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Abstract. We review recent developments in quantum and classical soliton theory, leading to
the possibility of observing both classical and quantum parametric solitons in
higher-dimensional environments. In particular, we consider the theory of three bosonic
fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic
fields in a nonlinear optical medium this corresponds to the process of sum frequency
generation (viaχ(2) nonlinearity) modified by theχ(3) nonlinearity. Potential applications
include an ultrafast photonic AND-gate. The simplest quantum solitons or energy eigenstates
(bound-state solutions) of the interacting field Hamiltonian are obtained exactly in three
space dimensions. They have a point-like structure—even though the corresponding classical
theory is nonsingular. We show that the solutions can be regularized with the imposition of a
momentum cut-off on the nonlinear couplings. The case of three-dimensional matter-wave
solitons in coupled atomic/molecular Bose–Einstein condensates is discussed.

Keywords: Nonlinear optics, atom optics, classical parametric solitons, spatio-temporal, two
and three dimensional, optical logic gates, quantum solitons, atomic and molecular
Bose–Einstein condensates

1. Introduction

The classical view of solitons is that they are stable nonlinear
waveforms, which are spatially localized, yet show neither
dissipation nor dispersion. In some moving frame with time
coordinateτ , this implies that for a complex fieldφj , the
time-dependent solution must satisfy:φj (τ ) = φj (0)eiωj τ .
An early example is the nonlinear wave in shallow water [1],
described by the KdV equation [2]. In applied mathematics,
it is common to use an even more restrictive definition, with
conditions on the collisions as well. In this case, the solutions
we refer to as solitons, would be called ‘solitary waves’ or
just ‘lumps’ [3]. A modern example is the short optical pulse
in a single-mode fibre, which is rather precisely described
by the nonlinear Schrödinger (NLS) equation [4], and is the
subject of many recent experiments [5]. These, however, are
restricted to one space dimension.

In the quantum domain, there must be corresponding
objects, and one may even expect these to show more
structure than their classical counterparts. One view [6] is that
a quantum soliton is an energy eigenstate of a local quantum
field theory, which has a spatially localized correlation
function, so that: Ĥ |9〉 = E|9〉. It is known that, at
least for sufficiently weak couplings, a quantum soliton exists
for every classical soliton [6]. Early examples of this were
various theoretical models in high-energy physics. However,
until recently, the experimental evidence for quantum effects
in solitons was extremely scarce. This situation has changed
dramatically due to the prediction [7] and observation [8]

of quantum effects in optical pulses in fibres, which can be
regarded as photonic bound states.

Despite these developments, there are many unsolved
problems in soliton theory. The following questions seem to
be of particular significance:

• When can classical solitons form in more than one
dimension?
• When can quantum solitons physically occur?
• Are there essential differences between quantum and

classical solitons?
• Do solitons require integrable dynamical equations?
• Are there applications—for example, in communica-

tions or computing?
• Is there any novel physics to be found, related to different

quantum statistics?

In this paper, we review some recent developments
which have already started to give answers to these questions.
In particular, there is an important difference in modern
soliton physics, as compared with that in earlier decades.
Due to outstanding technical developments in quantum optics
[9,10] we are now able to generate and observe solitons under
conditions where operational measurements of both classical
and quantum effects are routinely possible [11]. This means
that soliton theory is not just a branch of applied mathematics,
but is a true physical science in which theoretical predictions
often lead immediately to an experimental verification in the
laboratory.
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Accordingly, we focus here on the novel and unexpected
features that have been found in both classical and quantum
parametric field theories, which lead to higher-dimensional
solutions that appear to be experimentally accessible. As well
as reviewing some earlier work on degenerate parametric
field theory, we give new results that are applicable to the
nondegenerate case, and are particularly relevant to Bose–
Einstein condensates (BECs) or atom lasers [12,13].

