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Abstract

The experimental realisation of Bose—Einstein condensates of dilute atomic vapours has generated immense interest
and activity in this field. Here, we present a review of recent theoretical research into the properties of trapped dilute-gas
Bose—FEinstein condensates. Topics covered include ground-state properties of trapped condensates, elementary excita-
tions, light scattering properties, tests of broken gauge symmetry, and the atom laser. © 1998 Elsevier Science B.V. All
rights reserved.
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1. Introduction

One of the most fascinating predictions of quantum statistical mechanics is that of a phase
transition in an ideal gas of identical bosons (particles with integral total angular momentum) when
the thermal de Broglie wavelength exceeds the mean spacing between particles. Under such
conditions, bosons are stimulated by the presence of other bosons in the lowest energy state to
occupy that state as well, resulting in a macroscopic occupation of a single quantum state (Bose,
1924; Einstein, 1925). This transition is termed Bose—Einstein condensation (BEC) and the conden-
sate that forms constitutes a macroscopic quantum-mechanical object.

This condensation provides a basis for the theoretical understanding of, e.g., superfluidity in
liquid helium. However, in this system, strong interactions exist between the constituent particles,
making a simple interpretation in terms of quantum statistical mechanics impossible. Hence, there
has been growing interest in the past couple of decades in finding a system that could provide
a weakly interacting condensate, for which a more rigorous and detailed comparison between
theory and experiment would be possible. Such a system was supplied in spectacular fashion in
1995 by the atomic physics community in the form of ultracold, trapped atomic vapours.
Specifically, in a landmark experiment, Anderson et al. (1995) at JILA! produced a condensate of
spin-polarised 8’Rb atoms confined in a magnetic trap. Similarly significant experiments demon-
strating BEC with trapped vapours of 3Na and "Li were also performed by Davis et al. (1995) at
MIT? and Bradley, Sackett and Hulet (1997a, 1997b) at Rice University, respectively.

1.1. The experiments

In the JILA experiment a condensate of approximately 2000 spin-polarised 83’Rb atoms was
produced in a cylindrically symmetric magnetic trap (for a general review of this experiment, see
Cornell, 1996). A finite condensate fraction first appeared at a temperature of 170 nK and a density
of 2.6 x 102 cm 3. To reach these regimes of temperature and density with alkali gas samples
required state-of-the-art cooling and trapping techniques. In particular, the gas sample was first
optically trapped and cooled using laser light in a magneto-optical trap, as depicted and described
in Fig. 1. Densities and temperatures of the order of 10! cm™2 and tens of micro-Kelvin,
respectively, are routinely achieved in such configurations (for more detailed descriptions of laser
cooling and trapping techniques, see, e.g., the articles in Arimondo et al., 1991).

After being optically pumped into a suitable magnetic sublevel (the F =2, mpy = 2 angular
momentum state of 8’Rb), the atoms were then loaded into a purely magnetic trap,® providing an
essentially harmonic confining potential with axial and radial oscillation frequencies of approxim-
ately 120 and 42 Hz, respectively. At this point, the technique of evaporative cooling was employed
to achieve a further reduction in the temperature of the gas. Briefly, this cooling technique is based
on the preferential removal of atoms with an energy higher than the average energy (in practice, via

! Joint Institute for Laboratory Astrophysics, University of Colorado at Boulder.

2 Massachusetts Institute of Technology.

3 Here, the interaction between the magnetic field and the magnetic moment of the unpaired electron in 87Rb is
sufficient to trap an atom.



A.S. Parkins, D.F. Walls | Physics Reports 303 (1998) 1-80 5

(b)

distance from trap centre

Fig. 1. (a) A typical magneto-optical trap configuration. Three pairs of counter-propagating laser beams with opposite
circular polarisations (6 and ¢) and a frequency tuned slightly below the atomic resonance (by an amount 4) are
superimposed on a magnetic quadrupole field produced by a pair of anti-Helmholtz coils. As shown in (b) (in one
dimension), the Zeeman sublevels of an atom are shifted by the local magnetic field in such a way that (due to selection
rules) the atom tunes into resonance with the laser field propagating in the opposite direction to the atom’s displacement
from the origin; hence, the net force on the atom is always towards the origin. In practice, additional repumping laser
beams are required to maintain the atoms in the correct hyperfine levels and these beams are spatially distributed so as to
create a “dark spot” in the centre of the cloud where atoms are “hidden” from the trapping beams in an uncoupled
hyperfine level; this reduces trap loss and heating due to light scattering, allowing higher densities to be attained before
transfer to a purely magnetic trap.

spin-flip-inducing radiofrequency excitation, tuned to excite only the most energetic atoms, i.e.,
those in the outermost regions of the trap). Subsequent rethermalisation of the gas by elastic
collisions produces an equilibrium state at a lower temperature (for a review of evaporative cooling
methods, see Ketterle and van Druten, 1996a). A particular magnetic trap configuration and
a depiction of the evaporative cooling process is shown in Fig. 2.

This final step of cooling enabled Anderson et al. to attain temperatures in the nano-Kelvin
regime, well below the critical temperature for BEC of the gas sample, which, for an ideal gas of
N atoms in a harmonic potential, is given by (de Groot et al., 1950; Bagnato et al., 1987)

T. = (ha/kg)(N/1.202)'73 | (1)

where @ = (w,mw,w.)'? is the geometric mean of the harmonic trap frequencies. Below this critical
temperature, the condensate fraction varies as (de Groot et al., 1950)

No/N =1—(T/TJ)}. b)
As mentioned above, the 8’Rb experiment of Anderson et al. was complimented by demonstrations

of BEC in trapped vapours of 2*Na (Davis et al., 1995) and "Li (Bradley et al., 1995, 1997a). These
experiments employed somewhat different physical configurations, but followed the same basic



6 A.S. Parkins, D.F. Walls | Physics Reports 303 (1998) 1-80
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Fig. 2. Schematics of the evaporative cooling process in a magnetic trap configuration. (a) Cloverleaf configuration of
trapping coils used by Mewes et al. (1996a). The central (outer) coils provide axial (radial) confinement. The rf field
induces spinflips of hot atoms. By adjusting the frequency of the rf field, the effective depth of the trap is altered,
facilitating evaporative cooling as depicted in (b).

after evaporative cooling

approach to obtaining the necessary densities and temperatures, i.e., an initial stage of laser cooling
followed by evaporative cooling in a magnetic trap. In the MIT experiment with >*Na the critical
temperature for condensation was 2 pK and condensates of approximately 5 x 10° atoms were
created at densities of the order of 10'*cm™3. The ’Li experiment at Rice University was
somewhat distinct from the other experiments in that the s-wave scattering length for "Li is
negative, meaning that the interatomic interactions are effectively attractive (as opposed to the
positive scattering length for 8’Rb and 2*Na, corresponding to repulsive interactions). This puts
limits on the maximum size and stability of the condensate, which was observed by Bradley et al.,
below a critical temperature of around 400 nK, to contain approximately 10> atoms at a density of
the order of 10'? ¢cm 3.

The ensuing months have seen the rapid development of refined and improved experimental
configurations, together with more detailed quantitative measurements and studies of fundamental
condensate properties, such as the condensate fraction and the interaction energy (Ensher et al.,
1996; Jin et al., 1996b; Mewes et al., 1996a; Andrews et al., 1996). Collective excitations have also
been examined by slightly perturbing the trap potential and then observing the response of the
condensate (Jin et al., 1996a,b, 1997; Mewes et al., 1996b). Other significant advances include the
production of binary condensates, i.e., of two co-existing condensates corresponding to two
different spin states of 8’Rb (|[F = I,m = — 1) and |F = 2,m = 2)) (Myatt et al., 1997), and the
demonstration of a pulsed coherent output coupler for a trapped condensate (Mewes et al., 1997),
realising what can be regarded as a pulsed “atom laser.” That the output pulses of atoms are indeed
coherent has been beautifully confirmed in a further experiment by Andrews et al. (1997b), who
observe high-contrast matter-wave interference fringes when two condensates (formed by “slicing”
the original condensate in half with a thin laser beam) are made to overlap.
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1.2. The theory

Preceding and parallel to this dramatic experimental progress, a large body of theoretical work
has accumulated relating specifically to trapped dilute-gas Bose—FEinstein condensates. Careful
comparisons of theory with experiment are indeed now being performed, with impressive levels of
agreement already achieved for such things as condensate size and shape, interaction energy, and
excitation frequencies. As well as modelling present experiments, theorists are now also exploring
the plethora of new possibilities offered by the alkali-gas condensates (in comparison to more
traditional systems such as liquid helium). In this category are, for example, light scattering as
a probe of condensate properties, effects due to quantum fluctuations in small (N ~ 10?) conden-
sates, and the interference of pairs of condensates. These and other effects also touch upon
long-standing issues of broken gauge symmetry and the condensate phase, and how best to
describe the actual state of the condensate.

The purpose of the present work is to provide a description and overview of theoretical research
that has been done in recent times pertaining to the properties of dilute-gas Bose—FEinstein
condensates (see also the recent summary of BEC research by Burnett, 1996). For the most part, we
concentrate on the physics of essentially pure condensates and neglect issues of condensate
formation. The experiments have clearly demonstrated that pure condensates are both obtainable
and amenable to further experimentation. However, while we choose not to discuss it in this review,
it is important to note the recent development of (quantum) kinetic theories for the description of
the formation of the condensate in weakly-interacting dilute-gas systems (see, e.g., Griffin et al.,
1995; Stoof, 1997b; Gardiner and Zoller, 1997; Jaksch et al., 1997; Holland et al., 1997; Anglin, 1997,
Gardiner et al., 1997;Kagan and Svistunov, 1997). Notably, predictions for the time scale for the
growth of the condensate are now being made and appear to be consistent with the experiments
(Gardiner et al., 1997).

1.3. Outline

Our review begins in Section 2 with the ground state properties of dilute-gas condensates, for
which research has, in the main, been based upon mean-field theory, specifically in the form of the
so-called Gross—Pitaevskii equation. This theory is strictly only valid in the thermodynamic limit,
and, as alluded to above, the finite size of actual condensates may lead to noticeable deviations
from the mean-field behaviour. This aspect is covered in the final part of Section 2. The mean-field
theory and slight variations thereof have also provided the basis for the majority of investigations
into the elementary excitations of trapped condensates and we review this work in Section 3. Light
scattering properties are discussed in Section 4 for various regimes of laser excitation; unlike the
subject matter of Sections 2 and 3, the theoretical predictions of this section still await correspond-
ing experimental results, although progress along these lines is likely to occur soon. In Section 5 we
turn to some fascinating future possibilities offered by systems comprising a pair of condensates,
upon which measurements (e.g., atom detections) can be made in the manner of interference
experiments and information about the relative phase between the condensates established.
Section 6 deals with the behaviour of a condensate subject to a double-well trapping potential and,
in particular, the possibility of coherent quantum tunnelling, in direct analogy with the Josephson
effect. Finally, in Section 7 we discuss some of the issues and models associated with atom lasers, or
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coherent atomic beam generators, which represent a natural progression from Bose—Einstein
condensates, but also constitute an interesting challenge for experimentalists.

2. Ground state properties of dilute-gas Bose—Einstein condensates in traps

2.1. Hamiltonian: binary collision model

The effects of interparticle interactions are of fundamental importance in the study of dilute-gas
Bose—Finstein condensates. Although the actual interaction potential between atoms is typically
very complex (see, e.g., Julienne et al., 1993), the regime of operation of current experiments is such
that interactions can in fact be treated very accurately with a much-simplified model. In particular,
at very low temperature the de Broglie wavelengths of the atoms are very large compared to the
range of the interatomic potential. This, together with the fact that the density and energy of the
atoms are so low that they rarely approach each other very closely, means that atom—atom
interactions are effectively weak and dominated by (elastic) s-wave scattering (see, e.g., Walraven,
1996). 1t follows also that to a good approximation one need only consider binary collisions (i.e.,
three-body processes can be neglected) in the theoretical model.

The s-wave scattering is characterised by the s-wave scattering length, a, the sign of which
depends sensitively on the precise details of the interatomic potential (see, e.g., Verhaar, 1995)
[a > 0 (a < 0) for repulsive (attractive) interactions]. Given the conditions described above, the
interaction potential can be approximated by

Ur—r)=Uwr—r), 3)
(i.e., a hard sphere potential) with U, the interaction “strength”, given by
U, = 4nh*a/m, (4)

and the Hamiltonian for the system of weakly interacting bosons in an external potential, V,,,(r),
can be written in the second quantised form as

H= Jd3r ‘IA’T(r)[ — %Vz + Vtrap(r)}'f’(r) + %fd%fd%’ ) P\ U — ¥)P(r)P(r), (35)

where P(r) and P(r) are the boson field operators that annihilate or create a particle at the position
r, respectively.

To put a quantitative estimate on the applicability of the model, if p is the density of bosons, then
a necessary condition is that a®*p < 1 (for a > 0). This condition is indeed satisfied in the alkali gas
BEC experiments (Anderson et al., 1995; Davis et al., 1995), where achieved densities of the order of
10'2-10'3 cm ™3 correspond to a’p ~ 107°-10°. The model is also suitable for dilute systems of
bosons having negative scattering lengths (a < 0) (Bradley et al., 1995, 1997a), although, as we shall
see later in this section, the attractive interaction ultimately leads to instability and collapse of the
condensate when the number of atoms exceeds a critical value.
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2.2. Mean-field theory

The Heisenberg equation of motion for ¥(r) is derived as

7 2
aqja(: D _ [ — ;’—mv 24 Vtmp(r)}f’(r, )+ U, 0)P(r, 1) P(r, 1), (6)

ih

which cannot in general be solved. In the mean-field approach, however, the expectation value of
Eq. (6) is taken and the field operator decomposed as

P(r,t) = ¥Y(r,t) + P(r,1), (7)

where ¥(r,t) = (P(r,1)) is the “condensate wave function” and ¥(r) describes quantum and
thermal fluctuations around this mean value. The quantity ¥(r,t) is in fact a classical field
possessing a well-defined phase, reflecting a broken gauge symmetry associated with the condensa-
tion process. The expectation value of ¥(r,t) is zero and in the mean-field theory its effects are
assumed to be small, amounting to the assumption of the thermodynamic limit, where the number
of particles tends to infinity while the density is held fixed (Lifshitz and Pitaevskii, 1980). For the
effects of ¥(r) to be negligibly small in the equation for ¥(r) also amounts to an assumption of zero
temperature (i.e., pure condensate). Given that this is so, and using the normalisation

fd3r| e =1, (8)

one is lead to the nonlinear Schrodinger equation, or “Gross—Pitaevskii equation” (GP equation),
for the condensate wave function ¥(r,t) (Lifshitz and Pitaevskii, 1980),

a‘Pa(: t_ [ _ h_zvz + Vieap(r) + NUo|¥(r, t)lzJ P(r1), ©)

ih 2m

where N is the mean number of particles in the condensate. The nonlinear interaction term (or
mean-field pseudo-potential) is proportional to the number of atoms in the condensate and to the
s-wave scattering length through the parameter U,

The influence of quantum fluctuations through the term ¥(r) and the appropriateness of the
decomposition (7) (with concomitant relevance to the concept of broken symmetry) are of
importance when it comes to the study of the effects of a finite temperature and of a finite number of
condensate particles (i.e., finite N). These issues are considered later in this review.

To find a stationary solution for the condensate wave function in the mean-field theory, one can
substitute the form Y(r,t) = exp( — iut/Apy(r) into Eq. (9) (where p is the chemical potential of the
condensate) to give the time-independent equation

(— (B?2m)V? + V(1) + NUW ) *Wo(r) = uip(r) - (10)

For a condensate of neutral atoms confined by a harmonic potential, V.,,(r) can be written in the
general form (allowing for different oscillation frequencies along each of the three axes, i.e., for an
“anisotropic” trap),

Vieap(r) = 2m(@3x? + 07y* + w?z?), (11)

so that r = (x, y, z) represents the displacement from the centre of the trap.
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Solutions of Eq. (10), and of the time-dependent Eq. (9), have been computed numerically by
a number of authors using a variety of techniques. In cases where the trap potential is isotropic
(wx = w, = w,) or cylindrically symmetric (v, = w, # ) the problem becomes effectively one- or
two-dimensional respectively, allowing some simplification. As we will see, in certain limits
approximate analytical solutions can also be calculated and relatively simple expressions derived
for basic properties of the condensate.

2.3. Ground state properties of a condensate with repulsive interactions

2.3.1. Numerical results

Numerical solutions of the GP equation for the ground state wave functions of a harmonically
trapped weakly interacting condensate with repulsive interactions have been obtained by a variety
of groups for both the isotropic case (w, = w, = w.) (Edwards and Burnett, 1995; Ruprecht et al.,
1995; You et al., 1996; Kagan et al., 1996) and the anisotropic case (o, = w, # ., 1.e., matching
current experimental configurations) (Edwards et al., 1996a; Holland and Cooper, 1996; Dalfovo
and Stringari, 1996). Compared to the bare harmonic oscillator ground state wave function, the
wave function of the condensate is broadened in space as a result of the repulsive interactions and
its shape deviates markedly from a Gaussian, with a much flatter density profile in the central
region for sufficiently large N. The broadening increases as N increases, and for an anisotropic
trapping potential, the extent of broadening is greatest in directions where the restoring forces are
weakest. Fig. 3 illustrates these features for a 8’Rb condensate.

Fig. 3. Ground-state wave function for 8’Rb along the x axis (upper part) and z axis (lower part). Distances are in units of
d, = (h/mw,))"?, with 0, =w,=w, and o, = \/gcul. The dashed line is for noninteracting atoms; the solid lines
correspond to N = 100,200, 500, 1000, 2000, 5000, 10*, in descending order of central density. From Dalfovo and
Stringari (1996).
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The energy per particle has three contributions: the kinetic energy, the harmonic oscillator
potential energy, and the internal potential energy arising from the interactions. Applying the virial
theorem to the trap leads to the rigorous relation

p2/2m — (m/2){(x?) + 3Epu =0, (12)
and similarly for y and z. Summing over the three dimensions yields
2Ekin —_— 2EHO ‘I‘ 3Ep01 == 0 . (13)

As N increases, E, increases and the repulsive interaction expands the cloud to regions where the
trapping potential is higher, thus increasing Eyo. Conversely, the kinetic energy, E,;,, decreases.
Dalfovo and Stringari (1996) have explicitly demonstrated this aspect in their numerical com-
putations.

Having computed the ground state wave function, Holland and Cooper (1996) also considered
the ballistic expansion of the condensate, given that the trapping potential is suddenly reduced.
This modelled the experimental procedure used by Anderson et al. (1995) to increase the size of the
atom cloud before imaging it via light scattering. The numerical results for N = 2000 atoms show
good agreement with the experiment and demonstrate the significance of interactions in determin-
ing the structure of the condensate. Along similar lines, Holland et al. (1997) have also carefully
modelled more recent experiments at JILA, obtaining very nice agreement between the mean-field
theory and experiment for the release energy from ballistic expansion and the density profile of the
atom cloud. Significantly, the comparison between theory and experiment required essentially no
fitting parameters.

2.3.2. Analytical results

The trap potentials in BEC experiments to date have typically been cylindrically symmetric and
so we shall concentrate on such a configuration, i.e., we set w, = w, = w, and w, = Aw,. Introduc-
ing the standard length

d, = (h/mo,)'?, (14)
we follow Dalfovo and Stringari (1996) and define rescaled variables through

r=dir, W) =dr),  do=8rnaN/d,  pu=ho. (15)
The time-independent GP equation (10) can then be rewritten

[— V2 + (X + 7%+ 222%) + dol(F) 1 (F) = 2@ (F) . (16)

The dimensionless parameter iy characterises the effect of the interactions on the condensate. Note
that, for the trap of Anderson et al. (1995), d, ~ 1.2 um, so taking a ~ 5nm gives iy ~ 0.1N, and
hence values of i, much greater than one are to be expected for condensates comprised of
thousands of atoms.

2.3.2.1. Non-interacting limit. First, however, we consider the case in which itg = 0, corresponding
simply to a non-interacting anisotropic harmonic oscillator. The ground state wave function is the
Gaussian

() = 243 exp[ — 3(x* + j* + 427)]. (17)
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The chemical potential, obtained from the normalisation of the wave function, is
1= 1 + %;L 5 (18)

(equal to the energy per particle, E/N) and the position and momentum variances for this ground
state are given by

() =(* =13 ()=1/24, (19)
P =<pi> =1 P2y =14, (20)

respectively, where we have defined p = (hmw,)'?p. Quantities of considerable interest in the
interpretation of experiments are the aspect ratios

(X% P2y
(z*) P2y

Observed values of 4 different from one indicate the macroscopic occupation of the anisotropic
ground state of the potential.

