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Content of this talk
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* Quantum continuous variables* Quantum continuous variables
from homodyne detection 

 to Quantum Key Distribution 

* Quantum cryptography with coherent states  (Nature 2003).* Quantum cryptography with coherent states  (Nature 2003).
from Shannon’s theorem  

 to unconditionnal security proofs

* Manipulation of non-gaussian states of the light  (PRL 2004).* Manipulation of non-gaussian states of the light  (PRL 2004).
from experimental observation of non-gaussian states

to entanglement  distillation and 
« loophole-free » tests of Bell’s inequalities



Optical Quantum Continuous Variables
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* What are quantum optical continuous variables ?* What are quantum optical continuous variables ?

* Quantization of the Electromagnetic field
 → Modes are quantum harmonic oscillators

* Discrete degrees of freedom ( photon number )
* Continuous degrees of freedom ( quadratures = X and P )

* Convenient representation : phase space* Convenient representation : phase space
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X

P

X
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X
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Vacuum state Coherent state Squeezed state Number state

Wigner function  : Gaussian Non-Gaussian !



Photodiode

50/50
BS

Homodyne detection

Phase control :
Measurement of X or P
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+  Low-noise
-    amplifier

Signal

Local Oscillator
(classical)

I1 = |ELO|2 + |ES|2 + |ELO| (ES e - i ϕLO  + ES
* e i ϕLO)

I2 = |ELO|2 + |ES|2 - |ELO| (ES e - i ϕLO  + ES
* e i ϕLO)

I1 - I2 = 2 |ELO| (ES e - i ϕLO  + ES
* e i ϕLO)

= 2 |ELO| (ES + ES*) X meas.

= 2 |ELO| i (ES -  ES*) P meas.

X

P

Squeezed state

X  and P do not commute :
Heisenberg relation

V(X)  V(P)  ≥≥≥≥  N0
2



Coherent States Quantum Key Distribution

* Essential feature : quantum channel with non-commuting quantum observables
-> not restricted to single photon polarization !

X

P

-> New QKD protocol where :
* The non-commuting observables are the quadrature operators X and P
* The transmitted light contains weak coherent pulses (about 100 photons)

with a gaussian modulation of amplitude and phase
* The detection is made using shot-noise limited homodyne detection
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Photodiode

50/50
BS

Homodyne detection

Phase control :
Measurement of X or P

Homodyne Counting (APD)
Efficiency > 90% 10-50 %
Dark rate negligible problem
Data rate 10 MHz++ 100 kHz
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Optical
fiber

Pulsed
laser

Attenuation

ALICE

BOB
Amplitude
and phase

modulation

1001I010
001010...

1001I010
001010...

+  Low-noise
-    amplifier

Signal

Local Oscillator
(classical)



General  Linear Transformation (Heisenberg-Langevin type equations) :

Xout  = gx Xin  +  Fx Pout   = gp Pin  +  Fp

Assumption :  added noise Fx , FP  are uncorrelated with Xin , Pin

Convenient characterization of the channel :
[ see e.g. P. Grangier et al., Nature 396, 537 (1998) ]

* Gain parameters  gx ,  gp
* Equivalent Input Noises  (cf electronic amplifiers) :

Neq,X = < FX 
2 > / | gx |2 Neq,P  = < FP 

2 > / | gp |2

Linear Transmission  Channel
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Xin , Pin Xout , Pout



Linear Transmission Channel
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Heisenberg relations on the equivalent input noises !

NeqB, X NeqE, P  ≥≥≥≥  N0
2        NeqB, P NeqE, X  ≥≥≥≥  N0

2

If Eve tries to measure one quadrature,
then Bob will see strong « back-action noise »  on the other quadrature.

…but one can get  NeqB, X NeqE, X  <  N0
2

Arbitrarily good measurement of one quadrature is possible for Eve and Bob !

Initially introduced as a « criterion » for a « QND  measurement » of X

N0
 : 

vacuum noise

Xin , Pin
XB , PB

Two outputs denoted as
« Signal » and « Meter » 

« Bob » and « Eve »

XE , PE



From QND to QKD
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 NeqB, X NeqE, P ≥≥≥≥ N0
2

 NeqB, P NeqE, X ≥≥≥≥ N0
2

( N0
 : vacuum noise )Xin , Pin

XE , PE

XB , PB

Fundamental idea for quantum key distribution:
Alice and Bob encode information on X  and  P (and don’t tell it in advance !)