Before moving to the parametric case, we briefly remind
the reader of the salient features of optical pulse propagation
in single-mode fibres. The classical equations, which are
approximately valid at large photon number, are given by:

i
∂8

∂t
= − h̄

2m

∂28

∂x2
+ χ8†82. (1)

This is the NLS equation, where8 = 〈8̂〉 is the mean photon
field amplitude,m = h̄/ω′′ is the effective mass (ω′′ is the
dispersion coefficient;m > 0 for anomalous dispersion),
andχ is the coupling constant proportional to the third-order
nonlinearityχ(3). The soliton that occurs form/χ < 0 is
observed to propagate with solution|8| ∝ sech(αxv), where
x = xL − vt , xL is the laboratory frame coordinate andv is
the group velocity.

In quantum theory, there exists a set of bound states of
this quantum field, which has a Hamiltonian [14] (in a frame
moving at the group velocity) given by:

Ĥ = 1
2

∫
dx [h̄2|∂8̂†/∂xv|2/m + h̄χ8̂†28̂2]. (2)

The corresponding di-photon eigenstate—as well as bound
states with any number of photons—was discovered by Lieb
and Liniger [14]:

|ϕ(2)〉 =
∫ ∫

dx1 dx2 e−λ|x1−x2|8̂†(x1)8̂
†(x2)|0〉, (3)

whereλ is a constant determined by the coupling strength
and effective mass. However, a quantitative investigation
shows that this di-photon solution is far too weakly bound
to be observable in fibres. To relate these solutions to
physical experiments, it is necessary to take into account the
fact that practical experiments typically involve 109 photons
or more. Under these conditions, the bound states exist,
but are not easily distinguished from each other, and are
subject to disruption by thermal phonons. Thus, the simplest
experiments observe classical soliton behaviour, which
can be regarded as a superposition of quantum solutions
[15]. These classical solitons are used (for example) in
experimental communications systems. Predicted quantum
effects [7] require measurement of quantum interference
between the bound states. This leads to the observation
of quantum squeezing [8, 16], quantum non-demolition
collisions [17], and more recently—photon anti-bunching
[18,19].

2. Classical parametric system

In this section we review classical parametric soliton theory
[20]. These solitons have a number of unusual features
which have made them the subject of much recent theoretical

[21–29] and experimental [30] interest. First, these nonlinear
solitary waves involve a wave coupled to its second harmonic,
and hence rely on the second-order (‘parametric’) orχ(2)

electromagnetic nonlinearity, rather than theχ(3) nonlinearity
of conventional optical fibre solitons. This means that the
nonlinear phase-shift is proportional toE, rather than toE2.
This novel feature promises to allow an improved scaling
behaviour, allowing solitons to form at lower intensities,
than in the case of conventionalχ(3) solitons. Secondly,
parametric solitons have a great deal of stability in higher
dimensions, again unlike the conventional solitons of the NLS
equations. Other optical solitary waves that are known to be
stable in higher dimensions have the drawback of usually
involving either very high intensities, or nonlinearities with
slow response times, rather than the FS electronic response
of typical parametric nonlinear media.

As against these advantages, we note that higher-
dimensional (D + 1) spatio-temporal solitons in parametric
media [31–36] require positive (i.e. anomalous) dispersion at
both carrier frequencies, as well as group-velocity matching
between the frequencies. These requirements are difficult
to satisfy with the usual nonlinear crystals, which are
generally optimized to operate at optical, rather than infra-
red wavelengths. At these short wavelengths, most optical
materials have normal dispersion, and therefore cannot form
higher-dimensional spatio-temporal solitons. For this reason,
so far experimental observations have been restricted to the
spatial parametric solitons.

Recent theoretical developments have shown that these
restrictions on bulk material properties can be greatly relaxed
if structured material is used, in which the dispersion is
enhanced using an embedded dielectric Bragg grating to
create band-gaps near the frequencies of interest. Thus, it
seems that spatio-temporal parametric solitons are feasible
in higher-dimensional structured materials [37–40], even
when prohibited by the bulk material dispersion properties.
Solitons in enhanced dispersion devices of this type generally
have greatly reduced interaction lengths, when compared
with the corresponding solitons of the same duration, in bulk
media. A possible application of these new solitons, to take
advantage of these fast response times and short interaction
lengths, is in all-optical logic gates or multiplexors.