NZS 1)

2.3.2.2. Strongly repulsive limit: Thomas—Fermi approximation. The opposite limit is when
ito > 1, corresponding to a large number of particles. In this limit, it is possible to neglect the kinetic
energy term in the GP equation (Thomas—Fermi model) and to derive the approximate solution
(Edwards and Burnett, 1995; Kagan et al., 1996; Dalfovo and Stringari, 1996; Baym and Pethick,
1996)

W()1* = (1) 2t — %2 — y* — 422%) (22)

in the region where the right-hand side is positive and |[{/(7)|> = 0 outside this region. The chemical
potential follows as

= 3((15/8m)iiio)*® = H(15AN a/d,)*" (23)

and using the relation u = (dE/dN), one finds that the energy per particle is now E/N = (5/7)u. For
sufficiently large N (typically of the order of a few thousand or greater), the wave function (22)
provides a reasonably good approximation to the “exact” numerical solution, except in regions
where the density is small, i.e., at the surface of the condensate, where the sharp cut-off of Eq. (22) is
artificial, as shown in Fig. 4, where the numerical and analytical solutions are compared. In reality,
the kinetic energy causes the wave function to vanish smoothly (Baym and Pethick, 1996; Dalfovo
et al., 1996; Lundh et al., 1997; Timmermans et al., 1997). Note that recent BEC experiments with
condensates of N ~ 10*-10° atoms have indeed confirmed the N*/° dependence of the mean-field
energy per atom (Mewes et al., 1996a; Jin et al., 1996a). Fig. 5 shows a fit of this form to data from
the 23Na experiment of Mewes et al., 1996a.

One deduces from the wave function (22) that the condensate extends over a radius R = /2ji
and a vertical distance Z = AR. One also derives the results

(2 =% =207, (2% =201/72%, (24)
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Fig. 4. Ground-state wave function for 5000 8’Rb atoms. Dashed line, noninteracting gas; dot-dashed line, strongly
repulsive limit (Thomas—Fermi model); solid line, numerical solution of GP equation. From Dalfovo and Stringari (1996).

Fig. 5. Mean-field energy per condensed atom versus the number of atoms in the condensate. A: clouds with no visible
normal (noncondensed) fraction. O: clouds with both normal and condensed fractions visible. The solid line is a fit
proportional to N5, From Mewes et al. (1996a).

and the aspect ratios

&y [ ,
NG T ®3)

That is, the aspect ratios are now equal to 4, in contrast to ﬁ for the non-interacting case (Dalfovo
and Stringari, 1996; Baym and Pethick, 1996). This change in aspect ratios is borne out by
numerical solutions in the limit of large N (Edwards et al., 1996a; Holland and Cooper, 1996,

Dalfovo and Stringari, 1996) and is consistent with experiments (Anderson et al., 1995; Mewes
et al., 1996a).

The expansion of the condensate with increasing N is illustrated by the result R = ﬁ oc N3,
Note that for the values of a and d, quoted earlier, and for 1 = \/g (as in the experiment of
Anderson et al., 1995), one finds i ~ 0.25N?/5 and (x*) ~ 0.07N?/> ~ 1.1 for N = 1000.

The behaviour of the various contributions to the particle energy as a function of the particle
number can also be put on a slightly more quantitative basis. The harmonic oscillator potential
energy per particle is Eyg ~ mw?R?/2 oc N*/°, while, assuming a particle density p ~ N/R?3, the

interaction energy is E,o, ~ (4nh?a/m)N/R> oc N*/°. In contrast, the kinetic energy per particle, Eyy,
is of order 7?/2mR?) oc N~ 2/°.
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2.4. Ground state properties of a condensate with attractive interactions

2.4.1. Numerical results

A homogeneous condensate with negative scattering length, corresponding to an attractive
interaction between particles, is predicted to be unstable (Lifshitz and Pitaevskii, 1980). If, however,
the condensate is confined by a potential and the number of particles is not too large, then it is
possible for the zero-point energy to exceed the attractive interaction energy and to stabilise the
condensate against collapse. Confirmation of this effect has, of course, come from the experiments
of Bradley et al. (1995, 1997a), in which evidence for BEC of a trapped atomic vapour of "Li (for
which a < 0) has been found.

Numerical studies of the GP equation with a confining potential have also shown that stable
condensates can exist for a < 0, provided N is not too large (Ruprecht et al., 1995; Dalfovo and
Stringari, 1996; Dodd et al., 1996; Bergeman, 1997). Example wave functions are shown in
Fig. 6 for "Li in an anisotropic potential. In general, the central density of the condensate increases
with N and the atom cloud contracts under the increasing influence of the attractive potential.
Noticeably also, the cloud approaches spherical symmetry, in spite of the anisotropy of the
potential. Dalfovo and Stringari (1996), Dodd et al. (1996), and Bergeman (1997) have concentrated
specifically on the experimental configuration and parameters of Bradley et al., 1995 and have
determined a critical number, N, ~ 1400, above which stable solutions of the GP equation no
longer exist. This is not consistent with the original experiment of Bradley et al., 1995, in which the
number of atoms was estimated to be an order of magnitude larger. However, following im-
provements to their experiment and data analysis, the group at Rice University have subsequently

1
0 1 2 3 4
Zy

Fig. 6. Ground-state wave function for "Li along the x axis (upper part) and z axis (lower part). Distances are in units of
d, = (h/mw )", with o, = w, = w, and w, =0.72w,. The dashed line is for noninteracting atoms; the solid lines
correspond to N = 200, 500, 1000, in ascending order of central density. From Dalfovo and Stringari (1996).
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revised their estimates of the number of condensate atoms to between 650 and 1300 (Bradley et al.,
1997a,b).

It is interesting to note at this point that experimental efforts to observe Bose—FEinstein
condensation in a trapped dilute gas of cesium atoms have thusfar proved unsuccessful. The sign
and magnitude of the scattering length for cesium are not accurately known, but some evidence
(see, e.g., Arndt et al., 1997) does point to it being large and negative, which, following from above,
would preclude the formation of a stable condensate of reasonable size.

2.4.2. Analytical results

Following Baym and Pethick (1996) and Stoof (1997a) (see also Shuryak, 1996; Shi and Zheng,
1997), it is possible to obtain a useful analytical estimate of the critical atom number at which the
condensate is expected to become unstable by performing a variational calculation of the ground
state energy. In the Gross—Pitaevskii theory, this energy is given by the energy functional

2nah?
m

h? 1
EY(r] = str[%l Vih(r)* + §mw272|lﬁ(r)|2 + Ilﬁ(r)l“} ; (26)
where y(r) is the condensate wave function, or order parameter (normalised in this case to N), and,
for simplicity, we have assumed an isotropic harmonic trapping potential with angular frequency
w. The shape of the condensate mode is given by the function that minimises the energy functional.
As a reasonable first approximation, consider a Gaussian wave function of the form

WY(r) = (N/d°n?2)' 2 exp( —r?/2d%) , (27)

with d an effective width, treated as a variational parameter. Substituting this wave function into
Eq. (26) and performing the integration, one obtains
3W*N 3 h*aN?

d) =— + -Nmw?d* + ——. 28

@ amd2 T3 +,/21tmd3 .
If E is plotted as a function of d for parameters appropriate to the "Li experiment of Bradley et al.,
1995 (w = 2n x 160 Hz, a = — 27.3a,4, with ay the Bohr radius), one sees (Fig. 7) that a stable local
minimum exists only up to a certain maximum number of atoms; above this number, the zero-point
kinetic energy is unable to stabilise the condensate against collapse. The critical point occurs where

OE 0%E
s =0 d — =0 29
od|a., Ny R @)
and one finds
S(4\* 1/2 1/2
do=4 200 mw)'? = 0.67(h/mw)"?, (30)
14\ "
Ne=—4< (/T/a)(h/mw)? ~ 1400 . (31)

This value for N, is in good agreement with the result from a full numerical treatment.
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0 05 1 15

Fig. 7. Energy per particle (in units of ) as a function of the variational parameter d (in units of (h/mw)'/?) for
w/2n = 160Hz and a = — 27.3a, ("Li). Curves are shown for (a) the noninteracting case, (b) N = 600, (c) N = 1000, (d)
N = 1450, and (¢) N = 2000. From Dunningham (1997).

Houbiers and Stoof (1996) have also presented calculations (for “Li) for nonzero temperatures
which show that the critical number of condensate atoms decreases with increasing temperature.
This occurs because the noncondensate part of the gas effectively increases the strength of the trap
potential (from the point of view of the condensate part) as the temperature increases, limiting the
maximum size of the condensate.

2.5. Vortex states

It is also possible to consider a system that is rotating about the z-axis, giving rise to so-called
“vortex states” (Lifshitz and Pitaevskii, 1980). In such states, atoms flow around a vortex line (the
z-axis) with quantised circulation.

2.5.1. Description and properties
The appropriate axially symmetric condensate wave function for a vortex state can be written in
the form

¥(r) = (r)expliS(r)], (32)

where y(r) = ./p(r) is the modulus and S is chosen as S = k¢, where ¢ is the angle around the
z-axis and x is an integer (the quantum of circulation). The tangential velocity is then

v=(h/mr )k, (33)

with r? = x? + y?, and the angular momentum along z is L, = Nxh.
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(b)

Fig. 8. Wave function for a trapped condensate of 5000 8’Rb atoms (A = \/§); (a) Ground state (x = 0). (b) Vortex state
(x = 1). From Dalfovo and Stringari (1996).

Using the form (32) in the GP equation, one derives the modified nonlinear Schrodinger
equation (in dimensionless form)

[ — V2 + (7)) 2 + (7 + 222) + il (F) 2 W(F) = 2[p(F) - (34)

Note that due to the centrifugal term, the solution of this equation for x # 0 has to vanish on the
z-axis. That is, atoms are pushed away from the axis forming a toroidal cloud.

The critical frequency, Q. at which the formation of a vortex line becomes energetically
favourable is determined from the condition E — L,Q. = 0, where E is the energy difference
between the ground state and the vortex state. For the condensate of Anderson et al. (1995) with
approximately 2000 atoms, the critical frequency for x« =1 is found (numerically) to be
Q../2n =37Hz (Edwards et al, 1996a). An approximate analytical expression for Q. giving
reasonable agreement with numerical results is (Lundh et al., 1997)

Q.. = 3(h/mR)In(0.671R/&,) , (35)

where R/d, = (15Nia/d,)'® and &, = [8np(0)a]™ /2 (the “healing” or “coherence” length), with
0(0) the central density of the condensate in the absence of a vortex.

Vortex solutions of Eq. (34) have been computed numerically by Edwards et al. (1996a) (for
a > 0) and by Dalfovo and Stringari (1996) (for a > 0 and a < 0). A comparison of the ground state
(k = 0) with the x =1 vortex state is shown in Fig. 8 for the 8’Rb trap with 5000 atoms.
Interestingly, for the case of attractive interactions, it is found that the vortex state can support
a larger number of condensate atoms than the x = 0 ground state, i.e., more atoms can be put in the
rotating cloud before reaching the critical density for collapse. For example, Dalfovo and Stringari
find a critical value N, ~ 4000 for the x = 1 state in the "Li trap (as opposed to 1400 for the xk = 0
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ground state). Shi and Zheng (1997) have found similar results for the critical value in this
particular vortex state using a variational approach.

2.5.2. Generation and stability of vortex states

Straightforward rotation of the confining trap at the critical frequency €., should promote the
condensate into the vortex state. However, alternative schemes for preparing vortex states have
been proposed based on laser-light-induced Raman transitions between different internal atomic
states (Bolda and Walls, 1997; Marzlin et al., 1997; Dum et al., 1997). In these schemes, which can
involve laser beams with Laguerre-Gaussian mode profiles,* angular momentum is transferred
from the laser photons to the condensed atoms.

Given that a vortex state has been prepared in a harmonically confined Bose gas, the question of
stability of the state arises, particularly in the case where the imposed rotation is removed,;
superfluidity is associated with the persistence of the circulating flow in the absence of a rotating
drive. Rokhsar (1997) has recently examined the issue of stability, finding that vortex states are in
fact unstable in the absence of driving and consequently that harmonically confined Bose gases are
not superfluid. This is a result of collision-induced excitations occurring preferentially near the
centre of the trap, which has the effect of destabilising the vortex, at least in the limit of weak
interactions. In the limit of strong interactions (i.e., large N) the azimuthal symmetry of the rotating
condensate is broken, giving rise to a precession about the axis of the trap which, in the presence of
a normal component (i.e.,, at a finite temperature), causes dissipation of energy and angular
momentum.

2.6. Condensate lifetime

In practice, inelastic two- and three-body collisions cause atoms to be lost from the condensate,
ultimately limiting its lifetime. In particular, collisions producing changes in the internal hyperfine
state of the atoms (“spin exchange”) or leading to molecule formation (“recombination”) give rise to
loss from the trap and a reduction in density. These processes have been studied in some detail and
estimates of the rates calculated for various species of atom. These rates depend, naturally, on the
density distribution of atoms in the trap; the total loss rate for two- and three-body collisions is
given by (Edwards et al., 1996a; Hijmans et al., 1993; Moerdijk et al., 1996)

R(N) = ochfd3r () * + LN3fd3r [W(r)|®, (36)

where o is the two-body dipolar loss rate coefficient and L is the three-body recombination loss rate
coeflicient. For the experiment of Anderson et al. (1995), 1/e lifetimes for the condensate population
of the order of tens of seconds are predicted, roughly consistent with the experimental result.
Loss rates for condensates with attractive interactions (a < 0) will in general be more significant
than with repulsive interactions, due to the contraction of the ground state and enhancement of the
density. Kagan et al. (1996) have also identified another intrinsic loss mechanism for the case of

#Such laser modes possess orbital angular momentum in addition to the angular momentum contributed by the
polarisation of the light.
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attractive interactions that arises from the fact that it is possible to form a much denser state of the
system that still has the same total energy as the “standard” ground state. This state consists of
dense clusters of atoms, within which elastic pair collisions can transfer atoms to excited trap states
(as a result of the interaction energy per atom exceeding the trap level spacing). Transitions of the
system to the much denser state are, however, not expected to figure significantly until the system
approaches the boundary for stability of the condensate.

2.7. Binary mixtures of Bose—Einstein condensates

As we shall see throughout the course of this review, very interesting physics and applications
can arise when one considers the dynamics of a pair of Bose—Einstein condensates consisting of two
distinct “species” of atoms (e.g., two different spin states of a particular atom) that are possibly
overlapping in space. In a spectacular recent experiment, such a situation has indeed been realised
by Myatt et al. (1997) with the two condensates corresponding to two different spin states of ®’Rb

(F=1,m= —1)and |F =2, m = 2)). Evaporative cooling of the |F =1, m = — 1) state com-
bined with sympathetic cooling of the state |F = 2, m = 2) (resulting from elastic collisions with
the |[F =1, m = — 1) atoms) is used to produce the double condensate in a single magnetic trap.

Because of their different magnetic moments, the two states experience different magnetic forces;
this, combined with the force of gravity, leads to different equilibrium positions of the condensates,
although with modifications to the magnetic field strength and/or the axis of the trap, the degree of
overlap between the two condensates can be controlled.

Amongst many interesting effects, Myatt et al. (1997) observed a repulsive interaction between
the two condensates, tending to push them apart and, for a sufficient separation, to reduce inelastic
spin exchange collisions between the two species that would otherwise significantly reduce
the condensate lifetimes. A detailed theoretical analysis of the double condensate experiment
has been performed by Esry et al. (1997), based upon numerical solutions of the Hartree—Fock
equations for the condensate wave functions (r) and ,(r) [with normalisation

[ I (r)? = [d3r Wo(r)* = 11:

2

[ - f_m‘” + V() + (Ny — DU () + N2U12|w2<r>lﬂwl(r) = e(r), (37)
hz

[ =2,V +VERr) + NUnl(r)” + (N> — 1)U22||//2(r)|2:|¢2(r) = ex0,(r). (38)

Here, U;; = 4nh*a;;/m, with a;; the s-wave scattering length between an i species atom and
a j species atom, and

Vi) = dm[wix? + oiy? + oz — zi0)*] , (39)

with z;o0 = — g/w? the displacement of the i-th trap centre due to the gravitational acceleration g.
Using the (positive) scattering length values a;; = 108.8 a.u., a;, = 108.0 a.u., and a,, = 109.1 a.u.,
and choosing other parameters to match the experimental configuration, the single particle
probability densities [/(r)|* take the form shown in Fig. 9 (where the z axis is parallel to gravity).
The separation between the centers of the condensates is due (i) to the differing gravitational “sag”
experienced by each species and (ii) to the repulsive interaction U, between the two species. Loss
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Fig. 9. Single particle densities |y#(r)> in the y = 0 plane for parameters corresponding to the double-condensate

experiment of Myatt et al. (1997): (a) |2,2) and (b) |1, — 1) internal atomic state. From Esry et al. (1997).

rates due to spin exchange collisions and dipolar relaxation, proportional to [d*r [1]*{,|* (i.e., the
overlap between the two condensates) and [d>r |y|* or [d*r |,|*, respectively, can be estimated
and give results consistent with the experimental findings. Interestingly, the spin-exchange inelastic
collision rate is found to be unusually small for ’Rb. Recent theoretical calculations explain this
somewhat fortuitous result as a consequence of interference between singlet and triplet collision
channels, made possible by a special coincidence of the singlet and triplet scattering lengths for
87Rb (Kokkelmans et al., 1997; Julienne et al., 1997; Burke et al., 1997). For 2*Na, such a coincid-
ence does not occur and spin-exchange collisions are predicted to preclude the formation of
a double condensate of the form produced with 87Rb.

Beyond the first experiment of Myatt et al., and within the limitations set by loss rates due to
“undesirable” collisions, it is possible to consider other species of atoms and, in particular, the effect
of differing values of the respective scattering lengths. As shown by Esry et al. (1997), varying the
value of the scattering length ay, (including negative values) has important consequences for the
stability and lifetimes of the condensates. For example, a sufficiently strong attractive interaction
between the different species (i.e., a;, < 0) can overwhelm repulsive interactions within each
condensate (a; 1, d,, > 0), leading to their collapse. Busch et al. (1997) have also demonstrated this
by solving the coupled Gross—Pitaevskii equations for the two components using a Gaussian
ansatz for the condensate wave functions and variational techniques.

Further along these lines, using a Thomas—Fermi approximation Ho and Shenoy (1996) have
studied the stability and ground state structures of binary mixtures of condensates with positive
values of the scattering lengths and varying numbers of atoms in each condensate (but neglecting
gravity and assuming concentric condensates). In analogy with superfluid phenomena, they find
regimes, dependent on the numbers of atoms and on the magnitudes of interaction parameters, of
both coexisting and separated phases.

2.8. Beyond mean-field theory: quantum properties of trapped condensates
In some of the recent alkali-gas BEC experiments, the number of condensate atoms has only

been in the range N ~ 10°-10°, which is very small in comparison with, for example, liquid helium
experiments, where N ~ 102°. It is therefore necessary to consider the possibility of deviations from
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the mean-field behavior and, in particular, what effect quantum fluctuations [as represented by the
second term in Eq. (7)] may have on the system. In fact, it is necessary to address the very validity
of the general mean-field decomposition,

P(r,t) = {P(r,0)> + P(r,1), (40)

which also touches upon the role and suitability of the wave function (P(r,t)> as the so-called
“order parameter” for the system.

This issue of associating {P(r, t)> with the order parameter is very interesting in itself; as a brief
overview, let us begin with the standard formal condition for BEC in an interacting Bose gas (see,
e.g., Anderson, 1984; Griffin, 1993). In particular, the criterion for BEC is that the one-particle
reduced density matrix p,(r,#,t) = (PH(r, 0)P(r, 1)) (here {---> denotes the restricted ensemble
average over all atoms but one) does not vanish for large values of the separation, [r — ¥, and can
be factorised into the form

pi(rr,t) = &' (r,t)®(r,t) (+ small terms), 41)

where @(r, t) characterises the spatial distribution of the condensate and is referred to as the “order
parameter.” The non-vanishing of p(r, ¥, t) as |[r — ¥'| > oo represents an “off-diagonal long-range
order” (ODLRO), absent from ordinary non-condensed systems.

Assuming the decomposition (40) to be valid, one can make the explicit identification
&d(r,t) = (P(r,t)>. A non-zero expectation value of the field annihilation operator, {P(r,t)>, is
referred to as a “broken symmetry,” since the Hamiltonian describing the system is invariant under
the transformation P1(r) - Pf(r)e , P(r) > P(r)e'’, whereas the expectation values { P(r, 1)» and
{PH(r,t)> are not. However, as we shall see below, the identification of {P(r,t)> with the order
parameter &(r, t) is not always suitable; with a finite number of condensate atoms, { P(r, t)> may in
fact vanish, yielding the operator decomposition above invalid.

