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Simplicity of Photons and Ultracold Gases

[1 underlying interactions are well understood
[1 easily characterised by a few parameters

[] interactions can be tuned

— use simple theoretical models to high accuracy

— develop and test new methods of calculation
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Theoretical Methods

[ ] deterministic methods:

[] exact diagonalisation [] intractable for = 5 particles

[l factorization L] not applicable for strong correlations
[1 perturbation theory [ diverges at strong couplings

[1 density functional theory L] introduces approximations

1 probablistic methods:

[1 quantum Monte Carlo (QMC)
[1 stochastic wavefunction
[1 phase-space methods

Simulating photons, atoms and molecules with quantum phase-space methods 3



Les Houches 2005

Overview

L1 introduction to phase-space representations

[] density operator description of quantum evolution (3 classes)

L] static, unitary and open

[1 Gaussian operator bases (3 types)

[1 coherent, thermal and squeezed

L1 applications (3 examples)

[1 pulse propagation in optical fibres (photons)
[1 Hubbard model (atoms)
[1 simple atomic-molecular dynamics (molecules)
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Phase-space distributions

[1 A classical state can be represented by a joint probability distribution in
phase space P(X,p)

[1 1932: Wigner constructed an analogous quantity for a quantum state:

W(X, p) = / dyp* (X —y) W (X+y)exp(—2yp/h)

W — 2hP
[1 Wigner function gives correct marginals: “&3?\/\/&’7 E)) _ ZZP(()F()))
L] but it is not always positive — not a true joint probability

L1 a positive Wigner function would mean a hidden variable interpretation
of QM is valid
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Probability distributions

L1 many ways to define phase-space distributions:

[1 eg Wigner, Husimi Q and Glauber-Sudarshan P
L1 all defined in terms of coherent states
[1 correspond to different choices of orderings

L1 to be a probabilistic representation, the phase-space functions must:

P W Q
exist and be nonsingular 0 O O
always be positive 0 O O
evolve via drift and diffusion | O [0 [

o = [¢]
X P 2 p X P
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Reversibility

L1 classical random process is irreversible

[1 outward (positive) diffusion

L] guantum mechanics is reversible

[1 phase-space functions generally don’t have positive diffusion
A solution!

[l dimension doubling

[1 diffusion into 'imaginary’ dimensions LI
[1 observables evolve reversibly [
[1 also fixes up existence and positivity [
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Phase-space representation

5= / POVA(N )N

.

[ P( A )is a probability distribution
~ —

[1 A(A) is a suitable operator basis
—

[J A is a generalised phase-space coordinate
H . . .
[] d A is an integration measure

L] equivalent to .
pP=E [/\(A )}
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Many-body quantum state

] Most general description is given by a density operator: p

L1 Encapsulates all correlations in a quantum state:

(6)=n{o9}

L1 A probabilistic expansion in the eigenbasis:

p= Zpk\wl& (Wil
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Density operators for quantum evolution

1. Unitary dynamics: p(t) = e—iﬁt/ﬁﬁ(o)eiﬁt/h

AN

2. Equilibrium state: p,,(T) =€~ (H-uN) /kgT

02— [H uN, p} T —=1/kgT
3. Open dynamics: Psys = Trres {P}
0 $p=—1|A.p| +v(2ROR'— R'Rp— pR'R)
[ each type is equivalent to a Liouville equation for p:

d_.

