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INTRODUCTION
 Aim
 Develop a theory of BEC interferometry for case of single
component BEC - all bosons in same spin state.

 Apply to SUT experiment involving magnetic traps on an
atom chip - permanent magnets plus current elements.

 BEC Interferometer
 BEC initially at zero temperature with all bosons in lowest
orbital 1r.

 Trapping potential changes from a single well into a
double well and back again.

 Asymmetry in double well potential leads to
interferometric effects, such as for boson numbers in
excited orbital 2r.

 Interferometer process is depicted in Figure 1. Red
squares indicate bosons, trap potential is shown in red,
typical orbitals are shown in blue or pink.



 Issues
 Does the BEC fragment into two BECs (left well, right
well) during the process?

 What happens to the single boson orbitals
1r, t,2r, t, . as the trap potential changes?

 What excited BEC states are important in the process?

 How are the interferometric measurements, such as the
excited boson probability, related to asymmetry in the
trapping potential?

 How does the interferometer sensitivity depend on the
number of bosons?

 What is the optimum way to change the trap potential
during the process?

 What effect would decoherence, quantum fluctuations,
finite temperatures, .. have?

 Nature of Orbitals
 Single Well - Possible orbitals are shown in Figure 2a.

 Double Asymmetric Well - Possible delocalised orbitals
are shown in Figure 2b.

 Double Asymmetric Well - Possible localised orbitals are
shown in Figure 2c.



 Full Theory - Future work

 Phase space method (based on Drummond et al, PRA
68, 063822, (2003)).

 Stochastic PDE for condensate wave function.

 Quantum fluctuations around mean field (condensate
wave function) treated.

 Decoherence effects due BEC coupling to reservoirs,
classical fluctuations in trap potentials, ..included.

 Presence of excited states of BEC (single boson,
collective, ..) during process allowed for.

 Multimode and fragmentation effects incorporated.

 Finite temperature effects included.

 Boson number unrestricted.

 Simple Theory - Present work

 Variational approach based on two-mode approximation
with time dependent orbitals (based on Menotti et al, PRA
63, 023601 (2001)) and using spin operators.

 Self-consistent coupled equations for amplitudes and
orbitals - Generalised Gross-Pitaevskii equations.

 Decoherence, thermal, multimode effects ignored.

 Boson number, excitations, fluctuations restricted.



THEORY
 Hamiltonian - Kinetic energy, trapping potential,
two-body interaction (zero-range approximation)

H  dr 2

2m ∇
†
 ∇  

†
V  g

2 
†


†


 Field Operators - Bosons

r,
†
r′  r−r′

 Single Boson Orbitals - Orthogonal and
normalised, time dependent in general

dr i
∗r, t jr, t  ij

 Annihilation and Creation Operators - Orbital
expansion, time dependent creation, annihilation operators

r ∑
i

cit ir, t 
†
r ∑

i
ci
†
t i

∗r, t

cit, cj
†
t  ij i, j  1,2, . . 

 Two orbitals only in the sum (two-mode approximation).



 Boson Number Operator - Conserved quantity

N  dr
†
rr

 ∑
i

ci
†
ci

 Spin Operators - Two-mode case

Sx  c2

†
c1  c1

†
c2/2


Sy  c2

†
c1 − c1

†
c2/2i


Sz  c2

†
c2 − c1

†
c1/2

 Commutation Rules - Angular momentum theory

S,


S  i


S ,,   x, y, z

 Angular Momentum Squared - Conserved
quantity



S2  ∑




S2

 N
2  N

2  1

 Angular momentum squared related to boson number
operator.



 Basis States for BEC System - N bosons

|k  c1
†


N
2 −k

 N
2 − k! 1

2

c2
†


N
2 k

 N
2  k! 1

2
| 0

 This represents a state with  N
2 − k bosons in orbital

1r, t and  N
2  k bosons in orbital 2r, t.

 In general, this is a fragmented state of the N boson
system involving two BECs, not just one.

 Special State - Single BEC

− N
2  c1

†
N

N! 1
2

| 0

 This state is a single unfragmented BEC with all bosons in
orbital 1r, t.

 Giant Spin System - Two-mode approximation



S2 |k  N

2 
N
2  1 |k


Sz |k  k |k

 The BEC behaves as a giant spin system with spin
angular momentum quantum number j  N

2 and with spin
magnetic quantum number k  − N

2 ≤ k ≤ N
2 .