2.8.1. Single mode approximation

The study of the quantum statistical properties of the condensate (at T = 0) can be reduced to
a relatively simple model by using a mode expansion and subsequent truncation to just a single
mode (the “condensate mode”). In particular, one writes the Heisenberg atomic field annihilation
operator as a mode expansion over single-particle states,

Pr,1) = Y dOWplr)e ™" = do(Oo(r)e ™" + P(r,1), (42)

a

where {i,(r)} are a complete orthonormal basis set and {y,} the corresponding eigenvalues. The
first term in the second line of Eq. (42) acts only on the condensate state vector, with y/¢(r) chosen
as a solution of the stationary GP equation (10) (with chemical potential 1o and mean number of
condensate atoms N). The second term, ¥(r, t), accounts for non-condensate atoms. Substituting
this mode expansion into the Hamiltonian

H= de’r lf/*(r)[ — %\72 + Vt,ap(r)}f’(r) + 5U0Jd3r )P ) P(r)P(r), (43)
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and retaining only condensate terms, one arrives at the single-mode effective Hamiltonian

H = hddvodddy + hrababaoao , (44)
where
hz
hag = fd3r lﬁ’é(r)[ - %\72 + V[mp(r)}ﬁo(r), (45)
hi = %Jd% [Wolr)|* . (46)

2.8.2. Quantum state of the condensate

In this section, we summarise the results of Dunningham (1997) (see also Dunningham et al.,
1997), who has considered in detail the quantum state of a condensate which, importantly, is
assumed to possess broken symmetry.® The assumption is also made that the state is prepared
slowly, with damping and pumping rates vanishingly small compared to the trap frequencies and
collision rates. This means that the condensate remains in thermodynamic equilibrium throughout
its preparation. Finally, the atom number distribution is assumed to be sufficiently narrow that the
parameters @&, and x, which of course depend on the atom number, can be regarded as constants
(evaluated at the mean atom number); in practice, this proves in general to be a very good
approximation.

The state of the condensate is then the lowest energy eigenstate of the free energy, defined by

F = (hoo — p)adao + hrabadaod, . (47)

Writing the operator d, as the sum of a coherent amplitude and a fluctuation, i.e., setting
do = o + dd, (with o taken for convenience to be real), choosing u = h@, + 2hxo? (so that the
driving term vanishes), and retaining terms up to quadratic order in dd,, one finds

F= —ho?(o® + 1) + hea* X2, (48)
where we have introduced the quadrature operators,
X =064y + dal, Y = —i(da, — 64}). (49)

This expression suggests that the condensate is in an X-quadrature eigenstate (Lewenstein and
You, 1996b) corresponding to infinite fluctuations in the Y quadrature; this plainly unphysical
result arises because the chemical potential precisely cancels the Y-dependence of the free energy.
One must, therefore, include terms of higher than quadratic order in dd, in order to incorporate at
least the leading Y-dependence in the free energy.

Doing this, and assuming Gaussian statistics, the mean value of the free energy takes the form

<F> = (h0~)0 — ,ll)(az + <5&05&0>) + hK[O(4 + OC2(<5&05&0> + 4<5&65d0> + <5ﬁ05ﬁ0>*)
+ (8000 > {(Sdgdo> + 2{5ab3G0>] . (50)

5> The phase of the condensate may be defined relative to a much larger “reference condensate.” Then, the quantum
properties of this relative phase are effectively those of the smaller condensate of interest.
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Note that with the assumption of Gaussian statistics, cubic terms of the form {(6a{)?dd,> and
{a%(8d,)*) vanish.

To find values of x, o, and (X?) that minimise the free energy for a fixed mean number of atoms,
N, one solves the equations

WYX =0, FHYPa=0, (51)
subject to the constraint

0? + {8dhddey = o + 4((X*) +<(X?)y 1 —2)=N. (52)
Given that o? > 1, one finds

1= hdo + he2e? + 3(X?> + KX "1 -2, (53)

(X% ~ (1/40) 3 — 1/120% ~ (1/40>)'3 . (54)

Hence, the inclusion of higher-order terms leads to a finite width of the X-quadrature distribution.
The actual condensate state predicted by this calculation is a strongly amplitude-squeezed state,

o, ) = D(2)S(r)|0 (55)

where D(o) = exp(ady — o*dy) is the coherent displacement operator and S(r) = exp{(r/2)[(do)* — (ah)*1}
is the squeezing operator (see, e.g., Walls and Milburn, 1994). In Fig. 10, the Wigner function for
this state is compared with a coherent state of the same amplitude and with an X-quadrature
eigenstate.

The number variance for this state is straightforwardly calculated as

(An)* = <(abao)*> — <aboy> =~ 33)"a*, (56)

and corresponds to an amplitude-squeezed state with the minimum possible particle number
Auctuations, i.e., to the state (55) with r ~ (1/6)In(4o?).

In the model outlined above, only the condensate mode is taken into account. Dunningham
(1997) has also considered corrections to the above results due to the inclusion of noncondensate
modes, but finds these to be negligible for physically reasonable situations (e.g., for the experi-
mental conditions of Anderson et al., 1995). More important, however, are corrections to the state
of the condensate produced by a more careful treatment of the condensate-mode cubic terms in the
free energy [i.e., terms of the form (64§)?dd, and 64d(6d,)?*]; that is, by going beyond the Gaussian
approximation. Using perturbation theory, Dunningham (1997) shows that, in terms of Wigner
function contours, the effect of these terms is a “bending” of the amplitude-squeezed state derived
above along the contour of the number state with the same mean number of atoms. This effect is
illustrated in Fig. 11, and the state so-produced is referred to as a number-squeezed state.

2.8.3. Quantum phase diffusion: collapses and revivals of Bose—Einstein condensates

In a study of the macroscopic wave function for relatively small samples of atoms (i.e., a few
thousand atoms), Wright et al. (1996, 1997) find that the wave function actually exhibits the
phenomena of collapses and revivals (see also Lewenstein and You, 1996b; Castin and Dalibard,
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Fig. 10. Wigner function contours (one standard deviation) for a condensate of 2000 atoms: (a) Gaussian-approximation

amplitude-squeezed state. (b) X-quadrature eigenstate (neglecting terms of higher of quadratic order). (c) Coherent state
of same amplitude. From Dunningham (1997).

Fig. 11. Comparison of Wigner function contours for a condensate of 2000 atoms: (a) Second-order perturbation result
(i.e., including effect of cubic terms in the free energy) — number-squeezed state. (b) Amplitude-squeezed state (Gaussian
approximation). (c) Number state |n = 2000). From Dunningham (1997).

1997), i.e. {P(r,t)> (periodically) reduces to zero and then at a later time returns to some finite
amplitude. They consider the state vector of the system to be a wavepacket of states of fixed atom
number n, with expansion coefficients ¢, such that the probability distribution |c,|* is sharply
peaked around a mean number N. Assuming, in particular, a coherent state description (i.e.,
a Poissonian distribution) (Barnett et al., 1996), for which the variance An = N'/2, they find the
period for the revivals to be

Ty = (S/w)(d./Aa)* N3>, (57)
while the collapse time depends on the variance of the initial distribution and is approximated by
tcoll =~ TN/An . (58)

These collapses and revivals follow straightforwardly from the single-mode model, as we now
show. From the Hamiltonian

H = hddyoddao + hradabaod, (59)

the Heisenberg equation of motion for the condensate mode operator follows as

i . A R A A
ao(t) = — %[%:H] = — (Dodo + 2Kdhdodo) » (60)
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for which a solution can be written in the form
do(t) = exp[ — i(Do + 2Kaddo)t]do(0) . (61)

Writing the initial state of the condensate, |i), as a superposition of number states,

> =2 culn), (62)

the expectation value {i|dy(t)]i) is given by

Cldo(liy = Y. ¢ 1cum/nexp{ — ildo + 2x(n — 1]t}

=Y Cho1Cy nexp( — liflt) exp{ —i[2x(n — N)t]}, (63)

where the relationship
w=hdg + 2h(N — 1), (64)

has been used [this expression for u uses the approximation {n*» = N? + (4n)?> ~ N?]. The factor
exp( — iut/h) describes the deterministic motion of the condensate mode in phase space and can be
removed by transforming to a rotating frame of reference, allowing one to write

(ilaot)iy =Y, c:‘,,lcn\/ﬁ {cos[2k(n — N)t] — isin[2k(n — N)t]} . (65)

This expression consists of a weighted sum of trigonometric functions with different frequencies.
With time, these functions alternately “dephase” and “rephase,” giving rise to collapses and
revivals, respectively, in analogy with the behaviour of the Jaynes—Cummings Model of the
interaction of a two-level atom with a single electromagnetic field mode (Eberly et al., 1980). The
period of the revivals follows directly from (65) as T = m/x; evaluating x explicitly yields a result for
T in close agreement with Eq. (57) (a small difference arises from the single-mode approximation).
The collapse time can be derived by considering the spread of frequencies for particle numbers
between n = N + (4n) and n = N — (4n), which yields (4Q) = 2i(4n); from this one estimates
teon = 21/(AQ) = T/(An), as before.

During the collapse, it is clear that <‘f’(r, t)> — 0, and hence the condensate wave function cannot
be identified with the order parameter at that time [note that in the thermodynamic limit, collapses
and revivals become irrelevant and &(r, 1) = (P(r, 1)) is a suitable identification (Wright et al., 1996,
1997)]. ODLRO, and hence BEC, does however persist, as the one-particle reduced density
operator is given by

pi(r ¥, 1) = (P )P, 1) = Nro(r lﬁo(") (66)
which is of the form (41) with ®(r, 1) = N2 (r)

% An interesting comparison can be made with the properties of a two-dimensional Bose gas below the critical
temperature for the so-called Kosterlitz—Thouless transition (to two-dimensional superfluidity) (see, e.g., Griffin et al.,
1995); phase fluctuations preclude the existence of a global order parameter although (short range) algebraic off-diagonal
order occurs.
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Fig. 12. Schematic representation of collapses and revivals of the condensate wave function. As time proceeds, the phase
of the initial state shown in (a) begins to diffuse until, at time t,;, shown in (c), the phase is completely smeared out. After
a further period of time, different components of the state come back into phase with one another, producing a revival, as
in (). Note that the mean phase of the revived state need not be the same as that of the initial state. From Dunningham
(1997).

Fig. 13. Diagram of collapses and revivals of Re{{dy(f))} for a number-squeezed state (solid line), an amplitude-squeezed
state (Gaussian approximation) (dashed line), and a coherent state (dotted line) with the same mean number of atoms,
N = 2000. From Dunningham (1997).

The mechanism of collapse and revival is depicted in a phase-space representation in Fig. 12.
From the expression f.,; >~ T/(4n), it follows that the time taken for collapse is vitally dependent
on the statistics of the condensate; in particular, on the “width” of the initial distribution. This
dependence is illustrated in Fig. 13, where the real part of {d(t)) is plotted as a function of time for
three different initial states: (i) a coherent state, (ii) an amplitude-squeezed state (as derived in the
previous section under the assumption of Gaussian statistics), and (iii) a number-squeezed state (of
the sort shown in Fig. 11). The mean number of atoms is chosen in each case to be N = 2000, and
the calculations assume a condensate of rubidium atoms in an isotropic harmonic trap of frequency
w/2n = 60 Hz.

The timescales of the collapses show clear differences; the more strongly number-squeezed the
state is, the longer its collapse time. The revival times, however, are independent of the degree of
number squeezing and depend only on the interaction parameter, x. For the example shown, the
revival time is approximately 8s, which, significantly, lies within the typical lifetime of the
experimental condensate (10-20s).

A likely scheme for the experimental detection of collapses and revivals would actually
involve a pair of condensates between which a relative phase is first established via a suitable
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preparation/measurement process. After a period of free evolution, the re-measured relative phase
should reveal the effects of wave function collapse or revival. Such a configuration and measure-
ments are discussed in detail in Section 5 in the context of broken gauge symmetry.

Finally, Imamoglu et al. (1997) have recently considered the dependence of the collapse and
revival effect on the nature of the trap potential, the dimensionality of the condensate, and the atom
number fluctuations. In particular, given a trap potential of the form V,,(r) = ar", a dimensional-
ity D of the condensate, and an initial dispersion ¢(N) of the atom number N, they find that ify > D
and the dispersion o(N) oc N'/?, then the collapse time goes to zero in the limit N — oo and revivals
do not occur. This finding evidently sets a fundamental limit on the existence of a well-defined
condensate phase.

2.8.4. Localised fluctuations: a stochastic nonlinear Schrodinger equation

The works described above were concerned with phase diffusion arising from fluctuations in the
number of atoms and the action of the mean-field nonlinearity. Using a generalisation of the
phase-space methods of quantum optics (see, e.g., Gardiner, 1991), Olsen et al. (1997) have derived
a pair of equations’ that incorporate, in addition to the mean-field nonlinearity, stochastic terms
that model localised density and phase fluctuations. These stochastic nonlinear Schrodinger
equations take the form (for one spatial dimension)

0%y(x, 1)

i = LW 1) + NUP3 010 + (U0 (e )30 67)

L OW,(x,t .

0 g(tx ) _ LYx,1) + NUGWi(x, )Pa(x, 1) + (1Uo) 2 na(x, 0)Pa(x, 1), (68)
where ¥, and ¥, are conjugate in the mean, ¥ = — (h*/2m)0?/0x? + V ap(x), and the noise

sources 11 ,(x,t) are real, Gaussian (with zero mean), and delta-correlated in space and time,
ni{x, X', ') = 0;;0(x — x")o(t — ).
Using these equations, Olsen et al. (1997) are able to compute correlation functions such as

(PHx, )P (X, 1)) = Pi(x, P (X, 1) . (69)

More particularly, computing the quantity

fdx Pi(x, 1) ¥ 4(x, 0) (70)

in the stationary limit provides Olsen et al. (1997) with the coherence time of the condensate. For an
initial Poissonian number distribution they find, at least for relatively short times (of the order of
a trap period), a correlation function and decoherence rate very similar to that computed, for
example, by Lewenstein and You (1996b) (who take into account only the fluctuations in the initial
atom number).

7 This pair of equations characterises a so-called positive-P distribution (see Gardiner, 1991), in which the number of
variables is doubled in order to yield a Fokker—Planck equation for the distribution that has a positive-definite diffusion
matrix.
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2.8.5. Tomography of atom fields: reconstruction of the quantum state of a condensate

Given that the true quantum state of a Bose—FEinstein condensate constitutes an open and very
interesting subject, it is natural to consider ways in which one might reconstruct this state via
measurements of some sort. Following the approach of optical homodyne tomography (for
a review and references, see Leonhardt and Paul, 1995), employed for the measurement of the state
of a mode of the electromagnetic field, Bolda et al. (1997) (see also Walser, 1997; Mancini and
Tombesi, 1997) have proposed a scheme for the tomographic reconstruction of the quantum state
of a condensate using an arrangement composed of an atomic beam splitter and an ideal atom
counter.®

Specifically, they assume that a condensate with a fixed number of atoms is first prepared in the
two-mode quantum state

p = Z pa|lpa><lpa|a (71)
where
|lpa> = Zo Cn,alN - n>1®|n>2 . (72)

These modes could, for example, correspond simply to two different hyperfine states. A phase shift
¢ is applied to one of the modes, after which the two modes are recombined at a lossless atomic
beam splitter of transmission cos?(0). As a result of these actions, the density matrix is transformed
t0 Pour» given by

Pout = U(ea (l))TpU(@’ (,ZS) 5 (73)
with
U(0, ) = exp[if(a}d,e + aSae )] (74)

(note that atom interactions are neglected — these would result in a mixing of the modes). Finally,
the number of atoms in one of the output modes of the beamsplitter is counted with a detector. The
probability of m counts at the detector, for the phase shift ¢, is

P,(¢) = {mlU(0, §)'pU(0, p)m> . (75)

Repeating this process for many different phase shifts, a sequence of probability distributions P,(¢)
can be accumulated from which a tomographic reconstruction of the density matrix p is possible
(provided the beamsplitter is not balanced, i.e., 0 # n/4). Bolda et al. (1997) have numerically
simulated such a procedure for a small number of atoms, showing that the technique can
successfully reconstruct a sample state. An example is shown in Fig. 14, where original and
reconstructed density matrix elements are compared for a state corresponding to a projection of
coherent states for modes 1 and 2 onto the subspace with fixed total number N = 49 (Mglmer,
1997). The reconstruction is most accurate, in both magnitude and phase, for elements close to the

8 Note that the scheme of Bolda et al. (1997) does not involve mixing of the condensate with an independent “local
oscillator” field as is the case in optical homodyne tomography.
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Fig. 14. Density matrix elements of (a) the original state and (b) the reconstructed state, in the number-state basis.
Magnitude is height and phase is represented by the shading. From Bolda et al. (1997).

diagonal. Bolda et al. (1997) also show that errors can be estimated before data collection and
minimised by choosing an appropriate beamsplitter transmission if some qualitative features are
known about the initial state.

In practice, such a scheme might be realised as a variation of the output-coupling experiment of
Mewes et al., 1997; two radiofrequency fields coupling to two different (untrapped) hyperfine states
could produce the two-mode state from an initial condensate. A relative phase shift between the
two modes could be produced with a magnetic field, after which a second set of radiofrequency
pulses would recombine the modes in the manner of a beamsplitter.

3. Elementary excitations of a trapped Bose—Einstein condensate

The Bogoliubov theory for the elementary excitations of a dilute Bose gas, described in
Appendix A, was derived for the case of a homogeneous system. However, in the recent experi-
ments demonstrating Bose—Einstein condensation, trapping potentials have played an integral part
and so the earlier theory of the elementary excitations has had to be revised in order to correspond
more directly to the experimental situation. Jin et al. (1996a) at JILA and Mewes et al. (1996b) at
MIT have now observed collective excitations of a confined Bose—Einstein condensate by applying
small time-dependent perturbations to the trapping potential.® For an ideal gas the frequencies of
the excitations induced are simply multiples of the trap frequencies; for an interacting condensate,
however, deviations from these frequencies are expected and were indeed observed in these
experiments.

®Walsworth and You (1997) have also proposed an interesting scheme for the selective generation of excitations in
which auxiliary magnetic fields are tailored (spatially and temporally) to excite the condensate into quasiparticle (excited)
states with the desired symmetry.
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3.1. Collective excitations of a trapped Bose—Einstein condensate (at T = 0)

A large number of theoretical analyses of the elementary excitations of a confined interacting
condensate have recently appeared; these have, in large part, been based on zero-temperature
mean-field theory, in the form of the GP equation. For the case T = 0, we divide these analyses
into two categories based on direct numerical simulation and approximate analytical solutions,
respectively.

3.1.1. Numerical results

3.1.1.1. Linear response regime. We begin with the work of Edwards et al. (1996b) and Ruprecht et
al. (1996), who have applied linear response theory (solving the response equations numerically), as
well as direct numerical integration, to the modified GP equation,

Q1)

R

2
= [ — 2h—m\72 + Viap(r) + NUo| P(r, t)|2:|‘P(r, t) + [ fe(re '

+ f_(r)e' "] P(r, 1) . (76)

Here, f (r) are the spatially dependent amplitudes of the perturbation at the angular frequency w,,.
In the linear-response approach, a trial function of the form

Pr,t) = e "ITy(r) + u(r)e ™" + v(r)e’™] (77)

is substituted into the above equation. Retaining only terms to first-order in u(r), v(r), and f(r), and

equating like powers of e*® yields the linear response equations
[Z — (u+ howy) + 2NUolg(r)*Julr) + NUoWo(r)*v(r) = — f+(rr), (78)
[L — (1 — hoy) + 2NUolg(r)*1o(r) + NUoWr)u(r) = — f-(rir) , (79)
where & = [ — (h?/2m)V? + Vap(r)] and i(r) is determined from
[L + NUolor) T o(r) = wip(r) . (80)

The linear response equations are solved using an expansion in the condensate normal modes,
determined from

[Z — (1 + hoy) + 2NUolor)*us(r) + NUoo(r)*v,(r) = 0, (81)
[Z — (u — hoy) + 2NUolo(r)*1oi(r) + NUo¥(r)us(r) = 0, (82)

which simply define the quasi-particle modes and frequencies of a trapped (non-uniform) conden-
sate in the Bogoliubov approximation (Fetter, 1972). For the case of a homogeneous condensate
[i.e., Viap(r) = O], u(r) and v(r) are plane waves and the quasiparticle excitation frequency w; has the
continuous Bogoliubov spectrum derived in the appendix. For a trapped condensate, however, the
excitations are confined and w; has a discrete spectrum. A transient disturbance [i.e., f+(r)] at
a frequency close to one of the resonances w, will produce a response (in free oscillation after the
disturbance) predominantly at the frequency ;.
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Numerically solving Egs. (80)«82) for the experimental configuration of Jin et al. (1996a),
Edwards et al. (1996b) (see also the work of You et al., 1997) have obtained frequencies for the
elementary excitations in very good agreement with the experimental observations. Further details
are given in the following section in a comparison with approximate analytical analyses of
condensate excitations. We note that other numerically based studies of condensate excitations
have been performed by Singh and Rokhsar (1996), who also used a generalised (i.e., nonuniform
condensate) Bogoliubov approach but employed variationally determined condensate wave func-
tions [for y,(r)], and by Esry (1997), who has followed techniques familiar in atomic-structure
calculations (e.g., Hartree-Fock and random-phase approximations) to obtain the elementary
excitation energies for the experimentally realised condensates.

