed in space

Single-mode squeezed light

Use single mode squeezed light ?



detector

Photons ordered in
time : detection
noise below the
shot noise

Use single mode squeezed light ?

Single-mode squeezed light

Partial detection



detector

Photons ordered in
time : detection
noise below the
shot noise

Use single mode squeezed light ?

Partial detection

Single-mode squeezed light

Partial detection is
equivalent to a loss
: no spatial order.

Partial measurement

No spatial squeezing



Multimode quantum light

one of the other modes                          is not in a coherent vacuum state

Multimode light ? 

Can be applied to any physical dimension.

Which mode for which measurement ?

1 2 3
, , ,u u u K

For instance : squeezed vacuum

Known classical image

Annihilation operators

Electric field operator



Pixel-like configuration

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 1
6

Image incident on a
CCD camera

Linear measurement of an image

Image is known
Measurement : a function of the gains

Gain on each detector : %i

One measurement defined by :

Intensity on each detector : N(Di)
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i i i

i

N N D! !="

Linear measurement



Difference measurement

Two identical signals from the light source

-

zero mean signal

D+ D-
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With a classical field :                                   cancellation of the common mode noises

However, with a quantum description :                                 
there is quantum noise !

there is no noise in the measurement
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intense
beam

in phase

& phase
 shift

        vacuum

Balanced detection

Noise come from the
vacuum port

Split detection

Noise come
from the
flipped mode

)(0 ru

-

x

( )w r

Noise in a difference measurement



Noise in a difference measurement

Image description

where u0 is, for instance, a Gaussian mode

-

)(0 ru

Amplitude noise of mode w

Variance of the noise

Origin of the noise

( )w r

Noise originates from the flipped mode

0

0
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w r u r if r D

w r u r if r D

+

!

= "

= ! "

r r r

r r r
w is
orthogonal
to u0 !!

D+ D-



Noise in a difference measurement

NOISE

Noise on a difference measurement : from a single mode, the
flipped mode.

Reduce the noise in that measurement : necessary and
sufficient to inject vacuum squeezing in that mode

modes

0 ( )u r
r

1( ) ( )u r w r=
r r

2 ( )u r
r

Spatially squeezed light

any state of mean value #0

squeezed vacuum

vacuum

Transverse modes description 
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Noise in a general measurement
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Detection mode

( )w !

Variance of the noise

Transverse modes description 

Same as for the differential measurement.



Noise in a general measurement

General measurement

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 1
6
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Mean field mode : any shape
What is the detection mode ?

Detection mode

It exists a detection mode w such as
0

1
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f
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Variance of the noise



Application to the laser pointer

Position / orientation of the beam

Quantum limit of the measurements

Measurement of a light beam with a quadrant detector

Used in many physical apparatus such as : atomic force microscope
laser guided devices
…



Small displacements measurement
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x flipped mode

)(1 ru

y flipped mode

)(2 ru

Beam shape

)(0 ru

y

x

amplitude



Small displacements measurement



Squeezed vacuum 2 :

Squeezed vacuum 1 :

0°Mean field :

0°180°

"mode

merger"
displacement

generator

quadrant
detector

Experimental implementation

0°

180°



Experimental Setup

Squeezed vacuum

Transverse modes

Mode merger

Displacement generator

Below threshold
Optical Parametric
Amplifier

“Cut and Paste”
waveplate

0° 0°
0°180°

180°0°
+

0°180°

180°0°

Impedance matched
cavity

Physical system !



Local oscillator

0°180°

180°0°

0°180°

OPA 1
0°

0°

>95%

OPA 2

0°180°

180°0°

>94%

+

waveplate 1
waveplate 2

BS 
R=95%

Impedance matched cavity

Small displacements measurement



Vertical
displacement

horizontal displacement

+

+

+

+ -

-

simultaneous noise reduction :

2.6 dB vertical, 2.2dB horizontal
Relative horizontal position

Relative vertical

position

standard quantum limit

limit with spatial squeezing

Spatial quantum noise



Small displacements measurement

Oscillation at 4.5 MHz : mirror on a piezo-electric crystal.

Oscillation amplitude is linearly increased with time.

Signal measured
Coherent state

Spatially squeezed state



Outline

Quantum limits to resolution

Few modes approach : the quantum laser pointer

Many modes approach : multimode cavities

Single mode versus multimode light



The parametric process

Such as "1= "2+ "2

energy conservation

'(2) medium : mix two different wavelengths.

'(2)

Second order non-linearity

signal

idler

'(2)

Pump

Photons correlated in time and position

Parametric down conversion

Used in many single photon experiments to create spatial entanglement



Single mode cavities

Cavity to increase the non linearity

Pompe

signal

idler

'(2)

Pump

Cavity select a spatial mode

The output is one
Gaussian mode

The spatial order is lost !



Multimode cavities

Planar cavity

Spherical cavity



What can these cavities do ?

Generate multimode squeezed light :

Squeeze all the transverse modes
simultaneously.

Generate spatial entanglement.
…

Generate multimode quantum states

Noiseless amplification of images

The noise properties of
the amplified image are
better than what can be
achieved with a classical
amplifier.



Conclusion

It is possible to improve several measurement performed on the
same beam using appropriately designed spatially squeezed
light.

The spatial dimension of light brings a lot of degree of
freedom : many new quantum states are accessible.

The future is toward improvement of practical apparatus (like
optical resolution) on the one hand, and generation of highly
multimode light on the other hand

Quantum noise, and not diffraction, gives the ultimate limit
to resolution
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