Then NeqB, X = NeqB, P = NeqB and  the best  choice for Eve is  NeqE, X = NeqE, P = NeqE

Since  everything is symmetric for X and P then :

NeqB NeqE  ≥≥≥≥ N0
2  (no-cloning theorem !)

( optimal cloning for QCV :  NeqB = NeqE  = N0 )



QKD protocol using coherent states with
gaussian amplitude and phase modulation

(a) Alice chooses XA and PA within
two random gaussian distributions.

XA

PA

X

P

VA

VA
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Efficient transmission of information using continuous  variables ?
-> Shannon's formula (1948) : the mutual information IAB (unit : bit / symbol) for
a gaussian channel with additive noise is given by

IAB = 1/2   log2 [ 1 + V(signal) / V(noise) ]

N0

(b) Alice sends to Bob the
coherent state | XA + i PA 〉

XB

PB

(c) Bob measures either XB or PB

(d) Bob and Alice agree on the basis choice
(X or P), and keep the relevant values.

Reminder : I(X; Y) =
H(X) - H(X | Y) =
 H(Y) - H(Y| X) =

H(X) + H(Y) - H(X; Y)



Data Reconciliation
how to correct errors, revealing as less as possible to Eve ?
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IAE IBE

IAB

Main idea (Csiszar and Körner 1978, Maurer 1993) :

Alice and Bob can in principle distill, from their correlated key elements, a
common secret key of size S > sup(IAB - IAE , IAB - IBE) bits per key element.

Crucial remark : it is enough that IAB is larger than the smallest of IAE and IBE
(i.e. one has to take the best possible case).



Data Reconciliation
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If  IAE is the smallest, the reconciliation
must keep S = IAB - IAE constant :
Alice gives correction data to Bob

(and also to Eve),
and Bob orrects his data  :

« direct reconciliation protocol »

If  IBE is the smallest, the reconciliation
must keep S = IAB - IBE constant :
Bob gives correction data to Alice

(and also to Eve),
and Alice corrects his data  :

« reverse reconciliation protocol »

IAE IBE

IAB

Crucial question for Alice and Bob :
how to bound IAE  and  IBE, knowing IAB ?



Bounding  IAE ( F. Grosshans and P. Grangier, PRL 88, 057902 (2002) ).

IAB = 1/2   log2 [ 1 + VA / (N0 + NeqB ) ]

IAE = 1/2   log2 [ 1 + VA / (N0 + NeqE ) ]

where VA :  variance of Alice’s modulation
N0  : shot noise (coherent state)
NeqB  : « equivalent input noise » on Bob ’s side
NeqE  : « equivalent input noise » on Eve ’s side

From Heisenberg    NeqB NeqE ≥≥≥≥ N0
2   (no cloning !)  and thus :

IAE  ≤≤≤≤  1/2   log2 [ 1 + VA / (N0 + N0
2 / NeqB ) ]

Direct reconciliation
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see e.g. :
P. Grangier et al.,

Nature 396, 
537 (1998).

IAB  >  (IAE )best iff  NeqB   <  N0
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 Reverse Reconciliation

V(XB|XA)min V(PB|PE) ≥≥≥≥  N0
2 V(PB|PA)min V(XB|XE) ≥≥≥≥  N0

2

Using again Shannon’s theorem… (and some algebra…)

IBA  >  (IBE ) best iff  T2
 ( N0 + NeqB ) ( N0 / V + NeqB )  <  N0

2
  

The security condition involves both T (channel transmission) and NeqB 

( for direct reconciliation : NeqB  <  N0  )

Bounding   IBE  ( F. Grosshans et al.,  NatureNature  421421, 238 (2003), 238 (2003) )

How well can Alice and Eve infer Bob’s measurement results ?
  
Define the  « conditional variance »  V(XB | XE) = V(XB) −−−− |<XB XE >|2 / V(XE)

Conditional variances are also bounded by Heisenberg  relations :



Summary on reconciliation protocols
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The noise seen by Bob can be split in two parts (known by Alice and Bob !):

NeqB   = Nlosses
 
 + Nexcess

  = N0 (1 - Tline) / Tline  +  Nexc



Summary on reconciliation protocols
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Mutual information (bits / symbol) for  VA=15 N0

* IAE : relevant for direct reconciliation, requires Tline > 0.5  and Nexc < N0

* IBE : relevant for reverse reconciliation, requires Nexc < 0.5 N0 
can be secure  for any line transmission !