Also using the linear response approach outlined above, Dodd et al. (1997) have calculated the
excitation spectrum of vortex states of trapped Bose—Einstein condensates. The spectra obtained
can differ significantly from those of the ground state, suggesting a useful technique for the
detection and study of vortex states.

3.1.1.2. Nonlinear regime. To go beyond the linear response regime, Ruprecht et al. (1996) have
solved the time-dependent, driven GP equation (76) by direct numerical integration. With increas-
ing strength of the perturbation, the nonlinear response of the condensate gives rise to the
generation of harmonics of the driving frequency and frequency mixing between the normal modes.
The origin of this nonlinear response is of course the nonlinear mean-field potential; a perturbation
of the overall potential causes a time-dependent change in the wave function, which in turn causes
a change in the nonlinear potential, and so on. The nonlinear phenomena that result are
matter—wave analogs of the corresponding effects arising in conventional nonlinear optics. Further
numerical investigations along these lines have been performed by Smerzi and Fantoni (1997), who
also use the time-dependent GP equation, and by Dalfovo et al. (1997a, 1997b), who use
hydrodynamic equations [derived from the GP equation — see below and Stringari (1996)] in the
Thomas—Fermi approximation. Some experimental results relevant to this regime have been
obtained (Jin et al., 1996a; Mewes et al., 1996b) and Dalfovo et al. (1997b) and Smerzi and Fantoni
(1997) find some agreement with these results (in particular, with the mode frequencies), although
more detailed comparison will evidently be necessary.

3.1.2. Analytical results

To obtain some approximate analytical results for the properties of the elementary excitations of
an inhomogeneous condensate, Stringari (1996) has recently developed a relatively simple ap-
proach based on solutions to the linearised GP equation in the Thomas—Fermi approximation. In
this approach, one begins with equations of motion for the density,

p(r,t) = N|¥(r,1)? (83)
and velocity field,

Y (r, ) V¥(r,t) — VP (r,t)¥(rt)

ot =N imp(r.1)

; (84)
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which are derived from the time-dependent GP equation (9) and take the forms

d
5Pt V() =0, (85)
m(©/dtye + V[ou + 3mv*] =0, (86)

respectively, where

Sp = Vex + (dmh’a/mp — (h2/2m/p)V2\/p — (87)

is the change in chemical potential with respect to its ground state value, yu. Note that these
equations have the general structure of the dynamic equations of superfluids at zero temperature.

The chemical potential u is fixed by the normalisation of the ground state density, po(r), which
can be approximated by the Thomas—Fermi form

po(r) = (m/Amh>a)[ — Viap(r)], (88)

[for u > Viap(r); po(r) = 0 elsewhere], provided the number of atoms in the condensate is suffi-
ciently large that the kinetic energy is negligible compared to the trap potential energy and
interparticle interaction energy. In keeping with this approximation, one also neglects the kinetic
energy pressure terms in Eqgs. (85)-(87). Linearising Egs. (85) and (86), and assuming for
simplicity an isotropic harmonic oscillator potential, V., (r) = w§r*/2m, one can derive the
equation

w*op = —30dV-(R* — r*)Vip, (89)

where dp(r)exp( — iwt) = p(r,t) — po(r), and R? = 2u/mw{ defines the boundary at which the
density vanishes in the Thomas—Fermi model. Note that one can rewrite Eq. (89) in the form
w?6p = — V-[c(r)?Vop], where c(r) = [4nh?apo(r)/m*]'/? is the local speed of sound (Bogoliubov,
1947; Lee et al., 1957).

The solutions to Eq. (89), in the interval 0 < r < R, are given by

op(r) = PP"(r/Rr'Y 1,(0, ¢), (90)

where {n,[,m} are quantum numbers classifying the normal modes of the condensate, with n the
radial quantum number and [ and m the quantum numbers for the total angular momentum and its
axial projection, respectively. The functions P{?"(x) are given by PP®"(x) = 1 + 0,x% 4+ -+ + 0p,x>"
and satisfy the orthogonality condition

1
L dx PP(x)PP" (x)x* "2 =0, (91)

if n#n'. The -coefficients o,, satisfy the recurrence relation o0 = — oo(n — k)
x (21 + 2k + 3 + 2n)/(k + 1)(2] + 2k + 3). Most importantly, the frequencies of the normal modes
are given by the relatively simple form

w(n,l) = we(2n? + 2nl + 3n + /2, 92)

which is to be compared with the result one obtains in the absence of interparticle interactions,
Wno = Wo(2n + ).
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Fig. 15. Schematic of the (a) m =0 and (b) m = 2 modes of excitation of an axially-symmetric trap (as in the JILA
experiment). The solid lines represent the contours of the unperturbed condensate.

Fig. 16. Comparison of JILA excitation frequency data with mean-field theory predictions. From Edwards et al. (1996b).

The above results were also generalised by Stringari to allow for effects of kinetic energy pressure
and for anisotropic trapping potentials (as exist in the experiments). When compared with the
frequencies of the excitation modes observed in the experiments (at very low temperatures, with
essentially pure condensate), the relatively simple analytic expressions derived as above give
remarkably good agreement. For example, in the JILA experiment the m = 0 (breathing) and
m = 2 (rotating ellipsoidal perturbation) modes,'° depicted schematically in Fig. 15, were observed
with frequencies 1.84w, and 1.43w,, respectively, for a condensate of approximately N = 4500
atoms, while the approximate (large-N) analytic results of Stringari, given by (1 = w./®,)

w*(m =0) = 032 + 322 — 1/94* — 162% + 16), 93)
w*(lm| =2) =201, (94)

yield 1.8w, and 1.4w, (note that for a non-interacting condensate a frequency of 2w, would be
observed for both modes). A comparison of theory and experiment is shown in Fig. 16, where the
frequencies of the m = 0 and m = 2 modes are shown as a function of effective interaction strength
(i.e., number of condensate atoms). Theoretical curves are plotted for the mean-field numerical
approach of Edwards et al. (1996b) and for the large-N limit of Stringari.

Alternative, and similarly successful, approaches to the analytical study of excitation frequencies
have also been provided by Fetter (1996), who has employed variational condensate wave functions
in the generalised Bogoliubov approach [see also Fetter and Rokhsar (1998), where the basic

10 Because of the cylindrical symmetry of the trap, the modes can be labelled by the azimuthal angular quantum
number m.
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equivalence between this approach and the hydrodynamic approach outlined above is discussed],
and by Pérez-Garcia et al. (1996, 1997), who also employed a variational technique (using Gaussian
trial wave functions) to analyse the time-dependent GP equation. Kagan et al. (1996) (see also
Kagan et al., 1997a) and Castin and Dum (1996) have used scaling transformations to study the
same equation in the context of collective excitations. This latter approach has been used by
Dalfovo et al. (1997a) (but starting from the hydrodynamic equations) to consider the nonlinear
regime of excitation and to examine such effects as mode coupling and harmonic generation, which
have also been considered by Graham et al. (1998a).

Other analytical works modifying and generalising the approach and results of Stringari have
been furnished by Wu and Griffin (1996), who have quantised the hydrodynamic model, and by
Fliesser et al. (1997) and Ohberg et al. (1997), who have examined in more detail the derivation of
approximate analytical expressions for the excitation energies. Meanwhile, Marinescu and Starace
(1997) have derived approximate analytic results for the excitation spectrum in the weakly
interacting, low-density limit (i.e., for small N < 100), where the Thomas—Fermi approximation
breaks down.

To conclude this section, we note that an additional observation made by Jin et al. (1996a) and
by Mewes et al. (1996b) was of the decay of the collective excitations in real time. In both
experiments, this decay was evident even well below the critical temperature, such that thermal
excitations should not have been significant. Theoretical proposals for the mechanism behind the
decay of collective excitations of a trapped condensate at T ~ 0, and comparisons with experi-
ments, have only recently appeared and we discuss them below.

3.2. Propagation of sound in a Bose—Einstein condensate

The propagation of sound in a magnetically trapped Bose—FEinstein condensate has been studied
experimentally by Andrews et al. (1997a), who used the optical dipole force of a focused off-
resonant laser beam to excite localised density perturbations (i.e., much smaller than the size of the
condensate) in their sodium condensate, which then propagate at the speed of sound. The large
aspect ratio of their anisotropic trap results in elongated cigar-shaped condensates and by the
technique of sequential nondestructive phase-contrast imaging (Andrews et al., 1996) they were
able to directly observe this propagation along the long axis of the condensate (the axial direction).
By adjusting the radial confinement of the condensate, the dependence of the speed of sound on the
density could be studied; it was found to agree quite closely with the simple result

c = /4nh?apy(0)/m? (95)

as derived earlier, but with py(0) the maximum (central) density of the condensate.

As opposed to the earlier studies of collective excitations, the localised perturbations induced by
the laser light correspond to a coherent superposition of many modes. The propagating wave
packets were observed to disperse, as one might expect from either dephasing or damping of
the modes. The actual variation of the density distribution should also come into play in certain
limits and theoretical studies of such effects are underway (Zaremba, 1997; Kavoulakis and
Pethick, 1997).
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3.3. Decay of collective excitations

As illustrated above, good agreement exists between experiments and zero-temperature mean-
field theory for the collective mode spectrum (i.e., excitation frequencies) of a trapped condensate.
However, in addition to the mode frequencies, decay of the collective excitations has also been
observed and measured in the experiments (Mewes et al., 1996b; Jin et al., 1996a,b). Theoretical
studies have suggested several mechanisms that may be contributing to this decay.

3.3.1. Dissipative decay of excitations (T > 0)

For the initial excitation experiments, it is apparent that a finite noncondensate fraction (arising
from a finite temperature) was present. As pointed out by Liu and Schieve (1997), and now
elaborated upon by others (Liu, 1997; Pitacvskii and Stringari, 1997; Giorgini, 1997; Fedichev et al.,
1998) (see also Plimak et al., 1996), interactions between the condensate excitation and the finite
thermal (or normal) fraction are likely to have played a major role in the observed damping of the
excitation. These interactions can involve, for example, the absorption of a quantum of (conden-
sate) collective excitation by a thermal excitation to produce another thermal excitation of higher
energy (so-called “Landau” damping).

Damping of collective excitations due to such interactions has been studied many years ago,
although only for the case of homogeneous condensates; for long wavelength excitations (small k),
damping rates for low (Hohenberg and Martin, 1965; Popov, 1972) and intermediate (Szépfalusy
and Kondor, 1974) temperatures were derived in the forms

3hk? N 3n’k(kg T)*

4 (T < T*) >
)= 640mmp, 40mp,c (96)

(kB?ak (T < T <T,),
where T* = (drnah?®p,)/(mkg), with p, the density and ¢ = [4rnah?po/m*]'/? the speed of sound in the
condensate. Using these simple expressions, and a modified version to cover the regime around T,
Liu and Schieve (1997) and Liu (1997) obtain quite good agreement with both the JILA (Jin et al.,
1996a,b) and MIT (Mewes et al., 1996b) experiments. Fedichev et al. (1998) have extended the
theory to include the effect of the trapping potential (see also Giorgini, 1997) and also obtain
reasonable agreement with experiment. Their results do, in addition, suggest that boundary effects
should become important in certain regimes of excitation.

3.3.2. Nondissipative collapse of excitations (T = 0)

While it would appear that finite temperature effects have played the major role in the decay of
the collective excitations observed in experiments thusfar, it is reasonable to assume that the same
excitation experiments will be possible at effectively zero temperature (i.e., with pure condensates).
Given such conditions, and assuming that the system can be regarded as being closed, a truly
dissipative mechanism for decay should no longer exist.

However, following in the spirit of the work of Wright et al. (1996) on collapses and revivals
of the condensate wave function (described in Section 2.8.3), Kuklov et al. (1997) have shown
that particle number fluctuations in a finite condensate can in principle give rise to collapses
and revivals of collective excitations. In particular, collapse, which mimics decay, can occur as
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a result of the dependence of the frequency of the collective mode on the particle number, which
leads to an inhomogeneous broadening. Kuklov et al. (1997) use a model truncated to two modes,
with the mode representing the condensate taken to be in a number eigenstate. It is then assumed
that a phase relation between the condensate and an excited state is set up by the modulation of the
trap, accompanied by a particle number uncertainty in the condensate proportional to the excited
state amplitude.

Pitaevskii (1997) (see also Dalfovo et al., 1997a) has also developed a phenomenological model of
collapse and revival of a collective mode focusing on fluctuations in the number of quanta of oscillation
of the mode (rather than atom number fluctuations). An effective nonlinearity of the excited mode
due to coupling to other modes gives rise to a dispersion of the collective mode frequency within
the linear superposition of number states making up, for example, an initial coherent state.*!

Using a full microscopic approach, Graham et al. (1998a) have analysed and compared both of
the above mechanisms; for a spherically-symmetric trap of frequency w, they find that the collapse
time scales as

Woteon ~ N?'*(a/do)**/(AN) ©7)
when the collapse mechanism is particle number uncertainty, and
Woteon ~ N73(a/do)*?[(4n,) (98)

when the collapse mechanism is excitation number uncertainty. Here, dy = (h/mw,)'’? and (4n,) is
the uncertainty in the number of quanta of oscillation in the excited mode y; for an initial coherent
excited state (4n,) = \/ E,/hw,. Numerical estimates of the collapse times using parameters appro-
priate to the experiments generally give values larger than the experimentally observed damping
times (Pitaevskii, 1997; Graham et al., 1998a) and it would seem that the finite temperature effects
described in the previous section have been dominant in the experiments performed thusfar.
However, the collapse times are sufficiently short (for example, compared to the condensate
lifetime) that they should be observable, given that pure (T = 0) condensates can be realised. The
scalings of the collapse times also suggest that it may be possible to distinguish one mechanism as
the dominant cause of collapse.

It should also be noted that a significant enhancement of the nonlinear effects occurs if there
exists a mode at or close to a resonance with the second harmonic (or higher harmonics) of the
excited mode (Graham et al, 1998a; Dalfovo et al, 1997a; Ruprecht et al., 1996). For such
a resonance, the transfer of energy from the fundamental mode to the harmonic looks similar, for
short times, to a collapse of the fundamental mode.

3.4. Collective excitations of trapped double condensates

As noted in Section 2.7, the dynamics of double condensates are now of considerable interest,
given the recent experiment of Myatt et al. (1997). Following on from the analytical work of
Stringari presented above, Graham and Walls (1998) have analysed collective excitations of binary

11 A careful numerical study by Smerzi and Fantoni (1997) of the Gross—Pitaevskii equation with a time-dependent
potential, modelling the experiment of Jin et al. (1996a), has also explicitly demonstrated a relaxation mechanism due to
coupling between different modes of oscillation. Kagan et al. (1997a) have also pointed to chaotic evolution arising from
such coupling as a mechanism for relaxation.
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mixtures of Bose—FEinstein condensates (with positive scattering lengths and interaction
parameters satisfying U; > 0, U, > 0,and U, U, — U?, > 0) via linearisation of the coupled time-
dependent GP equations [ Goldstein and Meystre (1997) have used a similar approach to study
excitations in a homogeneous two-component condensate].

In general, the spectrum of collective excitations of the total system depends on the details of the
geometry of the interphase boundaries (Ho and Shenoy, 1996), and solutions of the coupled
equations can only be obtained numerically. However, for the special case of a pure binary-phase
condensate (i.e., no interphase boundaries exist) in a spherically symmetric trap confining the two
condensates at frequencies w; and w,,'? the mode spectrum can be determined analytically in the
long-wavelength and Thomas—Fermi approximations. Its dependence on the radial and angular
momentum quantum numbers n and [ is the same as in the case of a single-component mixture,

W4 =wbi\/2n2 +2nl+3n+1, (99)
but the prefactor wy+ is no longer simply the trap frequency; instead, it is given by
Wiy = m{aﬁaz(al —ay,) + wlaa, —agy) + ﬁ} , (100)
142 12
with
P = [wias(ay + ay,) — wla(ay + a;,)]* + 4atsr(a,wf — a,w3)(a,03 — a,m1). (101)

For a,, = 0, Eq. (100) reduces to the result of Section 3.1.2, ¢+ = wi,, for each particle species.
For a;, > 0 the coupling between the two components in the binary phase produces two branches
with frequencies differing from the single-component results. Importantly, and in contrast to the
single component case, these frequencies are dependent on the microscopic properties of the
condensates through the various scattering lengths.

Using a variational technique with Gaussian wave functions, Busch et al. (1997) have also
demonstrated this feature for the low energy excitation frequencies of the collective motion. They
also allow for a displacement of the trap centers for the two condensates; a finite displacement gives
rise to a lifting of the degeneracies in certain modes as the isotropy of the system is broken.

3.5. Finite temperature excitations

Extensions of the mean-field theory of Section 2.2 to take into account the non-condensate
fraction [represented by ¥(r,t)] arising due to a finite temperature or to interparticle interactions
have been formulated and modify the treatment of elementary excitations outlined in the first part
of the current section. In particular, using the decomposition (7), Griffin (1996) has derived coupled
equations for the stationary condensate wave function (r) and the (non-condensate) operator
P(r,t) in what is known as the Hartree-Fock-Bogoliubov approximation [see also Proukakis and
Burnett (1996), and references therein; a discussion of the validity of the approach outlined below
has also be given by these authors (Proukakis and Burnett, 1997; Proukakis et al., 1997)]. The first

12From the work of Ho and Shenoy (1996), the binary phase is possible where p,/u; = (w,/w,)?, with
max(U,/U,,U;,/Uy) > (w,/@1)? > min(U,/U,,U;,/U,). To arrange this evidently requires that the ratios of the
scattering lengths be known and that the ratios of particle numbers can be chosen appropriately.
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of these equations takes the form

h? . -
[ - 2—\72 + Vieaplr )}#(r) + Uoln(r) + 2a(r)1p(r) + Uonir W (r) = pp(r) , (102)
where n(!:) =~|¢(r)|2 is the equilibrium condensate density and #i(r) = (P'(r)¥P(r)> and
m(r) = <Y/(r)'1~’(r)> are the non-condensate density and “anomalous” density, respectively. The
equation for ¥(r,t) is given by

0P(r,t h? -
LU [ Vi) — M}P(r, 0

ih
! 2m

+ 2Uo[n(r) + a(r)]P(r,¢) + Uoly(r)? + n(r)]Pi(r,1) . (103)

The normalisation is chosen such that [d* n(r) = N and [d*r7i(r) = N, where N and N are the number
of condensate and noncondensate atoms, respectively (the total number of atoms, N, = N + N).

These equations have served as the starting point for recent studies of finite temperature effects
by Giorgini et al. (1996, 1997a,b) and Hutchinson et al. (1997),!3 looking, e.g., at the condensate
fraction as a function of temperature and at shifts in the critical temperature for condensation itself
(from the ideal gas result in the thermodynamic limit) caused by a finite number of atoms and by
interparticle interactions. In particular, using a semiclassical WK B approximation for the energies
of the elementary excitations, Giorgini et al. (1996) find the following result for the shift in the
critical temperature,

T,
0 —0. 73<an>le/3 1 33< > s (104)
duo

T0 N

with @ = (ww,w,)"3, v, = (0, + 0, + ©.)/3, duo = (h/m®»)"'?, and T? ~ 0.94(hd>/kg)N{>. The
first term in Eq. (104) is due to the finite number of particles in the trap (see, e.g., Grossmann and
Holthaus, 1995a; Ketterle and van Druten, 1996b), while the second term is the result of interpar-
ticle interactions (i.e., the “mean-field” shift). This theoretical result for the shift in critical
temperature appears to be in reasonable agreement with recent experiments (Ensher et al., 1996;
Mewes et al., 1996a; Minguzzi et al., 1997).14

An alternative approach, outlined by Griffin (1996), and used by Hutchinson et al. (1997) and by
Dodd et al. (1998), is to employ the Bogoliubov transformation,

Plr,1) =Y, [us(r)de™ " — vir)ale ], (105)
A

which leads to the eigenvalue equations,
(L — (u+ hoy) + 2Uo[n(r) + i(r)Tjuyr) — Uol(r)? + mi(r)Ju,(r) = 0

(106)
{& — (u— hw;) + 2Uo[n(r) + ir) T our) — Ul (r)* + m*(r)Ju,(r) = 0,

13 Actually, in both of these works, the anomalous density #i(r) is neglected in the so-called “Popov approximation”
(Popov, 1987).

