Hanbury Brown Twiss Effect for Metastable Helium Experimental Features

Martijn Schellekens

Kioloa, 11 February 2006
He* Experiment in the Atomic Optics group in Orsay:

Permanents Members:
- Alain Aspect
- Christoph Westbrook
- Denis Boiron

Co-PhD Students:
- Valentina Krachmalnicoff
- Aurélien Perrin
- Rodolphe Hoppeler
- Jose Viana Gomes

Post-Docs:
- Hong Chang
What bothers an experimentalist:

Signal to Noise Ratio

We need sufficient SNR for just measuring:

\[g^{(2)}(\Delta R) \]

We would eventually like to measure:

\[g^{(2)}(R, \Delta R) \]

Indeed, bunching is non-gaussian close to condensation threshold, yet means out by integrating.
What bothers an experimentalist:

Signal to Noise Ratio

We need sufficient SNR for just measuring:

\[g^{(2)}(\Delta R) \]

We would eventually like to measure:

\[g^{(2)}(R, \Delta R) \]

Indeed, bunching is non-gaussian close to condensation threshold, yet means out by integrating.
What bothers an experimentalist:

Signal to Noise Ratio

We need sufficient SNR for just measuring:

\[g^{(2)}(\Delta R) \]

We would eventually like to measure:

\[g^{(2)}(R, \Delta R) \]

Indeed, bunching is non-gaussian close to condensation threshold, yet means out by integrating.
The Signal to Noise Ratio

Estimation:

\[SNR \propto \sqrt{N_{\text{runs}}} \frac{hN_{\text{atoms}}^2 \prod l_\alpha/s_\alpha}{\sqrt{(1 + h)N_{\text{atoms}}^2 \prod l_\alpha/s_\alpha}} \]

which simplifies to:

\[SNR \propto h\sqrt{N_{\text{runs}}} N_{\text{atoms}} \prod \sqrt{l_\alpha/s_\alpha} \]

with \(l_\alpha = \frac{\hbar t}{m s_\alpha} = \lambda_{dB} \omega_\alpha t \) and \(s_\alpha = t \sqrt{k_B T/m} \) in case of harmonic trap.

Note:

- the temperature dependence, that is in \(T^{-3/2} \).
- the dependence on the atoms number.
The Signal to Noise Ratio

Bunching height:

Depends on the Size/Resolution:

\[g^{(2)} - 1 = \prod_{\alpha} \frac{1}{\sqrt{1 + 4d^{2} / (l_{\alpha}^{(corr)})^2}} \]

with \(l_{\alpha}^{(corr)} = \frac{\hbar t}{m_{s\alpha}} = \lambda dB \omega_{\alpha} t \)

- **Worse case:** \(d \gg l_{\alpha}^{(corr)} \) then \(g^{(2)} - 1 \propto \prod_{\alpha} l_{\alpha}^{(corr)}/2d_{\alpha} \)
- **Best case:** \(d \ll l_{\alpha}^{(corr)} \) then \(g^{(2)} - 1 = 1 \)
- **Temperature dependence:**
 Can potentially add another \(T \) dependence to SNR.
- **Time dependence:**
 The longer the time of flight, the longer the correlation length.
Outline

1 Experimental Setup

2 Experimental Results

3 Detection Limitations and Perspectives
Outline

1 Experimental Setup

2 Experimental Results

3 Detection Limitations and Perspectives
The metastable Helium experiment:

Experimental setup:

- Creation of a cold He* cloud (in $\sim 1'$)
- Cut off the trap at $t = 0$
- 308ms of free fall
- 3D Detection (x, y and t) of individual atoms.
The detector: MCPs + delay-lines:

Basic idea:

Micro-channel plates (MCPs)
- 8 cm diameter
- 1 He* detected $\rho \sim 10^8$ electrons
- Detection efficiency $\sim 25\%$

MCP + delay-lines + electronics
- Pixel size = 200μm
- Spatial resolution = 250μm RMS
- Time resolution = 1ns RMS
- Electronical limitations: CFD + TDC (400 ps of resolution)
The detector: MCPs + delay-lines:

Basic idea:

Micro-channel plates (MCPs)
- 8 cm diameter
- 1 He* detected $\rho \sim 10^8$ electrons
- Detection efficiency $\sim 25\%$

MCP + delay-lines + electronics
- Pixel size = 200µm
- Spatial resolution = 250µm RMS
- Time resolution = 1ns RMS
- Electronical limitations: CFD + TDC (400 ps of resolution)
The detector: MCPs + delay-lines:

Basic idea:

 Detection

- TDC = CTNM4 (R. Sellem, DTPI platform CNRS/Paris-Sud)
- Detection system ⇔ camera of 400 × 400 pixels at 1 GHz
- ⇒ no optical equivalent