Of more fundamental physical interest, is the realization
that this type of interaction also occurs in nonlinear atom
optics or BEC systems. Here the parametric coupling
describes a coherent process of dimerization (diatomic
molecule formation), that can lead, for example, to formation
of a molecular BEC from an atomic condensate. BEC
systems have potentially even stronger nonlinear interactions
than in the photonic case. This allows a new class of
nonlinear classical and quantum dynamics to be investigated,
by taking advantage of recent developments in ultra-cold
atomic trapping and cooling, leading to the observation of
an atomic BEC [12].

2.1. Parametric ‘simultons’

The equations for ‘simulton’ (simultaneous solitary waves)
propagation in nondegenerate group-velocity matched planar
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((2 + 1)-dimensional) waveguides [32,33,35,44] are:

∂φj

∂ξ
= i

[
∂2φj

∂ζ 2
+
∂2φj

∂τ 2
− φj + φ∗3−jφ3

]
, (j = 1, 2),

∂φ3

∂ξ
= i

[
1

σ

∂2φ3

∂ζ 2
+

1

2

∂2φ3

∂τ 2
− γφ3 + φ1φ2

]
,

(4)
whereφ1 andφ2 describe scaled optical fields at frequencies
ω1 and ω2 ' ω1 respectively, andφ3 denotes the sum
frequency field atω3 = ω1 + ω2. The scaled fields
have the property that|φj |2 is proportional to the photon
number flux in thej th mode. Typically, we are most
interested in the case of degenerate frequencies (ω1 = ω2),
and orthogonal polarizations, since this allows either input
signal to be treated equivalently. Orthogonal polarizations
can be rotated into each other with simple linear dielectric
techniques. The termγ is a phase mismatch term, between
the signals and the second harmonic, andσ describes the
dispersion ratio between the second harmonic and signal
fields. All the coordinates in these equations have been
rescaled into a dimensionless form, as described in [35];
τ = (t − x/v)/t0 indicates the elapsed time,ζ = y/y0—
the transverse direction, whileξ = x/x0 is the scaledx-
coordinate. Note that the third-order nonlinearity has been
neglected in the above equations.

The most well-studied case of spatio-temporal paramet-
ric solitons is that of the ‘radially symmetric’ solutions, in
which σ = 2, so that the ratio of dispersion matches the
ratio of diffraction. This allows for solutions that have a ra-
dial symmetry in the pseudo-radial coordinater =

√
τ 2 + ζ 2.

Substituting the ansatzφj = φj (r) into the above equations
and assumingφ1 = φ2 gives:

i
∂φ1

∂ξ
+
∂2φ1

∂r2
+

1

r

∂φ1

∂r
− φ1 + φ∗1φ3 = 0,

i
∂φ3

∂ξ
+

1

2

[
∂2φ3

∂r2
+

1

r

∂φ3

∂r

]
− γφ3 + φ2

1 = 0.

(5)

Therefore one can easily prove that there exist a family
of simulton solutions for arbitrary value ofγ by following
the known topological arguments [35] which interpret the
coupled equations as a Newtonian system describing the
motion of a virtual particle in two space dimensions. A
non-topological (bright) simulton solution is represented as
a closed path that passes through the point (0,0). In one
dimension, the path becomes a straight line whenγ = 1.
Compared with one-dimensional spatial simultons, these
two-dimensional simultons usually have higher amplitudes in
order to compensate for the energy loss of the virtual particle
due to the presence of ‘friction’. The path also becomes a
straight line atγ = 1 in higher dimensions.

In the two-dimensional case, soliton solutions were
found recently [33, 44, 45] and were observed by Torruellas
et al [30] experimentally in a configuration involving purely
spatial solitons in bulk media, rather than the present case of
spatio-temporal solitons. Three dimensional simultons were
also discovered both approximately [32] and numerically
[35]. In addition, these two- and three-dimensional simultons
can be approximated by a Gaussian ansatz using a variational
method [36], as we discuss later in more detail.

Figure 1. Y-geometry of colliding logic signals in a planar
waveguide, showing inputs and output.