14 Note that Krauth (1996) has also demonstrated the same basic trends in the critical temperature via detailed Monte
Carlo calculations of a collection of bosons in a harmonic trap.
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for the quasiparticle amplitudes u,(r) and v,(r), where & =[ — (h*/2m)V? + V 1p(r)]. From
Eq. (105), expressions for 7i(r) and m(r) in terms of self-consistent solutions of the eigenvalue
equations follow in the forms

ir) = Y {Luxe)l? + [va(r)*INo(e;) + [var)*} (107)

ir) = — ) uy(r)oi(r)[2No(w;) + 17, (108)

where No(w,) is the Bose distribution for the quasiparticle excitations,

1

Nolw?) = Slio ke T) — 1°

(109)

Note that the last term in Eq. (107) represents the noncondensate density in the limit T — 0; i.e.,
a finite noncondensate fraction exists even at T = 0 due to interparticle interactions.

By solving the set of equations (102) and (106) in an iterative manner [and using Egs. (107) and
(108)], self-consistent solutions for the various quantities can be obtained. Hutchinson et al. (1997)
have used this approach (in the Popov approximation) to examine the temperature dependence of
the condensate and noncondensate density profiles of a gas of rubidium atoms (N, ~ 2000) in
a spherically symmetric harmonic trap. [ Javanainen (1996a) has also computed the noncondensate
fraction using Bogoliubov theory and numerical calculations, but only at T = 0.] At finite
temperatures (approaching the critical temperature), they find a two-component structure consisting
of a dense core of condensed atoms on top of a diffuse cloud of excited atoms with an extended tail.

For a sample of atoms with N, = 2000, they also considered the variation of the lowest
excitation frequencies with temperature, finding a relatively weak temperature dependence until
the temperature approaches T, where the lowest excitation frequencies approach those of a non-
interacting gas. Dodd et al. (1998) have since followed the same numerical approach (also in the
Popov approximation) to compare the theory with recent experiments, performed by Jin et al.
(1997), probing the temperature dependence of the elementary excitation frequencies. In these
experiments, with N,, ~ 6000, the frequencies of the collective m = 0 and m = 2 condensate modes
were in fact found to exhibit strong (and different, i.e., opposite) dependencies on temperature
(although above the critical temperature for BEC they become degenerate at twice the trap
frequency, as for a noninteracting cloud). The theoretical results of Dodd et al. (1998) are in good
agreement with the experimental results for T < 0.65T, but fail at higher temperatures. Interest-
ingly, the Hartree—Fock—Bogoliubov model in the Popov approximation gives results for a finite
temperature condensate that are essentially the same as those of a zero-temperature condensate with
the same number of condensate atoms. The model treats the condensate excitations as taking place in
a static thermal cloud and therefore neglects the possibility of coupling between thermal and
condensate modes of oscillation.!> This, as well as the neglect of the anomalous, or pair, terms [e.g.,
m(r)] in the Popov approximation [which may become important near the transition temperature
— see Proukakis et al. (1997) and Bijlsma and Stoof (1997)], could be contributing to the
discrepancy between theory and experiment.

15 A more general theory allowing for such coupling has been outlined by Proukakis and Burnett (1996).
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4. Light scattering from a Bose—Einstein condensate

Analysing the properties of light scattered from a sample of cold bosonic atoms can provide
a means of detecting effects associated with the formation of a Bose—FEinstein condensate. For
example, a photon-scattering event for which the photon recoil takes an atom into an already-
occupied momentum state will be enhanced in a Bose gas and, as we shall see, can lead to
qualitatively new features in the spectrum of scattered light.

Studies of light scattering from degenerate atomic gases were initiated by Svistunov and
Shlyapnikov (1990) and by Politzer (1991), who considered scattering of weak light from a low-
temperature (T ~ 0) condensate formed from a spatially homogeneous gas. For this configuration,
band gaps exist in the condensate excitation spectrum giving rise to strong reflection of resonant
light from the (sharp) boundary of the condensate. In the context of experiments, however, this
situation is inappropriate as it corresponds formerly to the case of an infinitely large trap; in present
BEC experiments with atomic gases, the size (d,) of the ground state of the trap is of the order of
tens of microns and the trap boundaries are not sharp.

A number of papers have since appeared dealing with light scattering from condensates confined
in traps of a more realistic size and shape. A review of much of this work has been given by
Lewenstein and You (1996a). As with that review, we summarise the research done thusfar by
dividing the various studies into two primary categories: coherent and incoherent light scattering.
The reason for this categorisation, as we shall see, is that coherent scattering probes the density of
the system, whereas incoherent scattering probes density—density correlations (i.e., density fluctu-
ations) of the system.

On the experimental side, Andrews et al. (1996) have already used dispersive light scattering to
spatially image a trapped condensate. A systematic study of the properties of light scattered from
a condensate should be possible in the near future.

4.1. Coherent light scattering

4.1.1. Spontaneous emission linewidth

The spontaneous emission linewidth of a Bose-condensed gas is obviously a quantity of basic
interest. Javanainen (1994) considered this for the case of an optically thin condensate, with size
dy of the order of 4 (the optical wavelength), weakly excited by resonant continuous-wave light. In
a simplified approach, he replaced the atomic field by a single harmonic oscillator describing
collective excitations of the condensate. For this model, light scattering is predicted to occur
predominantly in the forward direction and the scattering cross section (i.e., the number of scattered
photons as a function of the laser frequency) has a Lorentzian line shape with a width, I,
proportional to the collective spontaneous emission rate, i.c.,

I ~ Ny/(kido)* , (110)

where v is the single-atom free-space spontaneous emission linewidth, N is the number of atoms in
the condensate, and k; = 2n/A. Hence, for a macroscopic condensate (N large) the optical reson-
ance is extremely broad as a result of Bose-enhanced spontaneous emission into the condensate,
which, due to momentum conservation, is also responsible for the predominantly forward scatter-
ing [into a solid angle of size ~ 1/(k.d,) about the direction of the incident photons].
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However, in a system of more significant optical thickness, as is most likely to be the case for
a trap of size dy ~ (1 — 20)4, the approach of Javanainen (1994) is less adequate, as shown by You
et al. (1996, 1994). In particular, propagation effects start to play a role. You et al. showed that,
although the large scale width of the spectrum remains the same as found by Javanainen, the
spectrum becomes non-Lorentzian and exhibits a narrow peak at resonance with a width, of order
7, determined by single-atom dissipative and dephasing processes such as spontaneous emission to
non-condensed states.

The approach of You et al. is based on a linearisation of the Heisenberg equations of motion for
the radiation and atomic field operators, valid for the case in which the light scattering only weakly
perturbs the equilibrium state of the condensate. The atomic amplitudes are linearised about the
ground state and, on eliminating the atomic excited-state operators and averaging over the
fluctuations of the radiation field and the atomic distribution in a decorrelation approximation,'®
they derive a scattering equation for the averaged photonic operator in the form

)y = — ekl )y — Y, |k f A — 5k K ) (1) (111)
g 0

The so-called self-energy kernel, #°(t — t'; k, u, k', it'), describes the amplitude for the absorption of
a photon with momentum &’ at time ¢', with the associated creation of a wave packet in the excited
state trap potential, followed by free evolution of the wave packet until the time ¢* at which it
returns to the ground state emitting a photon with momentum k. The free evolution consists of
quantum diffusion and drift (due to the momentum of the absorbed photon) of the wavepacket;
sufficient drift and diffusion away from the center of the trap reduces the quantum statistical
enhancement of the spontaneous emission rate into the condensate, hence reducing the probability
of returning to the condensate upon emission. This, together with spontaneous emission out of the
condensate (at rate y), causes the kernel to decay on a characteristic timescale we denote as 1/y’. For
the case in which multiple scattering is of importance, the cumulative effect of this broadening and
drift of the excited atomic state wave packet is to produce a narrow feature in the spectrum near
resonance, with a characteristic width 7".
Finally, as shown by You et al. (1996), an approximate form for the kernel is

H (kK1) oo plk — K)expl — i(wo + ki/2M)t — 7], (112)

where

plk) = fd3rp(r)e_i"” (113)

is the form factor, or Fourier transform of the equilibrium density profile. This demonstrates
explicitly that coherent scattering [which is proportional to {ay,(t)>] probes the density profile of
the trapped atoms. Hence, quantum statistical effects only manifest themselves in coherent
scattering to the extent that the density profiles for bosons and fermions are different at low
temperatures and that the density profile changes in the condensation process.

16 1n fact, these approximations mean that the approach of You et al. (1996) is still limited to a regime of relatively low
optical thickness.
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4.1.2. Scattering of short laser pulses

Lewenstein and You (1993) and You et al. (1995) investigated the scattering of short but intense
laser pulses from a trapped sample of cold bosonic atoms with dy ~ 104. They found that above the
critical temperature, T, for BEC, coherent scattering is weak and restricted to a very narrow cone
in the forward direction (due to phase matching conditions), while below T. the number of
scattered photons increases dramatically and coherent scattering occurs into a solid angle in the
forward direction determined by the size of the condensate.

4.2. Incoherent light scattering

As shown above, coherent scattering provides a probe of the density of the system through the
first-order correlation function of the scattered field. In contrast, incoherent scattering, which deals
with higher-order correlation functions of the scattered field, offers a probe of higher-order
correlations of the atomic density and therefore of explicit quantum statistical effects.

4.2.1. Far-off-resonant light scattering

In the limit of a large detuning of the incident light from the atomic resonance (at the least,
comparable to the collective linewidth, I', of the condensate), multiple scattering of photons
becomes increasingly improbable (i.e.,, the sample is optically thin). If, also, the size of the
condensate is much larger than the wavelength of light, dipole shifts due to neighbouring atoms
may be ignored compared to the collective linewidth, I', and the equations for light and for matter
may be decoupled. Eliminating the atomic excited state operators from the dynamics, expressions
can again be derived for the scattered light field in terms of atomic ground state operators.
Javanainen (1995) and Javanainen and Ruostekoski (1995) have done this for the case of a homo-
geneous, noninteracting Bose gas; given that the motion of the atoms during the excited state
lifetime is negligible, the scattered field is derived as (assuming detection at a large distance r in the
direction n)

D2wE[(n x ESY) x n]

ESD(r, 1) =
57An 1) dneohre?d

Jd%’ e 10T P )P () 1)

D*¢[(nx E&) xn] ,
N dneohre?d Ak 1), (114)

where p(4k,t) is called the density fluctuation operator. In these formulae, ES <" represents the

incoming field of frequency w¢, § = wc — Wy is the detuning of the field from the atomic resonance,
9 is the atomic dipole matrix element, and (4k) = kn — k¢ denotes the change of the wave vector of
light upon scattering.

The spectrum of the scattered light, calculated as the Fourier transform with respect to time of
the two-time correlation function of the scattered field, follows as

Gij(Ak’ ACO, r) = \[dt ei(Aw)t<[E(S_ )(l’, O)]l[E(S+ )(l’, t)]j>

= K,(r)S(4k, Aw) (115)
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where K;{r) describes the scattered dipole radiation of one atom and S(4k, Aw) is the dynamic
structure function, given by (see, e.g., Forster, 1975)

1 i(Adw)t / A At

S(4k, Aw) = ek dt e p(Ak, 0)p"(Ak, 1))
1 _ A
=7 Y, e PHIpARI Iy Po(hAw + Ey — Ey), (116)

By p
with 4w = @ — o denoting the change in frequency of the emitted photon.!” In the formula (116),
luy and E, are energy eigenstates and eigenvalues of the unperturbed system respectively. The
expression (116) amounts to a transition probability calculated in perturbation theory, involving
a summation over all possible final states and thermally averaged over initial states. The detailed
balance condition S(4k, Aw) = e~ #"*S(Ak, — Aw) at finite temperature will automatically give rise
to a symmetrically placed two-peak structure if S(4k, Aw) develops a sufficiently sharp peak at
a non-zero frequency. The density fluctuation operator p(4k), for Ak # 0, can be expressed in terms
of creation and annihilation operators as

p(Ak) = A\ /fN(dAk + CAl'LAk) + Z d;fl\AkJrq . (117)
q#+0,— 4k

Of course, for the case of a weakly interacting gas, these operators create or destroy Bogoliubov
quasiparticles.

4.2.1.1. Degenerate ideal gas. We consider first the case of non-interacting bosons in free space.
The scattering function is found to be

S(Ak, Aw) :%N(l + {na)[0(Aw + wu) + e Preus(Aw — w)] + Sp(dk, Aw) , (118)

where f'is the fraction of atoms in the condensate and Sy(4k, Aw) denotes a background given by

Sy(dk, do) =2 T (14 L+ e ae)

w0 ak
X e PO d(Aw + w, — 0,4 u1) (119)
with {n,> = [exp(Bhw,) — 1]~ ' and
Wy = K AR 2m . (120)

Fig. 17 displays the spectrum of light scattered from the Bose gas with various degrees of
degeneracy, as determined by the fugacity z ( < 1);'® a Maxwell-Boltzmann gas corresponds to the

17 The proportionality of the spectrum to the density correlation function illustrates the fact that highly detuned light
couples to the local number density of the sample.

18 The fugacity z is determined from the equation p/j = gs/2(z), where p is the density, /p = (2nh?/MkgT)'* and
93/2(2) = Ztic: 1Zk/k3/2-
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S(w) [arbitrary units]

wlwy,

Fig. 17. Spectra of light scattered from a Bose gas with various degrees of degeneracy. Starting from the bottom curve,
the fugacity and condensate fraction are (z,f) = (0.1,0), (0.9,0), (1,0), and (1,0.3). Vertical offsets have been added for ease
of comparison and all of the spectra have been convoluted with a Gaussian with root-mean-square width 0.1wp. From
Javanainen (1995).

limit z — 0, whereas Bose—Einstein statistics prevail where z = 1. Frequency is measured in units of
the effective Doppler width, wp = (kgT|4k|*/M)*'2, for a temperature and scattering angle such
that the effective recoil frequency wg = h|4k|*/2M = wp. As z is increased, the spectrum evolves
from a Gaussian (reflecting the velocity distribution) to a structure with two distinct peaks at
Aw = + wr. With a condensate present (f= 0.3 in the figure) the peak at 4w = + wg is most
prevalent; this peak reflects the fact that scattering of an atom to an already-occupied state is
favored by Bose—Einstein statistics and hence provides an explicit qualitative sign of boson
degeneracy effects.

4.2.1.2. Weakly interacting gas. Graham and Walls (1996a) extended the analysis above to take
into account weak interactions between atoms (treatable via the Bogoliubov approximation). The
scattering function is modified to

SN — o)

S(Ak, Aw) = o)

————(1 + (g d(Aw + wu) + e Prud(Aw — wy)] + Su(Ak, Aw),
(121)
with the background now given by

Z 1+ <nq>)(1 + Ny )Nty + OCq+Ak)2

Sy(4k, Aw) =
’ q#0,— Ak 2h(1 — O‘c?)(l - 0‘5+Ak)
1+ a0 2 hen.
L) o oo

+ MAw + @, + 0y 1) + €~ PHOF P W5(Aw — w, — quk)} , (122)
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where  (nuy = [exp(fhey) — 1171 o = 1+ n*|Ak1> — n|AKI2 + n?|AK*) "2, n = Brpaf) ™72,
and now (see Appendix A)

@ = (HAK|/2m)(| AK|> + 167paf)t/? . (123)

Since the interactions are assumed to produce only a correction, the scattering spectrum is not
changed qualitatively. However, for |4k|* > 16mnaf, Eq. (121) predicts a frequency shift
W — wr = (4h/m)mnaf which is constant, i.e., given sufficient resolution, never becomes negligible.
Therefore, given sufficient resolution in frequency, the important quantity naf can be determined
from the position of the sharp line. For T — 0 the double peak structure, required by detailed
balance for finite T, disappears. Then f— 1 — (8/3)(na®/r)!/? and the spectrum (121) has a single
sharp line at 4w = — wy, arising from the excitation of single quasiparticles, and a broad
background from the excitation of pairs of quasiparticles.

4.2.1.3. Weakly interacting gas in a harmonic trap. Far off-resonant light scattering from a weakly
interacting condensate in a harmonic trap has been considered by Csordas et al. (1996), extending
further still the work described above. Defining quasiparticle annihilation and creation operators,
O O, Via the space-dependent Bogoliubov transformation (see, e.g., Fetter, 1996)

Yir) =3 [ttlr ) — vilr)20] + olr), (124)

where m denotes a complete set of single quasiparticle quantum numbers and ¢o(r) is the
condensate wave function, Csordas et al. (1996) derive the scattering function as (see also Fetter and
Rokhsar, 1997)

S(Ak, Aw) = So(Ak)S(hAw)

+ 3 S AR)[S(hAw + E,) + e PEd(hAw — E,)] + Su(4k, Aw), (125)
with
2
So(Ak) = Ud%e“ﬂ“"{w + 3 Dt + [0 + |vm|2]} : (126)
Su(Ak) = (1 + n,) stre_“"")"qbaum —u| (127)

where the restricted sum Y omits the ground state and n,, = (eff» — 1)~ 1,

The first term in Eq. (125) describes elastic (coherent) scattering, which will be strong in the
forward direction (i.e., for small |4k|), but will fall off sharply with increasing angle (i.e., for
increasing |4k|). The second term is of most interest, describing scattering out of, or, at finite
temperature, into the condensate with the creation or annihilation of a single quasiparticle,
respectively. Finally, Sy(4k, Aw) describes a broad background associated with pairs of quasi-
particles.

Csordas et al. (1996) derive an approximate analytical expression for the second term in
Eq. (125), assuming that only scattering due to transitions between the condensate and highly
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excited states of the system is of importance (i.e., such that the momentum transfer in the scattering
process is of the order of the photon momentum). Their results predict excitation of a band of levels
with energies in the range h?|4k|?/2M < E < h*|4k|*/2M + p and with angular momentum quan-
tum numbers also in a restricted range. The repulsive interaction energy obviously provides the
extra excitation energy beyond the recoil energy, while the transfer of angular momentum is limited
by the finite size of the condensate.

4.2.2. Refractive index

Explicit signatures of quantum statistical effects have also been shown by Morice et al. (1995) to
appear in the refractive index of a dilute Bose gas. Considering the propagation of a quasiresonant
probe light field of frequency w; and initial form E, é.e* through such a sample (i.e., a Bose gas
filling the half-space z > 0, with constant density p,), they derive a dispersion relation to order two
in the density, po, in the form

K, (@ hepy 1

= 12
k? S+iy 1+C’ (128)
where 0 is the atom—laser detuning, & is the dipole moment for the atomic transition, and
3 —ikz *
C= lé_yjd ro(r)e v G-e,
—ikz 3
. [G/(io — ] —[G/(i6 —y)] } .
+ d3r [1 + e { é., 129
with G(r) a 3 x 3 matrix given by
G;j(r) = (2?/heo){[0/0r;0/0r; — 6;;V e /Amr — 6;;0(r)} (130)

Quantum statistical corrections to the result for a dilute perfect classical gas arise through the
two-body correlation function ¢(r), which is defined via

pa(ry,rs) = <‘Z;("1)lﬁg(”z)'pg(”z)‘pg(”l» = p3[1 + o(r; —r’)] (131)

and depends on the bosonic nature of the atoms. These corrections are most pronounced around
the critical point for BEC, as shown in Fig. 18, where the real and imaginary parts of the refractive
index (n' + in” = k/ky) are plotted as a function of temperature for a fixed density and detuning 9.

In their derivation, Morice et al. (1995) treat the center-of-mass motion of the atoms classically,
enabling them to decouple the internal and external atomic dynamics. The dilute-gas assumption
means that, with regards to multiple scattering of photons by the gas, they are able to restrict their
attention to photon scattering processes by isolated atoms or between pairs of close atoms,
and three-body correlations are neglected through the approximation p;(ry,rs,r3)/p2(r,r3)

>~ p,(ry,72)/p1(ry).

Ruostekoski and Javanainen (1997a) have presented a fully quantum mechanical analysis of the
response of a possibly dense gas to a weak light field; this generalises and expands upon the work of
Morice et al. (1995). Their main result is an infinite hierarchy of equations of motion for atomic
correlation functions that involve the atomic polarisation at one point in space and the density at
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Fig. 18. Real part n’ (a) and imaginary part n” (b) of the refractive index as a function of the temperature for bosons and
for classical particles, with 6 = 2y and p, = ki/16m>. The solid (dashed) lines give the results with all of the (the first two)
terms of (Eq. (129)) included. The threshold for BEC is shown by the vertical dashed line. From Morice et al. (1995).

{0,1,... } points in space; the first two equations in the hierarchy correspond to the results of
Morice et al. (1995). Noting that in the limit of low light intensity the atoms in fact behave like
classical charged harmonic oscillators, and that an appropriate spatial distribution of such
oscillators could share the correlation function hierarchy they derive, Ruostekoski and Javanainen
(1997a) (see also Ruostekoski and Javanainen, 1997b) suggest that numerical simulation might
offer a means of solving the hierarchy and examining more general regimes of the Bose gas.