 General Quantum State - State amplitudes

|t  ∑
k− N

2

N
2

bkt |k

 This N boson state is a quantum superposition of
fragmented states.

 Normalisation - Conservation of probability

∑
k− N

2

N
2

|bkt|2  1

 Initial Condition - All bosons in single condensate

|0  − N
2

 Action - Functional of quantum state |t

S  dt 〈∂t| − 〈|∂t
2i −

|H |



 Minimisation of action for arbitrary variation of state leads
to time-dependent Schrodinger equation (TDSE).

 For restricted variation of state get approximations to
TDSE.



 Principle of Least Action - Action a functional of
amplitudes bkt and orbitals ir, t

Sbk, bk
∗, i, i

∗
bk
∗  0

Sbk, bk
∗, i, i

∗
i
∗  0

 The action is minimised for arbitrary variation of the
amplitudes and orbitals. The functional derivatives of the
action then are zero.

 The Lagrange multiplier associated with the normalisation
constraint can be transformed away.

 Obtain self-consistent coupled equations for amplitudes
and orbitals - generalised Gross-Pitaevskii equations.

 Application of Least Action Principle
 Hamiltonian can be written in terms of spin operators and
its matrix elements calculated from previous expressions
plus

S

N
2 ,k   N

2 
N
2  1 − kk  1

1
2 N

2 ,k  1

S 


Sx  i


Sy

 Angular momentum theory method involving step-up and
step-down operators.



 Functions of Orbitals - i, j,m,n  1,2

Wijr, t  2

2m ∑
x,y,z

∂ i
∗ ∂ j   i

∗V j

Vijmnr, t 
g
2  i

∗  j
∗ m n


Tijr, t  1

2i ∂t i
∗  j −  i

∗ ∂t j

 Rotation Matrix - − N
2 ≤k, l≤  N

2 

Ukl  1
2i ∂t〈k | |l − 〈k| ∂ t| l

 drUkl i, i
∗,∂t i,∂t i

∗

Ukl 


T 11

N
2 −kkl


T 22

N
2 kkl

 T 12 
N
2 −k

N
2 l 1

2 k,l1

 T 21 
N
2 −l

N
2  k

1
2  l,k1

 Space integrals of orbitals and their time derivatives.

 Hamiltonian Matrix - − N
2 ≤k, l≤  N

2 

Hkl  k|H |l

 drHkl i, i
∗,∂ i,∂ i

∗

 Space integrals of orbitals and their spatial derivatives.



 Hamiltonian density

Hkl  W11

N
2 −kklW22

N
2 kkl

 W12 
N
2 −k

N
2 l 1

2 k,l1

 W21 
N
2 −l

N
2  k

1
2  l,k1

 V 1111
N
2 −k

N
2 −k − 1kl

 

V 1212


V 1221


V 2121


V 2112

N2

4 −k2kl

 V 2222
N
2 k N

2 k − 1kl

 

V 1112


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N
2 −l

N
2 −k

N
2 l 1

2 k,l1

 

V 1222


V 2122

N
2 k N

2 −k
N
2 l 1

2 k,l1

 

V 1211


V 2111

N
2 −k

N
2 −l

N
2  k

1
2  l,k1

 