IABIAEmax

Tline

IBEmax

Nexc = 0

The noise seen by Bob can be split in two parts (known by Alice and Bob !):

NeqB   = Nlosses
 
 + Nexcess

  = N0 (1 - Tline) / Tline  +  Nexc



Summary on reconciliation protocols
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Mutual information (bits / symbol) for  VA=15 N0

* IAE : relevant for direct reconciliation, requires Tline > 0.5  and Nexc < N0

* IBE : relevant for reverse reconciliation, requires Nexc < 0.5 N0 
can be secure  for any line transmission !

IABIAEmax

Tline

IBEmax

Nexc = 0

IABIAEmax

Tline

IBEmax

Nexc = 0.25 N0

The noise seen by Bob can be split in two parts (known by Alice and Bob !):

NeqB   = Nlosses
 
 + Nexcess

  = N0 (1 - Tline) / Tline  +  Nexc



Eve ’s attacks

Attacks considered in our proof are individual gaussian attacks (not easy !)
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Alice Bob

quantum
memory

Eve’s best attack against
direct reconciliation :

cloning machine ( = BS)
+ quantum memory
NeqB  = (T/R) N0
NeqE  = (R/T) N0

Alice Bob

quantum
memory

quantum
memory

EPR
source

Eve ’s best attack against
reverse reconciliation :
« entangling cloner »
+ quantum memories

T

R R

T



Experimental set-up
F. Grosshans et al.,  Nature Nature 421421, 238 (2003), 238 (2003)

Alice

Bob
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Laser   diode  (780 nm)
+ Pulsing AOM

(120 ns, rep. rate  800 kHz)

Alice EO
Modulator

Pulsed homodyne detection
Signal  pulses :  100 phot.
LO pulses :  3 108 phot.



Coherent state QKD : experiment
F. Grosshans et al.,  Nature Nature 421421, 238 (2003), 238 (2003)

Example of exchanged data
(burst of 60000 pulses @ 800 kHz, no on-line loss)
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Gaussian with
VA ≈  40 N0 
σX ≈  6.5 σ0



Coherent state QKD : results
F. Grosshans et al.,  Nature Nature 421421, 238 (2003), 238 (2003)

Practical SK rate : final results, taking into account « all » imperfections
Requires an optimized method for extracting secret bits from the correlated
strings of continuous data shared by Alice and Bob : "sliced reconciliation"

[ N.J. Cerf, M. Lévy and G. Van Assche!, PRA 63, 052311 (2001)].

VA Tline IBA IBE (% of IBA) Ideal SK rate Practical SK rate

40.7 1 2.39 0% 1920 kb/s 1700 kb/s

37.6 0.79 2.17 58% 730 kb/s 470 kb/s

31.3 0.68 1.93 67% 510 kb/s 185 kb/s

26.0 0.49 1.66 72% 370 kb/s 75 kb/s

 Q I P C  

Corresponding to a
pulse rate 800 kHz

bits/
pulse

in shot-
noise units



Some questions…

* The security proof is valid for individual gaussian attacks* The security proof is valid for individual gaussian attacks

What about « unconditional » security ? What about « unconditional » security ? 
(i.e. vs collective non-gaussian attacks ?)
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* Security  of QKD is often said to be related to entanglement…* Security  of QKD is often said to be related to entanglement…

Where is the entanglement here ? 



Continuous-variables EPR beams
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(XA + XB ) and (PA - PB ) are squeezed (commuting operators !)
then (PA + PB ) and (XA -  XB ) are anti squeezed

If Alice measures XA , she will know  XB

If Alice measures PA , she will know  PB

and for a large enough squeezing we have :

V(XB|XA)  V(PB|PA)  <  N0
2   !!!

« apparent » violation of Heisenberg relations V(XB)  V(PB) ≥≥≥≥  N0
2

If the squeezing goes to infinity : original EPR state (1935) !

EPR
source

XA , PA XB , PB



How to produce QCV entangled  beams ?
(see also poster by Alexei Ourjoumtsev)
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XC , PC

XC  squeezed

XD , PD

PD  squeezed
X

P

X

P

XC = ( XA + XB )/√√√√2
PC = ( PA + PB )/√√√√2
XD = ( XA - XB )/√√√√2
PD = ( PA - PB )/√√√√2

OK !

1. Combine two orthogonally squeezed beams

XA , PA

XB , PB

entangled !