4.3. Manipulation of the scattering length via light scattering

The very interesting possibility of manipulating the scattering length a of a trapped condensate
using near-resonant light has been developed recently by Fedichev et al. (1996) (see also Bohn and
Julienne, 1997). The idea is based upon inducing virtual transitions of a pair of interacting
ground-state atoms to a bound electronically excited (p) level of the associated molecule. The
resonant dipole interaction between atoms in the excited state is much stronger than in the ground
state, meaning that the scattering amplitude can be significantly altered. In particular, for "Li they
find that under suitable conditions the sign of the effective scattering length can in fact be reversed,
producing repulsive rather than attractive interactions. This suggests the possibility of enhancing
the stability of such a condensate and of a novel means of setting a condensate into an excited state
of motion (via sudden changes in the scattering length). Alternatively, for other atomic species, the

sign of the scattering length may be changed from positive to negative, inducing a sudden collapse
of the condensate (Kagan et al., 1997b).

4.4. Nonlinear atom optics

The use of light waves to manipulate the matter wave properties of ultracold degenerate atomic
samples has also been developed quite extensively in the context of so-called nonlinear atom optics.
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In particular, Lenz et al. (1993, 1994) and Zhang et al. (Zhang, 1993; Zhang and Walls, 1994; Zhang
et al., 1994) have shown that resonant dipole-dipole interactions (i.e., the exchange of photons)
between excited and ground state atoms from an ultracold source, in which quantum statistical
effects are important, can result in an effective manybody interaction in the form of a Kerr-type
nonlinearity for atomic matter waves. For diffraction of an ultracold atomic beam by a standing-
wave laser field this can lead, for example, to self-phase and cross-phase modulation of diffracted
atomic waves. In certain configurations it is also possible for a laser beam to act as a nonlinear
atomic waveguide which supports atomic solitons.

4.5. Interaction with quantised cavity radiation fields

An interesting progression from the study of condensates driven with laser light fields is to
consider their interaction with few-photon (or possibly vacuum) radiation fields in a cavity QED
configuration,’® e.g., a trapped condensate interacting with a single quantised field mode of
a microwave cavity. Marzlin and Audretsch (1997) have considered just such a situation in which
the field is resonant with an internal atomic transition |g)» < |e) (they neglect spontaneous emission
and mechanical effects of the interaction). With all of the atoms initially in the excited internal state
le> and the field mode in the vacuum state, they find that the number of atoms in the excited state
can exhibit periodic dips or fractional collapses and revivals as time progresses for the case that the
initial external atomic state is a number state or a coherent state, respectively.

5. Broken gauge symmetry in pairs of condensates
5.1. Interference of two Bose—Einstein condensates and measurement-induced phase

The standard approach to a Bose—Einstein condensate assumes that it exhibits a well-defined
amplitude, which unavoidably introduces the condensate phase. Is this phase just a formal
construct, not relevant to any real measurement, or can one actually observe something in an
experiment? Since one needs a phase reference to observe a phase, two options are available for
investigation of the above question. One could compare the condensate phase to itself at a different
time, thereby examining the condensate phase dynamics, or one could compare the phases of two
distinct condensates. This second option has been studied, with very interesting results, by
a number of groups (Javanainen and Yoo, 1996; Naraschewski et al., 1996; Cirac et al., 1996; Wallis
et al., 1997, Hoston and You, 1996; Wong et al., 1996b; Graham et al., 1998b; Castin and Dalibard,
1997; Yoo et al,, 1997; Rohrl et al., 1997). A physical configuration relevant to all of these works
consists of a pair of statistically independent, physically separated condensates allowed to drop
and, by virtue of their horizontal motion, overlap as they reach the surface of an atomic detector.
The essential result of the analyses is that, even though no phase information is initially present (the
initial condensates may, for example, be in number states), an interference pattern may be formed

19For a review of cavity quantum electrodynamics, see, e.g., Berman (1994).
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and a relative phase established as a result of the measurement. This result may be regarded as
a constructive example of spontaneous symmetry breaking. Every particular measurement pro-
duces a certain relative phase between the condensates; however, this phase is random, so that the
symmetry of the system, being broken in a single measurement, is restored if an ensemble of
measurements is considered.

Remarkably, the physical configuration we have just described and the predicted interference
between two overlapping condensates have recently been realised in a beautiful experiment
performed by Andrews et al. (1997b) at MIT.?° In this experiment, mechanical instabilities
introduced random noise that cloaked the “intrinsic” randomness described above, but improve-
ments should allow controlled studies of the phase properties of condensates and of phenomena
such as those described below.

5.1.1. Interference of two condensates initially in number states

To outline this effect, we follow the working of Javanainen and Yoo (1996) and consider two
condensates made to overlap at the surface of an atom detector. The condensates each contain N/2
(noninteracting) atoms of momenta k; and k,, respectively, and in the detection region the
appropriate field operator is

U(x) = (1//2)[4; + 4,697, (132)

where ¢(x) = (k, — ky)x and d; and a, are the atom annihilation operators for the first and second
condensate, respectively. For simplicity, the momenta are set to =+ m, so that ¢(x) = 2nx. The
initial state vector is represented simply by

lp(0)> = IN/2,N/2 . (133)

Assuming destructive measurement of atomic position, whereby none of the atoms interacts with
the detector twice, a direct analogy can be drawn with the theory of absorptive photodetection and

the joint counting rate R™ for m atomic detections at positions {xy, ..., X,,} and times {t,...,t,}
can be defined as the normally ordered average
Rm(xl’ tl: coe s X tm) = Km<lp1.(xla tl) e l’p\"-(xma tm),ﬁ(xma tm) Tt lp(xl’ t1)> . (134)

Here, K™ is a constant that incorporates the sensitivity of the detectors, and R" =0if m > N, i.e,,
no more than N detections can occur.

Further assuming that all atoms are in fact detected, the joint probability density for detecting
m atoms at positions {xj, ..., X,,} follows as

" (N —m)! ~ ~ N
P10 ) = 1) - G ) - Px1)) (135)
The conditional probability density, which gives the probability of detecting an atom at the position
X, given m — 1 previous detections at positions {xy, ..., X,—}, is defined as
(X 1y ey Xp)
Pl 1) = g , (136)
p (xla"'axmfl)

20Note that the theoretical work of Wallis et al. (1997) and Réhrl et al. (1997) on interference between a pair of
condensates closely follows the MIT experimental configuration.
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and offers a straightforward means of directly simulating a sequence of atom detections
(Javanainen and Yoo, 1996; Wong et al., 1996b). This follows from the fact that, by virtue of the
form for p™(x4,...,X,), the conditional probabilities can all be expressed in the simple form

p(xm|xls axmfl) = 1 + ﬁCOS(Zﬂ:xm + q)) > (137)

where f and ¢ are parameters that depend on {xy, ..., x,—1}. The origin of this form can be seen
from the action of each measurement on the previous result,

(Pl W)@y = (N — m) + 24 cos[0 — ()], (138)

with de™ " = <¢m|cﬂd2|¢m>

So, to simulate an experiment, one begins with the distribution p'(x) = 1, i.e., one chooses the
first random number (the position of the first atom detection), x ¢, from a uniform distribution in the
interval [0, 1] (obviously, before any measurements are made, there is no information about the
phase or visibility of the interference). After this “measurement”, the state of the system is

91> = P(x1)lpo> = o/ N/2 {I(N/2) = 1, N/2) + IN/2,(N/2) — 1)e} . (139)

That is, one now has an entangled state containing phase information due to the fact that one does
not know from which condensate the detected atom came. The corresponding conditional prob-
ability density for the second detection can be derived as

Peux) 1 P P px))

PR =50y TN i (140
1 N

Hence, after just one measurement the visibility (for large N)is already close to 4, with the phase of
the interference pattern dependent on the first measurement x;. The second position, x,, is chosen
from the distribution (141). The conditional probability p(x|x;) has, of course, the form (137), with
p and ¢ taking simple analytic forms. However, expressions for § and ¢ become more complicated
with increasing m, and in practice the approach one takes is to simply calculate p(x|xy, ..., X, —1)
numerically for two values of x [using the form (135) for p™(xy,...,X,-1,X), and noting that
p™ Yx1, ..., X, 1) is simply a number already determined by the simulation] and then, using these
values, solve for § and ¢. This then defines exactly the distribution from which to choose x,,.
The results of simulations making use of the above procedure are shown in Figs. 19-21. These
figures also display results for cases in which collisions are included in the model; we discuss this in
more detail below. Fig. 19a shows a histogram of 5000 atom detections from condensates initially
containing N/2 = 5000 atoms each (neglecting collisions). From a fit of the data to a function of
the form 1 4+ fcos(2nx + ¢), the visibility of the interference pattern, f5, is calculated to be 1. The
conditional probability distributions calculated before each detection contain what one can
define as a conditional visibility. Following the value of this conditional visibility gives a quantitat-
ive measure of the buildup of the interference pattern as a function of the number of detections.
The conditional visibility, averaged over many simulations, is shown as a function of the number of
detections in Fig. 20 for N = 200. One clearly sees the sudden increase to a value of approximately
0.5 after the first detection, followed by a steady rise towards the value 1.0 (in the absence of
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Fig. 19. (a) Histogram of 5000 simulated atomic detections for N = 10000 (circles). The solid curve is a least-squares fit
using the function 1 + fcos(2nx + ¢). The free parameters are the visibility f and the phase ¢. The detection positions
are sorted into 50 equally spaced bins. (b) Histogram of 5000 position detections as in (a), but including the effects of
collisions with x = y. From Wong et al. (1996b).
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Fig. 20. Averaged conditional visibility as a function of the number of detected atoms for varying collision rates, k. The
visibility curves are averaged over 1000 simulations, each starting with N = 200. From Wong et al., 1996b.

collisions) as each further detection provides more information about the phase of the interference

pattern.
One can also follow the evolution of the conditional phase contained within the conditional

probability distribution. The final phase produced by each individual simulation is, of course,
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Fig. 21. Conditional phases for two simulations without collisions, with N = 200. From Wong et al. (1996b).

random; two sample simulations of the conditional phase are shown in Fig. 21. The trajectories are
seen to stabilise about a particular value after approximately 50 detections (for N = 200).

These simulations emphasise the existence of an instantaneous, although random, phase as
a kinematical property of bosonic systems with large occupation numbers, to be held distinct from
the phase correlations in such systems, in space or time, that are determined by the system
dynamics. In the conventional approach to the Bose liquid, where a symmetry breaking interaction
is formally introduced, collisions lock the kinematical phase to the interaction and the distinction
between the kinematical and dynamical phase properties is in large part wiped out.

Alternative models for simulating the formation of an interference pattern between two
Bose—Einstein condensates have been developed based on coherent state (Cirac et al., 1996) or
phase state (Castin and Dalibard, 1997) representations of the condensate state. These models
concentrate explicitly on the evolution of the probability distribution of the relative phase, showing
that this distribution evolves into a sharply peaked function with an increasing number of atom
counts. They have also been used to study the buildup of the relative phase in the case where the
two condensates are assumed to initially be in mixed states (Cirac et al., 1996; Graham et al.,
1998b). For a Poissonian distribution of atom number the visibility approaches one for sufficiently
many counts (given equal counting rates for the atoms from either condensate), while for a thermal
distribution of atom number the visibility is a random variable, varying from run to run about an
average value of n/4 (Graham et al., 1998b).

5.1.2. Interference of two condensates with collisions
The approach outlined above has been modified to include the effect of collisions by Wong et al.
(1996b), who make use of the Monte Carlo wave function (MCWF) simulation method (see, e.g.,
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Gardiner et al., 1992; Carmichael, 1993; Mglmer et al., 1993) to incorporate time evolution of the
system wave function caused by inter-atom interactions.?! This method calculates the times of the
atom detections stochastically, with the evolution of the system in between these times determined
by an effective Hamiltonian of the form

Ao = hi[(a1a1)? + (a34)°] — ih(y/2)(alay + das), (142)

where y and k are the detection and collision rates, respectively, and it is assumed that only
collisions between atoms from the same condensate need be modeled (i.e., collision terms of the
form afd,ala, are neglected). At the time of an atom detection, the position at which the atom is
detected is chosen using the conditional probability method of the previous section. So, after
m atom detections at positions {xy, ..., X,,} and times {ty, ...,1,}, the state vector of the system will
be of the form

|pmy = Plxp)e ™ Heelte =t 0y )e ™ Mt Mgy (143)

To obtain some idea of the influence of collisions on the interference, one can inspect the
expectation value

AT ITEIEA G I (144)
where the evolution operator %(t) is given by
A1) = exp{ — ix[(ald,)* + (a3a2)*]e} (145)

and the state vector after m detections is

m

lomy = >, &IN/2—m+ k,N/2 — k), (146)

k=0

with Y|ci|* = 1. One can show that
Lol T W DU (1)) oy

=N-—m+ i A (k)cos[p(x) + 2kt(2k —m — 1) + O], (147)

where the phase O, is defined by Ae'® = cjc,_; and

A(k) =24/ (N/2 — k + 1)(N/2 —m + k). (148)

The conditional probabilities are proportional to this expectation value; for non-zero collision
rates (x # 0), this value is a weighted sum over cosine functions with differing phase shifts, 4xckt.
This leads to a dephasing of these functions in time and hence to a loss of coherence, or visibility;
this effect obviously becomes more pronounced with increasing m. Examples of this effect are

21 Note that the effects of interactions are also included in, for example, the work of Hoston and You (1996),
Naraschewski et al. (1996), and Wallis et al. (1997), but these authors base their studies of the interference of interacting
condensates on the time-dependent GP equation and insert an initial relative phase by hand.
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shown in Fig. 19b and Fig. 20. With x = y, the visibility of the interference pattern in Fig. 19b is
only 4, while Fig. 20 shows the reduction in the averaged conditional visibility with increasing
collisional rate, k. Averages over many simulations also confirm that the variance in the condi-
tional phase increases with increasing .

5.2. Collapses and revivals of the interference pattern visibility

As described earlier in Section 2.8.3, interparticle interactions are expected to give rise to
collapses and revivals of the macroscopic wave function of a relatively small (N ~ 10°-10°)
Bose—FEinstein condensate. In the spirit of the present section, one can also examine this phenom-
enon in the context of the interference between a pair of condensates and indeed one finds that the
visibility of the interference pattern also exhibits collapses and revivals (Wright et al., 1997; Castin
and Dalibard, 1997; Wong et al., 1996a; Javanainen and Wilkens, 1997), offering an alternative
means of detecting this effect.

To see this, consider, as above, that atoms are released from two condensates with momenta
ki and k,, respectively. Collisions within each condensate are described by the Hamiltonian
(neglecting cross-collisions)

A = hk[(ala,)* + (a3a,)*], (149)
from which the intensity at the detector follows as
105, = Lo<[al (e + ad(e~Ia, e~ + d()e T
= Iy{<ala,y + <aba,» + <alexp[2i(ala, — ala,)xt]d,ye ™ 4 he.}, (150)

where ¢(x) = (k, — kq)x.
If one assumes that each condensate is initially in a coherent state of amplitude ||, with a relative
phase ¢ between the two condensates, i.e., assuming that

lp(t = 0)) = [adlae ™), (151)
then one obtains for the intensity
I(x,t) = 31ola*{1 + exp[2|a|*(cos(2xt) — 1)]cos[p(x) — ¢]} . (152)

From this expression, it is clear that the visibility of the interference pattern undergoes collapses
and revivals with a period equal to m/k.

Alternatively, one can consider an initial state formed by the quantum measurement scheme of
the previous section; i.e., a state formed from two condensates initially in number states |[N/2) after
m atoms have been detected:

m

|pmy = > &IN/2—m+ kN2 — k), (153)

with Y|¢i|* = 1 and {¢;} depending on the actual sequence of measurements. To a good approxima-
tion, this state yields an intensity of the form

I(x,t) = IO{N —m+ i o cos[2(2k — m — 1)xt]cos[p(x) — (;5]} , (154)
k=1
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which, again, exhibits collapses and revivals, but now with a period of ©/(2x). Hence, a factor of two
difference occurs between the situation where broken symmetry is assumed from the outset and
where it is not assumed. The origin of this difference in period follows from the exponential term
appearing in Eq. (150); in particular, the number difference operator d{d; — ald, is quantised in
units of 2 when the total number is fixed and in units of 1 when it is not fixed, giving rise to factors
exp(2iN«t) and exp(iNkt), respectively.

Hence, the validity of imposing broken gauge symmetry from the outset as a means of describing
the quantum dynamics of Bose—Finstein condensates could, in principle, be tested by measuring
the visibility of the interference pattern between two condensates as a function of time (Wong et al.,
1996a). However, as discussed by Wong et al. (1996a), significant practical problems would face
such a scheme as in the second case discussed above (with fixed atom number) the parity of the
number m of detected atoms plays a significant role in that a change in this parity produces a phase
shift  in the interference pattern. The loss of atoms by means other than the measurement process
would introduce random phase shifts into the system with obviously detrimental effects.

5.3. Pumping of twin-trap condensates

Given that each condensate can contain only a finite number of atoms, the measurement
schemes outlined above can obviously only operate for a finite length of time before exhausting the
supply of atoms. Steel and Walls (1997) have recently developed a modified scheme that incorpor-
ates pumping of atoms into the condensates, thereby enabling them to realise a steady-state device.
In principle, continuous output beams could be extracted from the two condensates with a well-
defined relative phase established by the measurement process; this property could then be
exploited in, for example, another interference experiment.

In their model, Steel and Walls (1997) assume pumping from thermal atom sources, or “baths”,
allowing for both two-way pumping, in which atoms are exchanged with the baths in both
directions, and one-way pumping, in which atoms can only be transferred from the baths into the
condensates but not vice versa. Their calculations are based on Monte Carlo wave-function
simulations of a master equation of the form

0 2n ~
a’; [ H] + vf do Z2LH(@)Ip + 13" (N1 + DZ[a,]p + 7N, 2[a1]p
+ 13" (N2 + )Z0a:]p + 15 N.20a5]p + vi20aidp + v.20a:]p (155)
where H is given by Eq. (149) (describing collisions), and
D[E]p = épét — 3(ETep + pétoé). (156)

A schematic of the pumped twin-trap system is shown in Fig. 22. The parameters y; and y, are rate
coeflicients for pumping from the thermal baths, and N 1 and N, describe the populations, or
strengths, of these baths. For one-way pumping one has yi* # 0 and »?"* = 0,2? while for two-way

22 One-way pumping would correspond, for example, to the case in which excited-state atoms enter the condensate via
spontaneous emission to the ground state. Provided the medium is optically thin, the emitted photon is lost and
excitation out of the ground state is impossible.
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Fig. 22. Schematic of the pumped twin-trap system. From Steel and Walls (1997).

Fig. 23. Ground and excited state trap potentials for light-scattering detection of the relative phase as in the scheme of
Imamoglu and Kennedy (1997).

pumping both yi" and " are nonzero. The field operator, Y(¢) = d, + d,e™ ¢, with ¢ = 2nx,
describes the detection of an atom at position x. Finally, separate “leaks” from each condensate at
rates v; and v, into empty modes (the “output beams”) are accounted for by the final two terms of
Eq. (155).

With parameters chosen to maintain a mean number of atoms, n, in each condensate, fluctu-
ations in the visibility for thermal pumping are found to be significant and often of order one. The
timescale for these fluctuations is much longer for one-way pumping than for two-way pumping.
For the one-way case, on average one atom is added to the system for each atom detected and so all
of the atoms are replaced once every yt. For the two-way case, n atoms are exchanged with the
baths for each atom detected, and so in the time yt all the atoms are replaced n times over and hence
one expects a correspondingly shorter time scale for the fluctuations. Obviously, if the exchange of
atoms with the baths occurs faster than an entangled state of a particular phase can be constructed
(via atom detections), then one expects the average visibility to be reduced.

While the work outlined above does not explicitly identify the pumping mechanism, Savage et al.
(1997b) have proposed an optical method for supplying atoms to a pair of condensates based on
laser-driven Raman transitions between non-condensate and condensate fractions. We will discuss
this further in the following section on light scattering from double condensates.

5.4. Detection of broken gauge symmetry via light scattering

Given that gauge symmetry has been broken and that macroscopic wave functions with
well-defined phases exist for a pair of Bose—Einstein condensates, schemes to probe these wave
functions using light scattering have been proposed by Imamoglu and Kennedy (1997), Javanainen
(1996b), and Ruostekoski and Walls (1997a). A scheme simply involving spontaneous emission
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from initially excited atoms incident upon a pair of condensates has also been put forward by
Savage et al. (1997a).