P = LP]
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Phase-space Recipe

AN

. Formulate : 0p/dt = L[p|

-

~ —> [~
. Expand: [OP/OTAdDA = [PL {/\} dA
. Transform : L [/A\} — LA

~ — ~ —
. Integrate by parts: [PLAdA = [AL'PdA
. Obtain Fokker-Planck equation: d0P/dt = L'P

H
. Sample with stochastic equations for A
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Stochastic Gauges

[1 Mapping from Hilbert space to phase space not unique

[1 many “gauge” choices

H
[1 Can alter noise terms B;;, introduce arbitrary drift functions g;( A )

Weight dQ/dt = QJ[U +g; (]

Trajectory  dA; /0T = A +B;j[{;— 0]
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Interacting many-body physics

—

D = A

[1 many-body problems map to nonlinear stochastic equations
[1 calculations can be from first-principles
L1 precision limited only by sampling error

[1 choose basis to suit the problem
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Operator Bases

L] need basis simple enough to fit into a computer, complex enough to
contain the relevant physics:

s
-

_

=
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General Gaussian operators

a generalisation of the density operators that describe Gaussian states

[ ] Gaussian states can be:

[1 coherent (for bosons), squeezed, or thermal

i & H

L1 or any combination of these

1 characterised by first-order moments: X, P, X2, F Xp

L1 all higher-order moments factorise
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Gaussian Basis I: Coherent-state projectors

—

[1 defines the +P distribution, with a doubled phase space A = (Q,a,[3)
(0 moments: (O(a',a)) =E[O(B*,a)]
1 successful for many applications in quantum optics

1 successful simulations of short-time quantum dynamics of BEC
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Evaporative Cooling of a BEC

< <> AP

L1 first-principles 3D calculation

[1 start with Bose gas above T; finish with narrow BEC peak
[1 20000atoms, 32000modes
[1 Hilbert space is astronomically large

L] Problems!

[1 method pushed to the limit
[l breaks down for longer times, stronger interactions
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Gaussian Basis Il: Thermal operators
A=l +n|™: exp{a(l Tl —[14+n]” )AT}

.
[] now have a phase-space of variances: A = (Q,n)

[1 defined for bosons (upper sign) and fermions (lower sign)
[] moments: <§1T§J> — [n.,] <§,T§JT§@> =E [niinjj — nijnji]

] suitable for cold atoms

Simulating photons, atoms and molecules with quantum phase-space methods 22



Les Houches 2005

Gaussian Basis Ill: General form (including squeezing)

F1

AN) =0 ‘0| :exp[é@T (I:$I:—g‘1) 6@/2} :

relative displacement: da—a—a
annihilation and creation  operators: a — (ﬁl,...,ém,ﬁl,...,éb)

coherent offset: o = (Qy,..., 00,07 ,....0y), (@ = O for fermions)

covariance. 0O =

n"T+1 m £ o
m~ I+n|’= | 0O ||

upper signs: bosons; lower signs:  fermions
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Extended phase space

H
A= (Qa,a",nmm")

— Hilbert-space dimension: 2V for fermions, N™ for bosons

— phase-space dimension: 2(1— M + 2M?) for fermions, 2(1+ 3M +
2M?) for bosons

(&) = (0i)p
[1 Moments: <§iT§j> = (o;7aj)p+ (Nij)p
(&) = {aiaj)p+ (mj)p
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Application I: photons in a fibre

H= I:I\F+|:|\L+|:|\G—|—|:|\R

[] qu -fibre-optic Hamiltonian, including x<3>nonlinearity

[] ﬁL, ﬁG: coupling to absorbing reserviors and fibre amplifier reserviors
[] ﬁR: nonlinear coupling to non-Markovian phonon reserviors

1 have 10 modes and 10° particles
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Phase-Space Equations

[1 use coherent-state basis — get a stochastic, Raman modified NLS
equations:

0 i 07
W (t,X) / dt'g(t —t")e(t’,x) + I (t, x)j:26 1

+ [i /_ dt’h(t—t’)(p*(t’,x)(p(t’,x)+FR(t,x)] o(t, X)
a%*(t,x) = / dt'g*(t —t e (t',x) + (1, x);—gzch

— [i /_ wdt’h*(t—t’)cp(t’,x)cp*(t’,x)+r+R(t,x)] @ (t,x)
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Application Il: atoms in a lattice

[1 simplest model of an interacting Fermi gas on a lattice

[1 weak-coupling limit — BCS transitions
[1 solid-state models; relevance to High-T; superconductors
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Solving the Hubbard Model

[1 only the 1D model is exactly solvable (Lieb & Wu, 1968)
[ | even then, not all correlations can be calculated

L1 higher dimensions - can use Quantum Monte Carlo methods.

