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INTRODUCTION

¢ Aim
» Develop a theory of BEC interferometry for case of single

component BEC - all bosons in same spin state.

» Apply to SUT experiment involving magnetic traps on an
atom chip - permanent magnets plus current elements.

¢ BEC Interferometer

» BEC initially at zero temperature with all bosons in lowest
orbital ¢, (r).

» Trapping potential changes from a single well into a
double well and back again.

« Asymmetry in double well potential leads to
interferometric effects, such as for boson numbers in
excited orbital ¢, (r).

* Interferometer process is depicted in Figure 1. Red
squares indicate bosons, trap potential is shown in red,
typical orbitals are shown in blue or pink.



¢ Issues

* Does the BEC fragment into two BECs (left well, right
well) during the process?

» What happens to the single boson orbitals
¢, (r,1),9,(r,1),.as the trap potential changes?

* What excited BEC states are important in the process?

* How are the interferometric measurements, such as the
excited boson probability, related to asymmetry in the
trapping potential?

* How does the interferometer sensitivity depend on the
number of bosons?

« What is the optimum way to change the trap potential
during the process?

« What effect would decoherence, quantum fluctuations,
finite temperatures, .. have?

¢ Nature of Orbitals

 Single Well - Possible orbitals are shown in Figure 2a.

* Double Asymmetric Well - Possible delocalised orbitals
are shown in Figure 2b.

* Double Asymmetric Well - Possible localised orbitals are
shown in Figure 2c.



¢ Full Theory - Future work

* Phase space method (based on Drummond et al, PRA
68, 063822, (2003)).

» Stochastic PDE for condensate wave function.

* Quantum fluctuations around mean field (condensate
wave function) treated.

» Decoherence effects due BEC coupling to reservoirs,
classical fluctuations in trap potentials, ..included.

* Presence of excited states of BEC (single boson,
collective, ..) during process allowed for.

» Multimode and fragmentation effects incorporated.
* Finite temperature effects included.

 Boson number unrestricted.

¢ Simple Theory - Present work

* Variational approach based on two-mode approximation
with time dependent orbitals (based on Menotti et al, PRA
63, 023601 (2001)) and using spin operators.

 Self-consistent coupled equations for amplitudes and
orbitals - Generalised Gross-Pitaevskii equations.

» Decoherence, thermal, multimode effects ignored.

 Boson number, excitations, fluctuations restricted.



THEORY

¢ Hamiltonian - Kinetic energy, trapping potential,
two-body interaction (zero-range approximation)
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¢ Field Operators - Bosons
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¢ Single Boson Orbitals - orthogonal and
normalised, time dependent in general
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¢ Annihilation and Creation Operators - Orbital
expansion, time dependent creation, annihilation operators
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» Two orbitals only in the sum (two-mode approximation).



¢ Boson Number Operator - Conserved quantity
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¢ Spin Operators - Two-mode case
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¢ Commutation Rules - Angular momentum theory
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¢ Angular Momentum Squared - Conserved
guantity
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* Angular momentum squared related to boson number
operator.



¢ Basis States for BEC System - N bosons
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- This represents a state with (7 — k) bosons in orbital
¢,(r,1) and (% + k) bosons in orbital ¢.,(r, t).
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* In general, this is a of the N boson
system involving two BECs, not just one.

¢ Special State - Single BEC
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 This state is a single BEC with all bosons in
orbital ¢, (r, t).

¢ Glant Spin System - Two-mode approximation
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* The BEC behaves as a giant spin system with
] = % and with



¢ General Quantum State - State amplitudes
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* This N boson state is a of

fragmented states.

¢ Normalisation - Conservation of probability
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¢ Initial Condition - All bosons in single condensate
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¢ Action - Functional of quantum state |®(t))
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* Minimisation of action for variation of state leads
to time-dependent Schrodinger equation (TDSE).

* For variation of state get approximations to
TDSE.