Micro-channel plates (MCPs)

- 8 cm diametre
- 1 He* detected ρ ∼ 10^8 electrons
- Detection efficiency ∼ 25%

MCP + delay-lines + electronics

- pixel size = 200μm
- spatial resolution = 250μm RMS
- time resolution = 1ns RMS
- electronical limitations: CFD + TDC (400 ps of resolution)
3D Reconstruction of the Detected Cloud:

- Real 3D detector for each atom detected.
- Only detector that does real 3D on a BEC (50 cents AU$ coin!)
- Use:
 - Detection of a small condensate
 - Local measurements, etc...
- **Macroscopique** detection of a BEC (50 cents AU$ coin!)
3D Reconstruction of the Detected Cloud:

Real 3D detector

- x, y and t for each atom detected.
- Only detector that does real 3D on a BEC
- Use:
 - Detection of a small condensate
 - Local measurements, etc...
- Macroscopique detection of a BEC (50 cents AU$ coin !)
SNR considerations at 1µK:

- **axis x:** $\omega_x = 50\,\text{Hz}$
 \[\sqrt{2} \times d_x (= 250\,\mu\text{m}) \gg l_x (= 30\,\mu\text{m}) \]
- **axis y:** $\omega_y = 1.2\,\text{kHz}$
 \[\sqrt{2} \times d_y (= 250\,\mu\text{m}) \ll l_y (= 600\,\mu\text{m}) \]
- **axis z:** $\omega_z = 1.2\,\text{kHz}$
 \[\sqrt{2} \times d_z (= 4\,\text{nm}) \ll l_z (= 600\,\mu\text{m}) \]

Bunching height:

$g^{(2)}(0) - 1$ becomes a function of $l_x^{(\text{corr})} / 2d_x$

- $\text{SNR} \propto t$
- $\text{SNR} \propto T^{-2}$
Outline

1 Experimental Setup

2 Experimental Results

3 Detection Limitations and Perspectives
Thermal clouds raw results:

Procedure:

- Save Time of Flights (ToF)
- Histogram in 3D all the differences between 2 atoms
- We average the histogram over all ToFs
- typ. 6000 atoms detected/ToF and 1500 ToFs/Temperature

Mean Flow

Correlation of the Flow
Thermal clouds raw results:

- **Left Column:** $g^{(2)}$ function of z (time)
- **Right Column:** bunching amplitude in the detector plane xy

- Bunching !!
- Observe the anisotropy
- Correlation length changes with Temperature (source size)

Results comply to perfect gas theory:

Detector of limited resolution (500 \(\mu \text{m} \) and 1 ns)
\[\rightarrow \text{bunching height} \sim 1.06 \text{ instead of 2.} \]

Temperature \(\Leftrightarrow \) Source Size
Case of the Bose-Einstein Condensate:

- Flat correlation function!
- Like a laser
- Similar results in the team of T. Esslinger: PRL 95, 090404 (2005)
Outline

1 Experimental Setup

2 Experimental Results

3 Detection Limitations and Perspectives
Some Limitations:

Saturation of the TDC
The TDC saturates at 700k particles/second (this corresponds to 14M bytes/second).

Solution: new TDC
We have had made a new TDC by ISITech: 10M particles/second. Received last week.

Inhomogenous Detection Efficiency

Detection Efficiency vs x and y:

![Graph](image.png)

Solution: Doesn’t matter for HBT
Normalisation procedure:
\[
\frac{\Sigma \text{Corr}(T_{of})}{\text{Corr}(\Sigma T_{of})}
\]
Saturation of MCP:

The MCP saturates at high local flows:

BEC = very high local Flow
Saturation of MCP:

Cold Gas

Local saturation rate:
\(~ 300 \text{kparticles/s/cm}^2\)
Could be solved with some more Euros.
Resolution: 250 µm ≫ 100 µm at 400ps TDC resolution.

- We can get better TDC resolution: new has 275ps.
- Better understand the CFD: minimize jitter issues

Currently in the process of estimating the "ultimate" resolution.
Conclusion:

We managed to resolve the HBT effect in nearly 3 dimensions:
- We measured the bunching height.
- We measured the bunching width.
- We saw no bunching for a BEC.

The HBT experiment was at the limit of the detector possibilities:
- Improvements can be made on flow detection.
- Improvement could be made on resolution.
- Detection inhomogeneity is still to be understood.
What we are working towards:

- Detector improvements:
 ⇒ could allow local \(g^{(2)} \) measurement.

- HBT for fermions in cooperation with W. Vassen’s team:
 ⇒ experiment to be realized with the bosonic-fermionic mixture of W. Vassen (VU Amsterdam).

- Detection of correlated atom pairs through collisions:
 ⇒ 4 Wave Mixing.
Thank you for your time!