NOPA
(khi-2

crystal)

2. Use a Non-degenerate Optical Parametric Amplifier (NOPA)

X

P

Vacuum state
X

P

Vacuum state
XA , PA

XB , PB

entangled !Pump 
beam



EPR  versus coherent protocol
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LO

Bob

EPR
source

Alice measures
XA or PA on half

an EPR beam

EPR protocol equivalent to our  coherent state protocol !
Cf BB84 vs entangled pair (Ekert)  protocol

The state received by Bob is prepared in a
squeezed state, conditional to Alice ’s result

X

P

LOs
(ππππ/2)

Bob

EPR
source

Alice measures
XA and PA on half

an EPR beam
The state received by Bob is prepared in a

coherent state, conditional to Alice ’s result

X

P50-50 BS

(XA + XB ) and (PA - PB )
are squeezed



Entanglement condition
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Assume EPR beams with squeezing s = 1/V, and equivalent noises :Assume EPR beams with squeezing s = 1/V, and equivalent noises :

NeqA   =  N0 (1 - TA) / TA   (no excess noise on Alice ’s side!)
NeqB   =  N0 (1 - Tline) / Tline  +  Nexc

The criterion for entanglement (Peres-Horodecki for gaussian continuousThe criterion for entanglement (Peres-Horodecki for gaussian continuous
variables : Duan et al, Simon) is independant of  variables : Duan et al, Simon) is independant of  Tline , , TA, and V and writes :, and V and writes :

Nexc  <  2  N0

On the other hand, the security thresholds for both direct reconciliation and
reverse reconciliation  coherent states protocols require :

Nexc  <  N0
Well within the entanglement region !
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separability

entanglement

RR + EPR states

RR + coherent states

losses (dB)

E
xc

es
s 

no
is

e 
(N

0 
un

its
)

0

1

2

0 3 6 9

DR

The DR and RR coherent states
protocols are well within the

« virtual entanglement » region !

Hint for unconditional security ?

DR : Direct Reconciliation
RR : Reverse Reconciliation

Security of coherent states QKD
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Series of security proofs based on « virtual entanglement » :

* Proof of security against individual gaussian attacks
F. Grosshans et al., Nature Nature 421421, 238 (2003), 238 (2003)

* Proof of security  against arbitrary finite-size attacks
(individual gaussian attacks are actually optimal ! same secret rates)

F. Grosshans and N.J.  Cerf, PRL 92, 047905 (2004)

* Proof of security  against arbitrary collective attacks
(one can distill entangled qubits using CSS codes; secret rates ?)

S. Iblisdir, G. Van Assche, N.J. Cerf, PRL 93, 170502 (2004)

* Other approaches for collective attacks  (OK for losses < 1.9 dB) :
F. Grosshans, PRL 94, 020504 (2005)
M. Navascuès and A. Acin, PRL  94, 020505 (2005)

Security of coherent states QKD



Cryptography vs entanglement
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Entanglement is NOT required for cryptographic securityEntanglement is NOT required for cryptographic security
(only the channel ability to transmit entanglement is required !)(only the channel ability to transmit entanglement is required !)

… so is entanglement really useful ?

* Practical advantages of « actual »  EPR beams vs. coherent states :* Practical advantages of « actual »  EPR beams vs. coherent states :

- The random values needed by Alice (encoding) and Bob (decoding) do not have- The random values needed by Alice (encoding) and Bob (decoding) do not have
to be externally generated (possibly by another quantum process), but they areto be externally generated (possibly by another quantum process), but they are
produced by the protocol itself (« the key does not exist beforehand »).produced by the protocol itself (« the key does not exist beforehand »).

- A « true » EPR protocol is more robust with respect to excess noise than  a- A « true » EPR protocol is more robust with respect to excess noise than  a
coherent state protocol (but the bit rates are the same if no excess noise).coherent state protocol (but the bit rates are the same if no excess noise).

* Fundamental advantage of « actual »  EPR beams vs. coherent states ?* Fundamental advantage of « actual »  EPR beams vs. coherent states ?

Entanglement distillation procedures and quantum repeaters !Entanglement distillation procedures and quantum repeaters !



Quantum repeaters and non-gaussian states
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Is it possible to carry some operation on several EPR beams
to increase the final entanglement ?

Theorem (Eisert, Cirac…):
This cannot be done if all states and all operations are gaussian !

« Degaussification » is required

How to get a simple non-gaussian processing ?

EPR source

XA , PA XB , PBEPR source

EPR source

? ?