5.4.1. Condensates in the same internal atomic state

The scheme of Imamoglu and Kennedy (1997) involves two independent condensates confined in
spatially separated potential wells (with separation d). The two condensates are sufficiently well
separated that they can be accessed independently, but are close enough together that laser-excited
atoms, moving in a wider potential, have enough time to travel from the region of one (ground-
state) potential well to the other (see Fig. 23). Weak monochromatic light fields E; ; and E; , (which
do not overlap in space) resonantly excite atoms in the two wells to a single quasi-metastable
excited state. Using Heisenberg equations of motion for the atomic field operators and eliminating
the excited state, Imamoglu and Kennedy (1997) derive an expression for the scattered light field in
terms of ground-state atomic field operators ‘I7g1(r, t) and YA’gz(r, t). They then consider two
particular schemes for detecting broken gauge symmetry:

5.4.1.1. Excitation of trap 1 only. Assuming that laser 1 is used to excite trap 1 only, and that only
photons from trap 2 are collected, the relevant scattered field is of the form

EG(rt) = fd3 'de‘ N Afr.r +d/2, ¢ — df2) B — d)2)

x Phr +d/2,0)P 1 (r' — dj2,1), (157)

where the tensor A4,(r,r,r") contains the light propagation kernel, atomic dipole moment, and
excited state trap wave functions, over which the sum is taken. From the form (157), it follows that
the mean scattered field will vanish unless broken symmetry is present in both traps
({Pg(r, 1)) #0,i=1,2) and when the mean field is non-zero it will depend on the relative phase
between the two condensates.

5.4.1.2. Excitation of both traps. Assuming now that both traps are excited, but that again only the
photons scattered from trap 2 are detected, the scattered field is given by

ESrt) = fd%'fd%"af/;z(r' +d/2,1)
X [Z A r, ¥ +d)2,r" —d)2)- ERD — d)2)P (' — df2,1)
q

+ ZA rr 4+ d2,r + d)2) B + d2)P 0 + d)2, t)] . (158)

Again, the scattered field will be non-zero only when <Y7g1(r, 1) # 0 and <'f’g2(r, )y # 0, but now
there is also the interesting possibility of being able to adjust the amplitude and phases of the
classical laser fields so that the two terms inside the brackets exactly cancel each other, giving zero
mean field. The appropriate settings for the laser fields will of course depend once again on the
relative phase between the two condensates.



58 A.S. Parkins, D.F. Walls | Physics Reports 303 (1998) 1-80

5.4.2. Condensates in different internal atomic states

An alternative scheme employing the same methods would be one in which two condensates in
different internal ground states are confined in the same trapping potential. One or two coherent
laser fields would drive Raman transitions between the two condensates and signatures of broken
gauge symmetry would be coherent light generation by spontaneous Raman scattering (first
method) or complete elimination of Raman and Rayleigh scattering (second method). Javanainen
(1996b) has also shown that if two phase-coherent laser beams drive Raman transitions in such
a configuration, then amplification of one of the Raman beams immediately following the turn-on
of the light is an unambiguous sign of broken symmetry.

Ruostekoski and Walls (1997a) have computed the spectrum of scattered light, in the spirit of
Section 4.2.1, for this kind of Raman configuration. They find that the relative heights of the peaks
appearing in the characteristic two-peaked scattering spectrum are sensitive to the phase difference
between the macroscopic wave functions of the two condensates, as illustrated in Fig. 24. The
reason for this is discussed in the following section, where pumping of double condensates using the
same underlying mechanism is considered.

In a further application of this configuration, Savage et al. (1997a) have studied the rate of optical
spontaneous emission into two ground state condensates (from a common excited internal state).
Given that the two possible final states are indistinguishable (i.e., one does not know into which
condensate the atom has gone), interference terms in the transition probability result in a transition
rate that depends on the relative phase of the two condensates. The relative phase can therefore be
detected from, for example, the total emitted power.

5.5. Pumping of double condensates via light scattering

In the above-mentioned work of Ruostekoski and Walls (1997a) on the spectrum of light
scattered from a pair of condensates, it was found that for certain values of the relative phase
between the condensates scattering of atoms out of the condensates could be suppressed while
scattering into the condensates was enhanced. This shows up as the reduction (increase) in the
height of the peak at w/wg = — 1 (+ 1) in Fig. 24 for Ap = n and r/2. In fact, for 4¢p = =, they
showed that scattering out of the condensates is completely suppressed (note that the peak that
remains at w/wg = — 1 is a consequence of scattering between noncondensate atoms). The origin
of this effect is destructive quantum interference between the amplitudes for transitions from each
condensate into the noncondensate fraction.??

Making use of this effect, Savage et al. (1997b) have proposed Raman light scattering as
a mechanism for pumping atoms into a pair of Bose—Einstein condensates, with obvious relevance
to the realisation of a continuous-wave atom laser. They show that for reasonable parameters
a significant condensate growth rate should be achievable, although issues such as repopulation of
the noncondensate fraction and diffusion of the condensate phase due to atomic interactions could
be limiting factors.

23 This suppression of atom scattering out of the condensates is analogous to the suppression of absorption associated
with optical lasing without inversion (Harris, 1989; Scully and Zhu, 1989).



A.S. Parkins, D.F. Walls | Physics Reports 303 (1998) 1-80 59

e =le.m-1)

Ed2 G+ E fo}
dl -

2 lc) =|g.m-2)
ey by =[g.m)

Fig. 24. Spectrum of light scattered from a Bose gas occupying two ground internal atomic states for various values of
the relative phase 4¢. The condensate fraction is 0.8 for both internal states. The spectrum is convoluted in each case with
a Gaussian of variance 0.01wg. From Ruostekoski and Walls (1997a).

Fig. 25. Atomic level scheme for the phase establishment scheme of Ruostekoski and Walls (1997b).

5.6. Establishment of relative phase via light scattering

Whereas the light scattering schemes discussed above assume broken gauge symmetry from the
outset, it has been shown in a recent work by Ruostekoski and Walls (1997b) that a related light
scattering scheme can be used to establish a relative phase (where initially no phase information
need exist) between two condensates in the same manner as the atom detection schemes described
earlier. The obvious interest of this scheme is that it is non-destructive, 1.€., it uses the detection of
scattered photons to establish the phase while conserving the total number of atoms in the two
condensates.

In the scheme, it is assumed that the condensates are confined in the same trap (i.e., spatial
overlap of the condensate wave functions is assumed to be significant) and occupy two different
Zeeman sublevels that are optically coupled through a common excited state by two low-intensity
off-resonant light beams (Fig. 25).>* Considering only the coherent spontaneous scattering be-
tween the condensates (stimulated by a large number of atoms in the condensates), the emitted
photons of interest propagate in a narrow cone in the forward direction. With a number of further
assumptions and approximations (large detunings, Born approximation, neglect of dipole—dipole
interactions and multiple scattering; refer to Section 4), Ruostekoski and Walls derive a master
equation for the reduced density matrix of the system, from which they are able to formulate

24This coupling can be likened to the tunnelling of Cooper pairs in a Josephson junction.
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a Monte Carlo wave-function simulation model (see, e.g., Gardiner et al., 1992; Carmichael, 1993;
Mglmer et al., 1993) in which the quantum jumps are associated with photon detections. They show
that the relative phase between the two condensates (initially in number states) may be established
by a sequence of photon detections and that the conditional probability for the detection of
spontaneously scattered photons as a function of time depends strongly on the relative phase
thus established. (As pointed out by the authors, the dependence of the conditional probability
on the relative phase may also provide a means of distinguishing between initial number
states or coherent states of the condensates.) The phase establishment is made possible in this
scheme by the uncertainty in the initial state of the atoms when they are excited by the driving light
fields.

6. Quantum dynamics of a Bose—Einstein condensate in a double-well potential

6.1. Coherent quantum tunnelling

The double-well potential provides a simple and yet physically relevant example for studies of
quantum tunnelling in mesoscopic systems. In the context of BEC in an atomic vapour, it is
possible to conceive of experimental configurations in which a condensate is trapped in just such
a potential. In fact, in the BEC experiments of Davis et al. (1995) and Andrews et al. (1997b),
double-well trapping potentials were formed using an off-resonant optical dipole force to perturb
a magnetic-rf trap. Hence, it is natural to ask if behavior analogous or similar to that observed, for
example, in Josephson junctions can arise in the context of trapped atomic Bose—Finstein conden-
sates. Numerous authors have addressed this issue and found that this is indeed the case
(Javanainen, 1986, 1991; Grossmann and Holthaus, 1995b; Dalfovo et al., 1996; Jack et al., 1996;
Milburn et al., 1997; Smerzi et al., 1997; Raghavan et al., 1997; Zapata et al., 1997); below, we
outline the simplified and transparent two-state analysis and results of Milburn et al. (1997),
who were particularly concerned with the influence of particle interactions on the Josephson-type
effect.

Consider the case of a symmetric double-well potential, V'(r), with minima at + r,. We assume
that the two lowest energy states of the system are closely spaced and well separated from the
higher energy levels (Fig. 26); this enables us to use a simple two-state model. Defining uq(r) as the
ground state of a single isolated potential well, with energy E,, then if the position uncertainty in
this ground state is much less than the separation, 2r,, of the minima of the double-well potential,
the energy eigenstates of V(r) may be approximated by

W1(r) = (1//2)[tolr — ro) — tolr + ro)] , (159)
W) = (1/</2)[uolr — ro) + tio(r + ro)] , (160)

with eigenvalues E; ~ E, — # and E, ~ E;, + # where

R = Jd3r uo(r + ro) A (r)ug(r — ro) , (161)
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Fig. 26. Schematic of double-well potential with lowest energy levels.

and #(r) is the single-particle Hamiltonian. The tunnelling frequency between the two minima is
given by

Q=2R/h. (162)

In the two-state approximation, one expands the atomic field operators in terms of the localised
single-particle states and the annihilation and creation operators,

¢ = Jd3r uy(r — ro)P(r,0), (163)

¢y = Jd3ru’5(r + 1) P(r,0), (164)

such that [¢,, é}] = 0;;. To lowest order in the overlap between the single-well modes, the many-
body Hamiltonian can be written in term of the operators ¢; and ¢, as

H= EO(CAI‘% + CA;CAz) + %hQ(CAlCA; + CAiCAz) + hk[(E1)*¢F + (85)%¢3], (165)

where x = (Uo/2h)[d>r [ug(r)|*. Note that this result neglects interactions between particles in
different wells.

The two-mode approximation requires that the many-body interactions only slightly
modify the ground state properties of the individual potentials. In practice, this
limits the model to a small number of atoms (of the order of hundreds) compared to current BEC
experiments. Nevertheless, condensate tunnelling can still be strongly modified by atom—atom
interactions.
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Heisenberg equations of motion for ¢; and ¢, take the forms (in a frame rotating at frequency
Eo/h)

dé - ~

% = —3iQ¢, — 2iké}ét, (166)
dA

% = —3iQ¢; — 2iKé}é3 . -

Adopting a semiclassical mean-field analysis, in which one factorises products in these equations

and introduces the amplitudes b; = <éi>/\/ﬁ, the following coupled-mode equations can be
derived:

db
St~ 4iGh, — 2ikNI, b, (168)
S . Y (169

These equations have an exact solution; for the case that all N atoms are initially localised in well 1,
ie., N{(0) = N|b,(0)> = N, one finds

Ny(t) = 3N[1 + cen(Qt|N?/NJ)], (170)
where cn(¢|m) is a Jacobi elliptic function, and N, is the critical number of atoms given by
N, =Q/x. (171)

For N <€ N, cn — cos and the solution exhibits periodic oscillations with frequency €2, precisely
like those in Josephson junctions. As the number of atoms increases, the oscillation period
increases until, at N = N, it becomes infinite. For N > N, the oscillations are inhibited; the
interaction energy now exceeds the energy level splitting and one finds a self-trapping effect in
which a population imbalance is maintained between the two potential wells.

Within the two-level approximation, an analysis of the full quantum problem is also tractable
(numerically) (Milburn et al., 1997), allowing an assessment of the effect of quantum fluctuations.
For N not too large, the solution of the quantum problem predicts a collapse of the oscillation due
to intrinsic quantum fluctuations in the initial condition, and then a revival of the oscillation at
a later time due to the discrete spectrum of the many-body Hamiltonian (cf. Section 2.8.3).
Increasing N while keeping N fixed increases the collapse and revival times, and improves the
semiclassical approximation.

6.2. Quantum phase between tunnelling Bose—Einstein condensates

In the earlier section on interference between Bose—Einstein condensates, we saw how atom
detections from overlapping condensates can establish a relative phase where, initially, no phase
information existed; in particular, where the condensates were initially in number states. A similar
effect has been demonstrated in the context of tunnelling condensates in a double-well potential by
Jack et al. (1996). More specifically, assuming the same system and model as above, but neglecting
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atom interactions, the expectation value of the atom number in well 1 is easily derived as
e ()Y = IN[1 + o cos(Qf) + fsin(¢)sin(Q1)], (172)

where N = (¢lé, + ¢5¢,) is the total number of atoms, o = (&}¢; — ¢5é,), and fei® = 2{¢1¢,)/N.
If the condensates are initially in number states with equal populations, then « = e = 0 and
population oscillations do not occur. However, by virtue of spontaneous symmetry breaking
induced by measurements of the atom number in one of the wells, it is possible for a relative phase
between the condensates to be established (Be'? # 0) and for population oscillations to be observed.

In their model, based on wave-function simulations, Jack et al. (1996) assume that atoms are
destructively detected in one of the wells at a rate y. Given that this rate is much smaller than the
tunnelling rate 2, they observe oscillations in the number of atom detections, with the quantity
f sin(¢) converging to a well-defined (non-zero) value after a sufficient number of detections (f — 1).
As before, however, the phase difference ¢ varies from one run of detections to the next. As the
amplitude of the oscillation is actually given by sin(¢), this amounts to a random amplitude for each
experimental run.

7. The atom laser
7.1. What is an “atom laser”?

Experimental success with the preparation of Bose-condensed samples of alkali gases has
spurred on theoretical investigations into so-called “atom lasers”, or, in other words, coherent
atomic beam generators (Anderson and Holland, 1996). The macroscopic occupation of a single
trap mode achieved in BEC experiments clearly has similarities with conventional laser systems
and it has been a natural progression to look for modified configurations in which a quantised
atomic field mode can exhibit properties analogous to those of the resonant mode in an above-
threshold laser oscillator; that is, configurations in which the atomic field mode has a large coherent
amplitude, or something approximating it.

Such a configuration should, of course, satisfy a number of basic criteria in order to be called an
atom laser. Wiseman (1997) has defined and carefully elucidated such a set of criteria, which can be
summarised as follows. In particular, with regards to the output from the device, the atomic field
should (i) be highly directional, (ii) be monochromatic, (iii) have a well-defined phase, and (iv) have
a well-defined intensity. The first condition is somewhat obvious and enables one to define
a direction of propagation and directions of diffraction. The condition for monochromaticity (or
mono-energeticity) can be given in terms of the power spectrum,

V
(0 — @) + (/2>

of the atomic field mode, b(t), with T = {b*b) the intensity, or output flux of bosons. This spectrum
might typically take a Lorentzian form with a spectral width 7, as shown above. The output can be
regarded as monochromatic if this width is sufficiently small, y < @, amounting to a long first-order
coherence time, 7., = 7~ !. The coherence time, 7., gives the time over which the phase of the field

P(w) = 2rI)~ 1fdre_i”’<bT(t + b(t)> ~ (2m) ! (173)
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is approximately constant. Any meaningful measurement of phase must therefore be performed
within 7., and for an accurate measurement one requires many quanta in this interval, i.e., one
requires that It., > 1, or I >y, corresponding to high intensity. Finally, the condition of well-
defined intensity amounts to the condition of higher-order coherence of the field, distinguishing it
from, for example, a filtered thermal field. Defining I(t) = b'(¢)b(t), the intensity noise spectrum is
given by

S(w) = I_ljdrei“”(I(t FOI() — T2, (174)

which for a filtered thermal field might have the form S(w) = 1 + I'%/(y*> + w?), whereas for a true
laser one has S(w) =1 + (1), corresponding to a shot-noise-limited source obeying Poissonian
statistics.

Note that the density of an “intense coherent” atomic beam should be, roughly speaking, that of
a Bose-condensed gas. Indeed, considering for simplicity a one-dimensional case,

0Einetic = 5P2/2M = pop/M = vdp = vh/lsg , (175)
I =nv=v/l, (176)

where I3 and [ are, respectively, the de Broglie wavelength and the average inter-atomic distance.
For an “intense coherent” beam,

This is exactly the condition for Bose-condensation, yet the atom laser output need not be
condensed (i.e., concentrated mainly in a particular momentum state) since it need not be in
thermal equilibrium.

7.2. Proposed models

A number of atom laser schemes have now been proposed and the basic operating principles
involved in the majority of these schemes are depicted schematically in Fig. 27. Typically, a (cold)
thermal source of atoms supplies atoms to an upper-lying mode (or modes) of an atom trap; this
mode is coupled to the ground state mode of the trap via a particular cooling mechanism. The
ground state mode corresponds to the “laser mode”, where it is hoped that a macroscopic
population can be built up and coupled to the outside world, via some kind of loss mechanism, to
produce the laser output. The cooling mechanisms proposed for coupling the upper states to the
ground state provide something of a dividing line between the various proposals in that they can be
divided into two distinct classes — optical cooling (Wiseman and Collett, 1995; Spreeuw et al., 1995;
Olshanii et al., 1995; Moy and Savage, 1997; Moy et al., 1997) and evaporative cooling (Wiseman
et al., 1996; Holland et al., 1996; Guzman et al., 1996; Moore and Meystre, 1997). In the optical
cooling schemes, spontaneous emission from an excited internal atomic state (which does not “see”
the trap, or at least not very strongly) takes the atom into a lower, trapped, internal state. The rate
at which this occurs is, of course, subject to Bose enhancement by the presence of atoms already in
the lower state. The evaporative cooling schemes make use of binary collisions between atoms to
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Fig. 27. Schematic of a generic atom-laser model.

Fig. 28. Schematic of the evaporative-cooling atom-laser model of Wiseman et al. (1996). Arrows represent irreversible
processes by which atoms enter and leave the trap, and are redistributed within the trap.

transfer population into the ground state. In particular, two atoms in the source mode collide,
scattering one atom into the lasing mode (once again, a process enhanced by a large population in
the laser mode) and the other into a higher energy mode. In keeping with evaporative cooling, the
higher energy atom is rapidly removed from the system, producing the necessary irreversibility in
the pumping process.

Finally, we note that related schemes have been discussed for media other than dilute atomic
gases. In particular, matter-wave amplification has also been considered in the context of molecular
dissociation (Bordg, 1995) and of exciton lasers (Imamoglu and Ram, 1996).

7.3. An atom laser based on evaporative cooling

Holland et al. (1996) and Wiseman et al. (1996) have studied an atom laser scheme based on
a very rudimentary three-level model of evaporative cooling, as depicted in Fig. 28.2> The three
levels, or atomic energy eigenstates, are referred to as the ground, source, and excited modes, with
energies Eq, E{, and E, respectively (Eq < E; < E,). In the approach of Wiseman et al. (1996), the
source mode is coupled to a broadband thermal beam, or reservoir, of atoms, with a flux per unit
bandwidth of N. A collision between two atoms in this mode may cool one atom to the ground
mode, while the other atom is heated into the excited mode. The ground and excited modes are
coupled to vacuum reservoirs to facilitate outputs from these modes; for the excited state, the loss
rate into the reservoir is large and simulates the rapid evaporation of high-energy atoms from the
system, while for the ground state the reservoir coupling provides the output channel for the atom
laser. While this model constitutes a gross simplification of the true many-level system in a realistic
trap, it is expected to contain the essential features of steady-state evaporative cooling and to
provide at least qualitatively correct results.

25 Note that Quadt et al. (1996) have also studied a similar model, but in the context of a dynamical model for
Bose—Einstein condensation.
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In a second quantised formalism, for which each mode has an associated annihilation operator
a; (i =0,1,2), a master equation for the system density matrix, W, can be written in the form

2
W = —i[H, + Heo,W] + Y. kZ[a1W + kK N(2[a,] + gralyw, (178)
i=0
where
GLENW = W et — J(ETew + Wete) (179)
and the free and collisional Hamiltonians are, respectively,
2
HO = Z Eidgﬁi, (180)
i=0
ﬁcol = Z Vijkldm;&kdl . (181)
i<jk<l

The coeflicients x; give the characteristic damping or loss rates of the modes.