3. All-optical parametric logic gate

In order to illustrate a possible application of this type of
soliton, we consider an AND-gate operating via non-collinear
optical pulse collisions at the boundary of a nonlinear planar
waveguide. This can be thought of as a Y-geometry, in which
two pulses are input at an angle to each other, with the output
logic pulse appearing at the bisector of the two input angles.
This type of operation has several potential advantages over
other proposed soliton or parametric logic gates [46–48].
Most importantly, the use of a Y-geometry means that the
input lines to the logic gate can be easily and efficiently
excited using planar waveguiding techniques. This is shown
in figure 1. In addition, the use of temporal solitons has
the advantage relative to purely spatial solitons, that short
digital pulses are the natural signalling elements of the device.
The combination of nonlinearity and dispersion provides an
automatic re-shaping of the output signal, that can be then
regenerated and reused in subsequent logic steps. Ideally,
the two signals would have an orthogonal polarization, so
that the interaction is not phase sensitive.

Here, we demonstrate numerically that an all optical
AND-gate can be implemented by using a(2+1)-dimensional
spatio-temporal simulton. The system simulated is a planar
waveguide in which light is confined along one space
dimension. In figure 2, we launch a Gaussian pulse
with a small initial transverse velocity if the waveguide
is viewed from above. Due to material dispersion, the
pulse width increases and the pulse amplitude decreases
while propagating. From figure 1, if we have a detector
at position 1, no (or very little) signal would be detected.
In figure 3, we launch two Gaussian pulses simultaneously,
both with the same parameters as those of the pulse in the first
numerical experiment, except that one of the pulses has an
opposite transverse velocity. This time, a simulton is formed
and stable propagation of the simulton is observed. If we
have a detector at position 1, a signal would be detected.

It is important to note that no second-harmonic field is
input. This is generated by the pulse–pulse interactions inside
the nonlinear waveguide, so that the essential signalling
element is a pulse of just one frequency, as in most optical
communications systems. While the inputs have different
polarizations, the existence of all-optical techniques for
efficient polarization rotation, means that the two input
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Figure 2. Propagation of a single input pulse, showing a strongly
dispersed pulse being absorbed at the waveguide boundary. Only
the cross section ofv1 is shown here. The initial pulses were:
v1 = 7.5 exp(−r2/4), v2 = 0, v3 = 0, with γ = 1 andσ = 2.

Figure 3. Propagation of two input pulses, forming a stable
coupled solitary wave which is neither dispersed nor absorbed,
resulting in an AND operation. (a) Cross section ofv1; (b) cross
section ofv3. The initial pulses were:v1 = 7.5 exp(−r2/4),
v2 = 7.5 exp(−r2/4), v3 = 0. Both input pulses,v1 andv2, are
moving towards each other with a relative speed of 0.2 and an
initial distance of 0.2 between them atξ = 0. Note that there is no
second harmonic,v3, atξ = 0. As before,γ = 1 andσ = 2.

signals are effectively interchangeable. The output has very
similar characteristics to the input (after the second-harmonic
is discarded), and overall gain could be implemented via
further interactions with a second-harmonic pump. Thus, the
desirable properties of electronic gates can be implemented
in this logic, except with greater speed.

In summary, we have demonstrated that an all optical
AND-gate can be implemented using the collision of two
pulses in a planar nonlinear parametric waveguide. The
switching mechanism is not phase sensitive and therefore has
advantages over other phase sensitive switching proposals. It
is not strongly limited by relaxation times, since the electronic

nonlinearities are very fast, being of the order of fs. Due to
the use of aχ(2) rather thanχ(3) nonlinearity, we expect
power requirements to be extremely low, with pulse energy
requirements in the pJ range. This desirable combination of
low switching energies and fast response times is difficult
to implement usingχ(3)-type nonlinearities. The device
size is determined by the dispersion characteristics of the
waveguide, and can be reduced by using enhanced dispersion
devices based on Bragg gratings [37–40].

4. Quantum parametric system

Quantum solitons [6] or bound states of interacting fields
are generalizations of the nonlinear solitonic solutions of
classical wave theory, to include quantum fields. Exactly
soluble cases include the many-body bound states of
bosons interacting viaδ-function interactions in one space
dimension. This model (often called the NLS model) was
solved by Liebet al [14]. Recently it was predicted that
this soluble model could lead to experimentally observable
quantum effects including quantum squeezing in optical fibre
solitons [7, 15]. This prediction has now been verified
experimentally [8].