V 2212


V 2221

N
2 l N

2 −l
N
2  k

1
2  l,k1

 V 1122
N
2 −l1 N

2 − k N
2 l N

2  k  1
1
2 k,l2

 V 2211
N
2 −k  1 N

2 −l
N
2  k N

2 l1
1
2 l,k2



 Quadratic Functions of Amplitudes
i, j,m,n  1,2, − N

2 ≤k, l≤  N
2 

Xij  ∑
k,l

bk
∗Xkl

ij bl

Yijmn  ∑
k,l

bk
∗ Ykl

ijmn bl

Xkl
11   N

2 −kkl Xkl
12   N

2 −k
N
2 l 1

2 k,l1

Xkl
21   N

2 −l
N
2  k

1
2  l,k1 Xkl

22   N
2 kkl

Ykl
11 11   N

2 −k
N
2 −k − 1kl

Ykl
22 22   N

2 k N
2 k − 1kl

Ykl
12 12  Ykl

12 21  Ykl
21 12  Ykl

21 21   N
2 −k

N
2 kkl

Ykl
11 12  Ykl

11 21   N
2 −l

N
2 −k

N
2 l 1

2 k,l1

Ykl
12 22  Ykl

21 22   N
2 k N

2 −k
N
2 l 1

2 k,l1

Ykl
12 11  Ykl

21 11   N
2 −k

N
2 −l

N
2  k

1
2  l,k1

Ykl
22 12  Ykl

22 21   N
2 l N

2 −l
N
2  k

1
2  l,k1

Ykl
11 22   N

2 −l1 N
2 −k

N
2 l N

2  k  1
1
2 k,l2

Ykl
22 11   N

2 − k  1 N
2 −l

N
2  k N

2 l1
1
2  l,k2



 Coupled Amplitude Equations

i ∂bk
∂t  ∑

l
Hkl − Uklbl

 Matrix elements depend on orbitals ir, t.

 Coupled Generalised Gross-Pitaevskii
Equations for Orbitals

i∑
j

Xij
∂ j

∂t  ∑
j

Xij− 
2

2m ∑
x,y,z

∂2  j  V j

 g∑
jmn

Yijmn  j
∗ m n

 Coefficients depend quadratically on amplitudes bkt.

 The combined set of equations for the amplitudes and
orbitals form a self-consistent set.

 Interferometer Measurement - Boson number in
orbital 2r, t

N2  |c 2
†c 2 |

 N
2 ∑

k
k |bk |2

 Measurement of N2 at end of process depends on
asymmetry and exhibits interferometric effects.



 Initial Conditions
bk0  k,− N

2

 In this case only non-zero coefficients are

X110  N Y11110  NN − 1

 Orbital 1r, t satisfies single GPE as t → 0

i ∂1

∂t  − 
2

2m ∑
x,y,z

∂2 1  V1  g N − 1 |1 |2 1

which is consistent with initial condition of all bosons
occupying this orbital.

 Orbital 2r, t is chosen by orthogonality.

 Iterative Method of Solution
 First Step: * Assume know amplitudes bk

* Calculate the Xij and Yijmn

* Solve generalised GPE for orbitals i

 Second Step: * Calculate the Hkl and Ukl

* Solve for amplitudes bk

 Third Step: * Repeat process until solutions converge.

 Direct Method of Solution
 Solution of coupled set of equations via XMDS.



 Regime of Validity - Two-mode theory

 Mean field energy Ng ||2and thermal energy quantum
kBT both small compared to trap phonon energy 0 gives

N  a0
as

T  0
kB

,

with scattering length as and vibrational amplitude
a0  /2m0 (Milburn et al, PRA 55, 4318 (1997)).

 For Rb87 with as 5 nm, a0 1 m, 0 2. 58 s−1, find
N  2. 102 and T  2.8 nK.

 Related Work - Two-mode theory

 Menotti et al, PRA 63, 023601 (2001) write orbitals and
state amplitudes in terms of Gaussian forms with a total of
four variational functions. Coupled self-consistent equations
are derived for these. Dynamical BEC splitting,
fragmentation, collapses and revivals treated.

 Spekkens et al, PRA 59, 3868 (1999) use variational
principle and spin operator methods for static, symmetrical
potential cases to derive self-consistent coupled equations
for state amplitudes and orbitals - generalised time
independent GPE. Static BEC fragmentation found.

 Cederbaum et al, PRA 70, 023610 (2004) predict
fragmented excited BEC states in the static case using
generalised time independent GPE derived using
variational methods.



 Numerous papers exist treating BEC dynamics in a
double well potential assuming fixed orbitals or assuming
that no BEC fragmentation occurs. Spin operators based on
fixed orbitals are also widely used.



SUMMARY
 Using the two-mode approximation and treating the N
bosons as a giant spin system, a theory of BEC
interferometry has been developed based on applying the
Principle of Least Action to a variational form for the
quantum state which allows for a possible fragmentation of
the BEC.

 Self-consistent coupled equations are obtained for the
state amplitudes and the orbitals, the latter being a
generalisation of the Gross-Pitaevskii equations.

 Numerical studies of these equations are planned with the
aim of applying the results to future BEC interferometry
experiments at Swinburne University of Technology
involving a double well interferometer based on an atom
chip.