Assuming that the collision amplitudes V;j; are small compared to the energy separations of the
modes, it is possible to simplify the collision Hamiltonian by retaining only energy-conserving
terms (rotating-wave approximation). Under the further assumption that r, is much larger than all
other decay rates, one can adiabatically eliminate the excited mode from the dynamics to yield the
following master equation for the reduced density operator, p = Trpeac2[ W :

1
p=ilV,.pl+ Y xZ[a]p + x:N(Z[a4,] + Z[ai])p + I'Z[aodilp , (182)
i=0
where
K2|V0211|2

I =————— 183
(kK2/2)2 + A%° (183)
V = Voooodh?dd + Vo1o1dzr)ﬂﬁod1 + V11116ﬁzd% + Ud;r)cﬂzﬁod% ) (184)

with 4 = E, + E; — 2E; and v = (4/x,)I". The quantity I" is the “spontaneous” rate of binary
collisions in the source mode (1) that result in one atom entering the “lasing” mode (0) and the other
escaping the trap from the (eliminated) excited mode (2).

7.3.1. Weak collision regime

Wiseman et al. (1996) distinguish two regimes of particular interest: the weak collision regime, for
which I' < k,, and the strong collision regime, for which I" > x,. In the weak collision regime,
a strong pump (N > 1) is required to produce a large population in the laser mode. In the lasing
regime, therefore, the populations in both modes 0 and 1 will be large and the assumption of
well-defined amplitudes for these modes seems reasonable. Hence, a P function representation can
be used for the pump and lasing modes and an associated Fokker—Planck equation derived from
which population and fluctuation properties can be calculated.

Considering the populations in a semiclassical analysis (i.e., ignoring fluctuations), and setting
no + 1 &~ ny (this corresponds to ignoring the “spontaneous” collisional transitions 1 —0 in
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comparison with “stimulated” transitions due to Bose enhancement), one obtains the coupled
equations

o = (I'ni — Ko)no (185)
V.ll = — 21—‘”0}’1% — Kny + KIN . (186)

The stationary solutions to these equations exhibit a threshold at

v=N—./ko/l =0. (187)
Below threshold (v < 0), the stationary solutions are

io=0, =N, (188)
while above threshold (v > 0)

o = 3(ic1/K0)v = 3Kk 1/Ko)(N — S0/, 11y = /Ko/I . (189)

Well above threshold, v > 71y, and so in order for the population of the lasing mode to be much
greater than that of the source mode one requires k; > .

Assuming that atoms leaking from the lasing mode are detectable (with unit efficiency) outside
the trap, the fluctuation properties of the laser could be investigated by measuring the correlations
between arrivals of atoms. The mean output intensity, in atoms per unit time, is simply (above
threshold)

I_: Kor_lo = %Klv . (190)

Normalised to the shot noise level of one, the intensity fluctuation spectrum is found to be

N{xo\? 421t
S =14+—— 191
(@) + 6<K1> 4%kt + 0’31 + %) + w*’ (191)

where ¢ is a normalised threshold parameter,

_N— Ko/r

\/Ko/r

This spectrum is non-Lorentzian and its bandwidth is determined by x4, not k. This is because the
origin of the fluctuations in the output atom flux is the thermal fluctuations in the number of atoms
in the source mode. From the above expression, one also sees that the intensity fluctuations are
above shot noise; just above threshold (¢ < 1), the noise fluctuations are extremely large, as
expected. Far above threshold, the excess noise at low frequencies is of order unity (since ko < Ky
but N > 1), which, although worse than for an ideal laser (which is shot-noise limited far above
threshold), is much less than for a thermal field, for which the noise would be of order (71)* > 1.

Far above threshold, phase fluctuations dominate intensity fluctuations and so, writing the

coherent field amplitude in the form o = \/nio ¢'’, the appropriate expression for the power
spectrum takes the form

(192)

Koflg

21

P(w) = @Jdr e " ap(t + T)oo(t)) ~

ZTC J~dreia)r<ei¢(t+t)i¢(t)> . (193)
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An approximate stochastic differential equation for the phase ¢(t) can be derived, via the
Fokker—Planck equation, as

b = /1) + </ (c0/20)e(0) , (194)

where the first term is due to collisions while the second is due to gain; #(t) and &(t) are independent
white noise sources and the parameter [ is given by

. 2V 3000N?

Tkl to) (199

It can be shown that, typically, | > x/(27,), and in the power spectrum,

T apey
P(w) = EW, (196)

[ gives the linewidth. Hence, the linewidth is obviously much greater than in an ideal laser above
threshold (r(/(2110)), and is in fact greater than the bare linewidth of the mode, x,. In spite of this,
the phase diffusion rate | may still be slow in the sense of being much less than the total loss rate of
atoms from the ground mode of the trap, i.e., it may still satisfy the inequality I > [, and hence the
system as a whole, according to the criteria specified earlier, can be regarded as an atom laser.

7.3.2. Strong collision regime

In the case of strong collisions, I > K, it is found that the intensity is well-defined and subject to
Poissonian fluctuations above threshold. However, the phase diffusion rate may be greater than the
output flux of atoms, i.e., [ > I, and hence, in this regime, the device would not be regarded as an
atom laser.

7.4. An atom laser based on optical cooling

A relatively simple and quite general model of an atom laser based on optical cooling has been
described by Olshanii et al. (1995) and we outline this model here. Atoms in an internal state a are
injected into the atom laser system at a rate R, with initial momenta of the order of or smaller than
hk. They decay via spontaneous emission into the internal state b and are then trapped by an
external potential forming a three-dimensional “box” of volume V. The density of states in
momentum space for this volume is V/(2rnh)3, and, allowing for the photon recoil associated with
spontaneous emission, the momenta of atoms in state b must lie within a sphere of radius p, = 2hk.
Hence, the number of levels |b,p) that can be reached by the incoming atoms is

V. dmpy 32nV

Ne=Gmr3 — 3 3 (197)

where 4 = 2r/k. The situation considered by Olshanii et al. (1995), and that we follow here, assumes
the limit ¥ > 4> [note that Spreeuw et al. (1995) have considered a similar atom laser scheme but
operating in the opposite limit].
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A rate equation for the mean occupation number n,(p) of a given state |b, p)» can be written in the
form

ip) = — p)(p) + 57 NoLL+ m(p)] = TN (198)

The first term describes the loss of atoms from the cavity and a loss rate of the form

7(P) = 5o + o |p|?/Pd (199)

can be assumed, modelling, e.g. (light-induced) velocity selective excitation from b to another
untrapped state.
The second term in Eq. (198) describes the populating of state |b,p> due to the decay

a — b + photon, (200)

where N, is the number of atoms in state a and, for simplicity, it is assumed that the decay rates into
each of the Ny, accessible levels have the same value y,/N,., [in a more precise treatment, these
rates would depend on the Franck—Condon factors describing the overlap of the initial atomic
wave function in state a with the trap wave functions for the states |b, p); see, e.g., Spreeuw et al.
(1995) and Moy et al. (1997)]. The factor [1 + ny(p)] accounts for both spontaneous and stimulated
emission into the state |b,p>.

The third term in Eq. (198) accounts for reabsorption of emitted photons, producing the
transition

b + photon - a. (201)

In this term, o is the absorption cross-section of a photon and N, denotes the number of photons
present in the volume V. Equations of motion for N, and for the number of atoms N, in state a are
given by

No = Ry = 7Nl + Ny/Nio) + NNy (202
. ocC
Nv: _yva+VaNa(1+Nb/N1ev)_VNva, (203)

where N, =Y ,ny(p) and y, ' ~ V'/3/c denotes the time of flight of a photon across the box of
volume V.

From the equations of motion for ny(p), N,, and N,, a steady state solution for n,(p) can be
derived in the form

1+ fu

>vb(p) —1+u

, (204)

ny(p) = <1 T f

a

where f = Ny/Niey, o = R,/Nie, (feeding rate per mode), and u = (6¢N,.,)/(y, V). To obtain a macro-
scopic population of the state |b,p = 0), a necessary condition is u < 1, so that the denominator in
Eq. (204) can in principle approach zero and hence n,(p = 0) can become very large. This condition
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Fig. 29. Population ny(p = 0) as a function of y,0/r, for various volumes V and for o = 40r,. From Olshanii et al. (1995).

amounts to the requirement that loss of atoms from the state |b,p = 0) due to photon reabsorption
is outweighed by gain in the lasing system.

Given that u < 1, the population n,(p = 0) exhibits a threshold as a function of the feeding rate
r.. Examples are shown in Fig. 29 for the case in which u = 0 and for several values of the volume
V. In the context of a possible experimental configuration, Olshanii et al. (1995) suggest the use of
two hyperfine ground states of an alkali atom for the states a and b, with atoms in state a prepared
in a magneto-optical trap and pumped into the state b via a Raman process. For the confining
potential in state b, one could use a magnetic trap or far-off-resonance dipole trap. Unfortunately,
the analysis outlined above does not examine the temporal statistics of the output beam of the
atom laser, and so, in particular, it is not yet clear what control over phase fluctuations is possible
and whether or not all of the proposed criteria for lasing can be simultaneously satisfied.

7.5. Output couplers for Bose—Einstein condensates

Output coupling obviously constitutes a vital element of an atom laser. The models outlined
above have not addressed specifics of the output coupling in any great detail, simply assuming the
existence of a loss mechanism from the lasing mode. Ballagh et al. (1997) have analysed a specific
scheme for output coupling from a magnetically trapped Bose—FEinstein condensate involving the
coherent coupling of different internal states of the condensed atoms (e.g., different ground
hyperfine levels), say |1 and |2, which “see” different trapping potentials. For example, atoms in
state |1) are confined by the magnetic field, while atoms in state |2) are not. Hence, given a trapped
condensate of atoms in state |1), a coherent output beam may be formed by coherently transferring
atomic population, via a radiofrequency or microwave field, to the state |2); atoms transferred to
this state then typically “fall out” of the trapping region. Using a mean field approach, based on
numerical solutions of the Gross—Pitaevskii equation (modified to incorporate the external driving
field), Ballagh et al. examined various parameter regimes for the external electromagnetic field.
Depending on the strength or detuning of the field, the densities of the two fractions (|1) and |2))
can show interesting spatial dependencies as a result of spatial variations in the pumping rate
caused by the trapping potential and by the (repulsive) collisional self- and exchange interactions.
This suggests useful ways of combining trap geometry with the external electromagnetic field
parameters to control the orientation and shape of the output beam.

On the experimental side, Mewes et al. (1997) have demonstrated precisely such an output
coupler for Bose-condensed sodium atoms, although in a regime where the pumping rates from
state |1) to state |2) are essentially uniform in space across the condensate. Using short resonant
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pulses of radiofrequency radiation, 0-100% of the atomic population could be transferred in
a controllable manner to the output state;?® atoms in the output state simply fall from the
condensate under the action of gravity, giving the output a distinct direction. In this way, output
pulses of coherent atoms are generated and the configuration can therefore be looked upon as the
realisation of a “pulsed atom laser.” As mentioned in the introduction, this demonstration of
coherent output coupling has now been complimented by the experimental confirmation of the
coherence of the output pulses, via the observation of matter-wave interference fringes from
overlapping condensates (Andrews et al., 1997b).

Returning to theoretical investigations, Zhang and Walls (1998) have now modelled the above
experiment in some detail, also using modified (multicomponent) versions of the Gross—Pitaevskii
equation, and obtain good agreement for, in particular, the density distribution of the output atom
pulses. Naraschewski et al. (1997) have also analysed a similar configuration to that described
above but assuming a very weak output coupling and a constant amplitude of the condensate wave
function (i.e., they assume that some form of repumping process is continuously refilling the
condensate), such that they can consider continuous-wave operation of their system (a modifica-
tion of this work taking into account condensate depletion, i.e., without repumping, has been given
by Steck et al., 1997). They find that the outgoing matter wave can be highly monoenergetic; this is
in contrast with the case of strong output coupling, as in the (pulsed) configurations of Ballagh et al.
(1997) and Mewes et al. (1997) where the output spectrum reflects the (much broader) momentum
spread of the initial trapped condensate wave function. Similar results have been obtained by
Hope (1997) and Moy and Savage (1997), who have also modelled output coupling from a
trapped condensate via light-induced transitions to an untrapped state [note that these authors
develop a theoretical approach that generalises the optical input—output formalism (Gardiner and
Collett, 1985)].

7.6. Higher-order coherence of Bose—Einstein condensates

The above-mentioned interference experiment of Andrews et al. (1997b) confirmed that their
condensates possess first-order coherence. Evidence for higher-order coherence, strengthening the
analogy between condensates and optical laser photons, has also been provided through careful
interpretation of some fundamental condensate properties, in particular, of the loss rate of atoms
from the condensate via three-body recombination (Burt et al., 1997) and of the mean field energy
of the condensate (Ketterle and Miesner, 1997).

As pointed out by Kagan et al. (1985) (see also Kagan et al., 1996), the atom loss rate due to
three-body recombination is directly related to the probability of finding three atoms close to each
other and can therefore act as a probe of the third-order correlation function

(PHr) P ) P ) P P(r))

3) _
g (l’,r,r) n(r)3 s

(205)

26 For a percentage between 0 and 100%, the state produced is a coherent superposition of trapped and untrapped
condensates; the scheme thus acts as a coherent beam splitter for matter waves.
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where n(r) = (P'(r)P(r)> is the atomic density. Importantly, the value of this function differs
between condensates and thermal clouds by a factor of 3! = 6; in particular, the value of g®)(r,r,r)
for a thermal cloud is a factor of six larger than that for a condensate, implying an atom loss rate
due to three-body recombination six times larger. The ratio of the noncondensate to the conden-
sate rate constants for this loss process was found by Burt et al. (1997) to be 7.4 + 2.0, confirming
the presence of at least third-order coherence in their condensates.

Similarly, Ketterle and Miesner (1997) have pointed out that the mean-field energy of a conden-
sate, <U), provides a direct measure of the second-order correlation function,
PP P Pr))

g(r,r) = ) , (206)

through the relationship

Wy = ()10 e . (207

where g'?(0) = g'®(r,r), assuming that g'®(r,7') depends only on r — . Re-analysing condensate
data from earlier experiments, they obtain values of g‘?(0) close to 1, as expected for a condensate
and differing from that of a thermal cloud, for which g*(0) = 2. The reduced value of ¢g'*(0) for
a condensate reflects reduced density fluctuations, in direct analogy with the reduced intensity
fluctuations of a (photon) laser in comparison with a thermal light source (see, e.g., Walls and
Milburn, 1994).

8. Conclusions

In this review, we have endeavoured to provide a broad overview of the various avenues of
theoretical research being pursued in the context of trapped dilute-gas Bose—FEinstein condensates.
At the same time, we have tried to incorporate reasonably detailed descriptions and explanations of
some of the more interesting condensate properties and behaviour revealed thusfar, including,
where possible, the comparisons that have been made between theory and experiment. The level of
agreement between theory and experiment has to date been quite impressive, although some
experimental results are already pointing to the need for more careful theoretical investigation in
certain regimes; €.g., excitations at finite temperatures and in the nonlinear regime. Of course, much
of the theoretical work detailed here does not yet have an experimental counterpart and might well
represent a huge experimental challenge. As we complete writing this review, however, we have
learned of yet another remarkable experiment in which alkali-gas condensates have been realised in
an all-optical dipole trap following the transfer of atoms from a magnetic trap (Stamper-Kurn
et al., 1997). Without constraints (for trapping) on the internal atomic hyperfine sublevel, this
configuration should enhance the outlook for a number of the proposals described earlier, for
example, those involving double condensate configurations, and certain output-coupling and
atom-laser schemes.
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As we are sure the reader will agree, the landmark alkali-gas BEC experiments of 1995 have
opened up a rich assortment of fascinating new possibilities for theoretical and experimental
investigation, addressing both fundamental issues in physics, such as broken gauge symmetry, and
practical applications, such as the atom laser. The next few years are likely to witness many more
significant developments in this field as further experiments are established, testing theoretical
predictions and revealing new and possibly unexpected phenomena. We hope that the present
review can serve as a useful progress report in this dynamic new regime of many-body quantum
physics research.
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Appendix A. Bose—Einstein condensation in a weakly interacting gas: Bogoliubov theory

Here we give an outline of the derivation of the elementary excitation spectrum of a weakly
interacting, homogeneous Bose gas. This derivation is due to Bogoliubov (1947), whose treatment
provided the first significant microscopic theory of such a system. Useful references are the books of
Huang (1963), March et al. (1967), and Lifshitz and Pitaevskii (1980). In second quantised form, the
standard model for a system of weakly interacting particles is described by a Hamiltonian of the
form

H= ﬁo + ﬁl (A.1)
with
H, =) E,ja, (A2)
P
B 1 A A A A
HI =5 Z UP1 P2P3P4a;1a;2apsa[14 s (A3)
P1P2P3Pa

where E, = p?/2m is the energy in the absence of interactions and d} (d,) is the boson creation
(annihilation) operator for a particle with momentum p. The interaction Hamiltonian, H,, describes
collisions between particles, i.e., two particles with initial momenta p; and p, collide and are
scattered into states with momenta p; and p,. It is common to assume that momentum is conserved
in the collision and that the interaction occurs over a very short range, in which case one can make
the substitution

U Yos

P1P2P3Ps - V Pitp2,pstps>

(A4)

where U, is a constant and V is the volume of the system.
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A.l1. Elimination of the condensate mode

We now assume that the condensate is macroscopically occupied, i.e., a large number of particles
are in the state with p = 0. More specifically, if N is the total number of particles and N is the
mean number of particles in the condensate, then N is of order N, while the population of any
nonzero momentum state is at most of order one. The Bogoliubov theory for determining the
excitation spectrum of the condensate assumes that the operators d, and 4§ can be regarded as

large c-numbers of magnitude \/N , and that only terms of order higher than 2 in d, and a{, need to
be retained in the Hamiltonian. So, in particular, one writes

Uo

. U,
AT AT A A AT A AT A AT A AT A AT AT A A A A AT A
H, ~ 7y dodododo + 1% Y. (2dya,dodo + 24" ,4_,d0d0 + dya’ ,dodo + d,d—,dod)) - (A.5)
p#0

Now, defining the number operator

Y At A 1 At A At A A 6

N=aoao+52 (ata, +at,a_,), (A.6)

‘p#+ 0
we can write
2 AT A \2 AT A AT A AT A AT A
N? ~(dpdy)” + Z (G,d,a0do + a’,d_,dodo) (A.7)
p#O0
At AT A A At A At A At A At A At a
= aga%aoao + dopdo =+ Z ( pa’,aoao + afl,afpaoao) (A 8)
p*O0

- U,

=57 avaly. (A9

(N? — abdo) + ==Y (@ a,abae + a',a-,aba, + aa

With the assumption N ~ N, and the c-number substitutions (N> — d§do) - N(N — 1) and
abdo — N, the total Hamiltonian thus becomes

UON(N - 1) 1 p2 UON AT A At A UON AT AT A A
=— 4+ = — roa_ —_— r ). (A1
H TG + > p;O o + % (aja, +at,a_,) + % (ajat, + a,a_,) (A.10)

A.2. Bogoliubov transformation

The Hamiltonian Eq. (A.10) can be diagonalised via the Bogoliubov transformation, whereby new
creation and annihilation operators Af and A, are defined through

a, =c,A, + 5,4, (A.11)
it =c,Af +5,4_, (A.12)
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with ¢,, s, real numbers satisfying ¢; — s, = 1. With a suitable choice of ¢, and s, the coefficients of
the terms 4,4_, and AJA", can be made to vanish in the transformed Hamiltonian to yield

H=E,+ Y 6,414, (A.13)
p*0
with
UoNIN —1) 1 p> UGN
Eg=—"—— "+ ——— A.14

gp=/<§—m+U;I'/N> —(ULVN> . (A.15)

The modified energy spectrum now has a non-zero minimum energy E, and an elementary
excitation spectrum given by &,. At sufficiently low energies, such that the dominant particle-
particle interaction is s-wave scattering, the interaction strength U, takes the form

4rth?a

Uy = : (A.16)
m

where a is the s-wave scattering length. The elementary excitation spectrum can thus be rewritten
as

= % /p* + 16nth?ap , (A.17)
where p = N/V is the particle density. Writing |p| = fik, &, has the following limits:

{« /4naph*k/m, for k — 0,
@@k ~

A.18
h2k?/2m, for k — 0. (A-13)

The long-wavelength expression (k — 0) corresponds to that of a sound wave, or phonon, with

velocity ¢ = /4mnaph/m, while the opposite limit simply yields the free-particle spectrum.

Note that the above results are derived with the assumption that virtually all of the particles are
in the ground state. Hence, it is to be expected that the expression for &, given above is valid only
for the first few excited states. With a more general treatment, for which a finite fraction (1 — f)
of the particles is assumed to be in excited states (although with no single excited state
macroscopically occupied), Huang (1963) shows that Eq. (A.17) should be modified to

&, = % /p? + L6nh2apf. (A.19)

Finally, extensions of the Bogliubov method to the case of spatially inhomogeneous condensates
can be found, e.g., in Fetter (1996) and Lewenstein and You (1996b). Note that Gardiner (1997) has
also provided a generalisation of the Bogoliubov method that applies to an exact number N of
condensate particles (i.e., is particle-number-conserving).
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