Exactly soluble models are generally restricted to one
space dimension—except for Laughlin’s highly innovative
theory of two-dimensional electron gas in an external
magnetic field [49], which was able to explain the fractional
quantum Hall effect [50]. Similar techniques have been
recently proposed for treating interacting Bose gases in higher
dimensions [51], in the limit of very weak couplings. Other
exact solutions in two or three dimensions are usually for
physically inaccessible models, like the quantum Davey–
Stewartson model [52].

In a recent paper [53], we showed that it is possible
to obtain an exact solution in one, twoand three space
dimensions, in a nonlinear quantum field theory that includes
the most fundamental property that distinguishes quantum
mechanics from quantum field theory—that is, the ability to
create and destroy particles. The simplest cubic interaction
involving two boson fields—the parametric interaction of
the form9†82—was analysed for bound states in higher
dimensions, resulting in soluble cases with unusual and
unexpected properties. This degenerate parametric theory—
with similarities to the Friedberg–Lee [42] model of high-TC

superconductivity—has bound states in one space dimension
[54], but is unstable (like the NLS model with an attractive
δ-function potential) in higher dimensions. However, unlike
the NLS model, the instability does not occur at the classical
level [31]. With the inclusion of an additional (repulsive)
quartic interaction term in the Hamiltonian, a rigorous lower
bound to the energy was proved to exist, and we demonstrated
the existence of exact two-particle bound states in higher
dimensions. These new types of quantum solitons have
a finite binding energy, but the corresponding two-particle
wavefunction has a zero radius; the point-like structure of
these bound states can be termed a ‘quantum singularity’.
With a momentum cut-off imposed on the couplings, the
bound states develop a finite radius.

In this paper, we extend these earlier results to include
the non-degenerate case of parametric interaction of three
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distinct fields with either Bose or Fermi statistics (rather than
two bosonic fields). Once again, the results demonstrate
the existence of exact two-particle eigenstates in higher
dimensions, having a point-like structure in space, with a
finite energy. These hitherto unexpected eigenstates of a very
simple form of quantum field theory appear to us to provide
a theoretical counter-example to the usual belief in quantum
field theory, that composite structures can be necessarily
identified by their extended spatial properties. We also
discuss the case of interactions in hybrid atomic/molecular
Bose–Einstein condensates, where a cut-off is necessarily
present, and extended spatial structure can form.

Here we give a summary of results in three space
dimensions. A complete derivation in more general cases
will be given in [55].

4.1. Hamiltonian and di-photon eigenstate

The quantum effective Hamiltonian (Ĥ = Ĥ0 + Ĥint) we
consider has the following simplified form [7,41]:

Ĥ0 = h̄
∫

d3x

[ 3∑
i=1

h̄

2mi
|∇8̂i |2 +1ω8̂†

38̂3

]
,

Ĥint = h̄
∫

d3x [χ(8̂18̂28̂
†
3 + 8̂†

18̂
†
28̂3) + κ8̂†

18̂18̂
†
28̂2].

(6)
Here8̂1,2 and8̂3 represent three quantum fields of masses
mi (i = 1, 2, 3). Their commutation relations in the case
of Bose fields are given by [8̂i(x), 8̂

†
j (x
′)] = δij δ(x− x′).

Although we have specified Bose statistics for definiteness,
we note here that some of our main results for quantum
solitons are also valid if the fieldŝ81 and 8̂2 obey Fermi
statistics and anticommutation relations, as in the ‘s-channel’
model of Friedberg–Lee [42]. Similarly, the case where8̂2

and 8̂3 are fermionic (as in the Lee–Van Hove model of
nuclear interactions [43]) is also tractable. In addition, ¯h1ω

is the formation energy of the field̂83, whileχ andκ are the
coupling constants responsible for the parametric and quartic
couplings, respectively. The role of the higher-order (quartic)
interaction term that we have included in the quantum theory
will be discussed below.