L] except for a few special symmetrical cases, QMC suffers from sign
problems with the Hubbard model

[1 e.g. sign problems for repulsive interaction away from half filling

L1 sign problem increases with dimension, lattice size, interaction strength
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Fermionic sign problem

[] Quantum Monte Carlo (QMC) samples many-body wavefunction @(r)
(wavefunction treated as a probabillity)

[1 but Fermion states are antisymmetric

[1 wavefunction nonpositive

L1 must introduce (possibly negative) weighting factors

[1 bad sampling errors (unless approximations used)

)~
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Applying the Gaussian representation

[1 Use thermal basis, and apply mappings

NP — <2ns— (I —ng)inc} P(Q,n.,n))
; ong
P ( 0
png — 2n0—l—no—(l—ng)}P(Q,m,nJ)
; ong
. 0

—> Fokker-Planck equation for P, with drift and diffusion

—> sample with stochastic equations for Q2 and ng
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Positive-Definite Diffusion

[1 Modify interaction term with a ‘Fermi gauge’

1 U ’
U thjfj s = —Q\U!Zi<ﬁjj,J ’U‘”n) 1
| |

—> diffusion matrix has a real 'square root’ matrix

—> realise the diffusion with a real noise process
—> problem maps to a real (and much more stable) subspace
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Stratonovich Equations

] Stratonovich stochastic equations, in matrix form:

,]),0

dQ
dr Q{t; ”ihﬁuz”n,mmu%njj,o}

dng 1

F — —é{(l —no)Agl)n0+n0A£32>(l _nc)}7

where the stochastic propagator matrix is
1
Ao = [_tii +0i) {U Njjor = [UINjj.o+5U[ - H}] +81/2|UE]"

L] E%r) are delta-correlated white noises
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1D Lattice-100 sites

1000 paths
1.4 ' ' '
1.3_‘_'_‘_'_‘_‘_‘_‘_'_‘_'_‘:':‘__‘— ______ e
1.27 1
| — repulsive ]
= e - - - attractive
:’Dm limit(analytic) i}

0.6 ' ' '
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Branching

L1 averages are weighted,eg

L1 but weights spread exponentially=—> many irrelevant paths
—> delete low-weight paths and clone high-weight paths:

mUP) = Integer [E#—Q(jp)/ﬁ}

1 & € [0,1] is a random variable, Q is an average weight
L1 after branching, weights of surviving paths are equalised
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16x16 2D Lattice

[1 No sign problem!
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Application IlI: Molecules in a well

(] Hamiltonian: H = ab!b}+ a'byb,

i = ix(a"m—am®)£/ixm (mi;+m*3) ,
r, = ix(a"m—am®)£/ixnz(mi;+m*e3) ,
m = —ixa(linlinz)Jr\ﬁx(imZZiJrnﬂbZZ),
mt = ixat(LEn4np) ++/ix (el £ m2g)

a = _Ixm_\/&Zla
d+ — ixm+—|_\/&z27
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Result: Pauli blocking

9 ~ '

molecules
© o
(@) @%e)

N
o
&

o0
b

—— fermionic
—— bosonic
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Summary

[1 Generalised phase-space representations provide a means of simu-
lating many-body quantum physics from first principles, with precision
limited only by sampling error.

L1 Coherent-state-based methods have been successful in simulating
guantum dynamics of photons and weakly interacting ultracold gases.

[1 Gaussian-based methods extend the applicability to highly correlated
sysems of bosons and fermions.

L1 Simulated the Hubbard model (fermions in a lattice) without sign errors.

Simulating photons, atoms and molecules with quantum phase-space methods 39