¢ Principle of Least Action - Action a functional of
amplitudes bk (t) and orbitals ¢;(r, t)
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» The action is minimised for arbitrary variation of the
amplitudes and orbitals. The of the

action then are zero.

» The Lagrange multiplier associated with the normalisation
constraint can be transformed away.

» Obtain self-consistent coupled equations for amplitudes
and orbitals - generalised Gross-Pitaevskii equations.
¢ Application of Least Action Principle

« Hamiltonian can be written in terms of spin operators and
its matrix elements calculated from previous expressions
plus
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» Angular momentum theory method involving step-up and
step-down operators.



¢ Functions of Orbitals (i,j,m,n = 1,2)
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» Space integrals of orbitals and their time derivatives.

¢ Hamiltonian Matrix - (——<k |< +—)
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» Space integrals of orbitals and their spatial derivatives.



« Hamiltonian density
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¢ Quadratic Functions of Amplitudes
(i,j,m,n = 1,2), (——<k |< +—)
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¢ Coupled Amplitude Equations
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- Matrix elements depend on orbitals ¢;(r,t).

¢ Coupled Generalised Gross-Pitaevskii
Equations for Orbitals
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 Coefficients depend quadratically on amplitudes by(t).

» The combined set of equations for the amplitudes and
orbitals form a self-consistent set.

¢ Interferometer Measurement - Boson number in
orbital ¢, (r,t)
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* Measurement of N2 at end of process depends on
asymmetry and exhibits interferometric effects.



¢ Initial Conditions
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* In this case only non-zero coefficients are
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- Orbital ¢, (r, 1) satisfies single GPEast — 0
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which is consistent with initial condition of all bosons
occupying this orbital.

» Orbital ¢, (r,t) is chosen by orthogonality.

¢ Iterative Method of Solution
 First Step:  * Assume know amplitudes by
* Calculate the Xij and Yijmn
* Solve generalised GPE for orbitals ¢;
- Second Step:  * Calculate the Hyj and Uy
* Solve for amplitudes b

» Third Step:  * Repeat process until solutions converge.

¢ Direct Method of Solution

 Solution of coupled set of equations via XMDS.



¢ Regime of Validity - Two-mode theory

« Mean field energy Ng |¢|2and thermal energy quantum
kg T both small compared to trap phonon energy Zw, gives
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with scattering length as and vibrational amplitude
a0 = 4/ (il2mwo) (Milburn et al, PRA 55, 4318 (1997)).

« For Rb®" with as= 5 nm, ag= 1 um, wo= 27.58 s, find
N < 2.10°and T < 2.8 nK.

¢ Related Work - Two-mode theory

* Menotti et al, PRA 63, 023601 (2001) write orbitals and
state amplitudes in terms of Gaussian forms with a total of
four variational functions. Coupled self-consistent equations
are derived for these. Dynamical BEC splitting,
fragmentation, collapses and revivals treated.

» Spekkens et al, PRA 59, 3868 (1999) use variational
principle and spin operator methods for static, symmetrical
potential cases to derive self-consistent coupled equations
for state amplitudes and orbitals - generalised time
independent GPE. Static BEC fragmentation found.

» Cederbaum et al, PRA 70, 023610 (2004) predict
fragmented excited BEC states in the static case using
generalised time independent GPE derived using
variational methods.



* Numerous papers exist treating BEC dynamics in a
double well potential assuming fixed orbitals or assuming
that no BEC fragmentation occurs. Spin operators based on

fixed orbitals are also widely used.



SUMMARY

 Using the two-mode approximation and treating the N
bosons as a giant spin system, a theory of BEC
interferometry has been developed based on applying the
Principle of Least Action to a variational form for the
guantum state which allows for a possible fragmentation of
the BEC.

 Self-consistent coupled equations are obtained for the
state amplitudes and the orbitals, the latter being a
generalisation of the Gross-Pitaevskii equations.

* Numerical studies of these equations are planned with the
aim of applying the results to future BEC interferometry
experiments at Swinburne University of Technology
involving a double well interferometer based on an atom
chip.