An example of a physical system that can directly be
treated by the Hamiltonian (6) is a coupled atomic/molecular
BEC, where the parametric coupling represents a coherent
process of formation of di-atomic molecules (8̂3-field) from
pairs of atoms (̂81 and8̂2 fields) either of distinct atomic
species, or in distinct quantum states. The quartic term
represents atomic S-wave scattering [56], such that

κ = 2πh̄a

m
, (7)

wherea is the S-wave scattering length between two atoms
from different species andm = m1m2/(m1 + m2) is the
corresponding reduced mass. In the case of identical8̂1

and8̂2 fields (i.e. degenerate interaction) this matter-wave
analogue of the nonlinear optical process of frequency
doubling has been considered in [57, 58], while the results
of the present nondegenerate case are discussed in section 5.

Employing the above Hamiltonian with photonic
interactions (in which case the couplingsχ and κ are

proportional to the Bloembergen quadratic and cubic
nonlinearities,χ(2) andχ(3), and1ω is a phase mismatch
term) would first require that the longitudinal coordinate, say
x, is defined in a moving frame withx = xL − vt , wherexL
is the laboratory frame andv = ∂ωi/∂k is the group velocity
which is assumed equal at all three carrier frequenciesωi of
the fields. In addition, the effective masses will be, in general,
different in the longitudinal and transverse directions,mi‖ 6=
mi⊥; the effective longitudinal massm

i‖ = h̄/ω′′i is due to
the group-velocity dispersion, whereω′′i = ∂2ωi/∂k

2 is the
dispersion coefficient in theith frequency band, while the
transverse massmi⊥ = h̄ωi/v

2 is due to diffraction. This
means that the kinetic energy terms in the above Hamiltonian
must be modified, to incorporate this asymmetry, according
to: (1/mi)∇2 → (1/m

i‖)∂
2
x + (1/mi⊥)∇2

⊥. In this paper
we only consider the symmetric casemi‖ = mi⊥ ≡ mi ; the
general asymmetric case and required modifications (similar
to those in [53]) of the corresponding results will be treated
elsewhere [55].

To construct the general candidate for the eigenstate to
the Hamiltonian (6) we note that the parametric interaction
here conserves a generalized particle number (Manley–Rowe
invariant) equal to:N̂ = ∫ d3x [|8̂1|2 + |8̂2|2 + 2|8̂3|2]. We
therefore search for states that are eigenstates ofĤ andN̂ . In
the case of two-particle bound state (N = 2), that we study
in this paper, this must be a superposition state of the form:

|ϕ(2)〉 =
[ ∫

d3xP(x)8̂†
3(x)

+
∫ ∫

d3xd3yQ(x,y)8̂†
1(x)8̂

†
2(y)

]
|0〉, (8)

whereP andQ are one- and two-particle wavefunctions,
respectively.

We note that the interaction part of the Hamiltonian
(6) could also contain other quartic interaction terms, such
as self-interaction of thê8i fields and cross-interaction
between the8̂1(2) and 8̂3 fields. These have no effect on
the two-particle eigenstates studied here, so that we only
consider the quartic cross-interaction between the fields8̂1

and 8̂2. Operating on equation (8) with the Hamiltonian
(6) one can obtain that the eigenvalue problemĤ |ϕ(2)〉 =
E(2)|ϕ(2)〉 is equivalent to a set of differential equations.
To solve these equations we introduce the relative and
centre-of-mass coordinates according to:r = x − y,
R = (m1x + m2y)/(m1 + m2). Taking into account
translational invariance, we may then assume thatP(x) =
P0 exp(iK · x), whereK is the soliton momentum. As a
consequence,Q(x,x) will then be proportional toP(x).
Hence, we may look for the general expression ofQ(x,y) =
g(r)P (R). Dividing the energy into centre-of-mass and
relative componentsE(2) = Ec + Er , we then solve the
equation forP(R), yieldingP(R) = P0 exp(iK ·R), with
K2 = 2(m1 +m2)Ec/h̄

2. As a result, we obtain:

E(2) = h̄2K2/(2m3) + h̄1ω + h̄χg(0). (9)

The remaining equation, for theg(r)-function, is
rewritten as

1

2m
∇2g(r)− µ2g(r) = 1

h̄
[χ + κg(0)]δ(r), (10)
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where we have introduced a reduced massm = m1m2/(m1 +
m2), which we note differs from the conventional definition
by a factor of two. In addition, we have definedµ2 =
−Er/h̄2 = K2/[2(m1 + m2)] − E(2)/h̄2, implying that the
following simultaneous equation must be satisfied:

E(2) = h̄2K2

2m3
+h̄1ω+h̄χg(0) = h̄2K2

2(m1 +m2)
−h̄2µ2. (11)

Hereµ must be real and positive for a localized bound
state solution, with

√
2mµ representing an inverse scale

length, and ¯h2µ2 can be interpreted as the binding energy
of the soliton with the momentumK.