« Degaussification » of a squeezed state
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Naive view : degaussification = photon substraction
(one single photon in the APD beam)

Squeezed vacuum : 
αααα |0〉〉〉〉  + ββββ |2〉〉〉〉  + γγγγ |4〉〉〉〉  + … 

Non-gaussian state : 
ββββ|1〉〉〉〉  + √√√√2 γγγγ (1-R) |3〉〉〉〉  + … 

APD

R<<1

Wigner function

X P

Wigner function

X P



Experimental set-up
Jérôme Wenger et al.
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R=10%

R=10%

R=50%PZT

SHGSHG

DOPADOPA

ProbeProbe
(optionnal)

PumpPump

SignalSignal

Local Local OscillatorOscillator

Cavity-dumped laser source
• Ultrashort duration : 150 fs at 850nm

• Nearly Fourier-Transform limited
• High energy : 75nJ / pulse @ 790kHz

!
Pulsed Homodyne Detection 

 Time-domain, overall efficiency : 75%

Single pass, 100µm KNbO3 

(type-I phase-matching)
•  Frequency doubling  : 

ηSHG = 30%
• Parametric gain : 

G > 3dB
• Spatially Degenerated 

! Squeezing



Pulsed Squeezed State CharacterizationPulsed Squeezed State Characterization
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Squeezed quadrature
-1.9dB below SNL (no correction)
[-2.7dB corrected for losses]

Anti-squeezed quadrature
+ 3.3dB above SNL (no correction)
[+ 4.0dB corrected for losses]

Shot Noise Level (SNL)

Time-domain analysisTime-domain analysis
Scan of the LO phaseScan of the LO phase



Experimental set-up
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R=10%

R=10%

R=50%PZT

SHGSHG

DOPADOPA

ProbeProbe
(optionnal)

PumpPump

SignalSignal

Local Local OscillatorOscillator

R=10% APDAPD

Spectral &
Spatial Filters

Trigger

!



Frequency
doubling
+ OPA

Homodyne
detection

Filters
+ APD

Experimental set-up



Observed non-gaussian statistics
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""""""""  High order terms High order terms ######## Phase- Phase-dependent statisticsdependent statistics

Squeezed vacuum : 
αααα |0〉〉〉〉  + ββββ |2〉〉〉〉  + γγγγ |4〉〉〉〉  + … 

Non-gaussian state :  
ββββ √√√√2 t |1〉〉〉〉  +  2 γγγγ t3 |3〉〉〉〉  + … 

APD

R << 1

Conditional upon  a click :

Amplified quadrature Squeezed quadrature



Wigner function of the conditioned state
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""""""""  Quantum Quantum tomographytomography  ######## Wigner  Wigner function function reconstructionreconstruction

Theory : perfect detection
Wth(0,0) = -0.26

Experimental data, no correction
Wexp(0,0) = 0.067



Use of degaussification
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Degaussification should improve entanglement...

Can this be proven on a simple example ?

Look at Bell ’s inequalities as a criterion !



A new violation of Bell ’s inequalities ?
R. Garcia-Patron et al, Phys. Rev. Lett. 93, 130409 (2004) 
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(XA + XB ) and (PA - PB ) are squeezed : original EPR state (1935) !

EPR
source

XA , PA XB , PB

* Perform homodyne detections (XX’- XP’- PX’- PP’) on each side 
* « Digitize » the data by taking the sign ( ± ) of the value of  X or P
* Then compute the S parameter for  Bell ’s inequalities ( | S | ≤ 2) 

No violation ! (the Wigner function provides a local hidden variable model !)

* Now « degaussify » by using two APDs (« event ready » detectors)

Violation !  S = 2.02  >  2  [ 6 dB squeezing, η(APD) = 30%, η(hom) = 95% ]

« Loophole -free » test, all events are taken into account, feasible ? 

APDAPD



Conclusion
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Security proof of coherent state QKD :Security proof of coherent state QKD :
* Coherent states protocols using reverse reconciliation 

are secure against any (gaussian or non-gaussian) finite-size attack
*  Unconditional security of these protocols has also been (almost) proven.

Coherent states QKD demonstrator : Nature Coherent states QKD demonstrator : Nature 421421, 238 (2003), 238 (2003) 
* Measured secure bit transmission rates : 1.7 Mbit/sec @ 0 dB loss

75  kbit/sec  @ 3.1 dB loss
* Competitive against faint pulses ? Test @ 1550 nm under way

Conditional preparation of « squeezed » non-gaussian pulses (PRL 2004)Conditional preparation of « squeezed » non-gaussian pulses (PRL 2004) 
* Phase-dependant non-gaussian Wigner function (« squeezed volcano »)
* First step towards : entanglement distillation procedures ? 

new tests of  Bell’s inequalities ? 