Equations (10), (11) can easily be analysed using
the Fourier transform method. In this approach we seek
for a solution to equation (10) in the formg(r) =∫

d3kG(k) exp(ik·r)/(2π)3, wherer = |r|. Expanding the
δ-function into a Fourier integral, we then obtain the Fourier
transform equivalent to equation (10), solving which we find:

g(r) = − q

(2π)3

∫
d3k

exp(ik · r)
µ2 + k2/(2m)

, (12)

whereq ≡ [χ + κg(0)]/h̄.
Using the definition ofq, we then solve forg(0) and

obtaing(0) = −χ [κ + h̄/f (µ)]−1, where

f (µ) = 1

2π2

∫ ∞
0

dk
k2

µ2 + k2/(2m)
. (13)

This integral diverges; a strict treatment of this
divergence, as a mathematical limit, is given in the next
section, where it is attributed tokmax → ∞, with kmax

being the upper limit in the integral. Hence we find that
g(0) = −χ/κ, and the energy eigenvalueE(2) is given by:

E(2) = h̄2K2

2m3
+ h̄1ω − h̄χ

2

κ
= h̄2K2

2(m1 +m2)
− h̄2µ2. (14)

With respect toµ, this equation always has one positive
solution if the following conditions are met:κ > 0 and
1κ − h̄χ2 < 0, where1 ≡ h̄1ω + h̄2K2/(2m3) −
h̄2K2/[2(m1 +m2)].

With the above result forg(0) it also follows thatq = 0,
and hence (see equation (12))g(r) = 0 if r 6= 0. That is, the
exact bound state solution in three dimensions has a point-
like (zero-radius) structure, which is in the relative position
of the8̂1 and8̂2 quanta.

4.2. Cut-off dependent results

The zero-radius behaviour of the two-particle quantum
solitons in three space dimensions represents a rather unusual
situation, since the classical counterpart of the bosonic theory
has well-behaved, stable multidimensional nonlinear-optical
soliton solutions [31]. This leads to the ‘paradox’ of how such
a quantum field theory can describe real physical processes.
To resolve this paradox, we note that physical applications
usually involve some type of momentum cut-off.

In the case of nonlinear atom optics interactions, that
we focus on here, the minimum relevant length scale for
the cut-off kmax is the S-wave scattering lengtha (so that

kmax . 2π/a) [56], and a cut-off also occurs in cases where
fermionic fields are involved [42]. The eigenvalue problem
Ĥ |ϕ(2)〉 = E(2)|ϕ(2)〉 can now be analysed directly, in Fourier
space, by introducing a cut-off dependent Fourier transform
of g(r) = ∫ kmax

|k|=0 d3kG(k) exp(ik·r)/(2π)3, so that the two-
particle eigenstate in Fourier space is written as:

|ϕ(2)(K)〉 =
[
a

†
3(K) + (2π)−3/2

∫ kmax

|k|=0
d3kG(k)

×a†
1

(
m1K

m1 +m2
+ k

)
a

†
2

(
m2K

m1 +m2
−k
)]
|0〉, (15)

whereai(k) is the Fourier component of̂8i , and the cut-off
is in the relative momentum of the fieldŝ81 and8̂2.

The simultaneous equations for the eigenstate still have
the form of the Fourier transform of equations (10) and
(11), except that they are now valid for|k| < kmax. In
order to evaluate the binding energy and the effective radius,
we next solve these equations forg(0), and obtaing(0) =
−χ [κ + h̄/f (µ, kmax)]−1. Here the cut-off structure function
is given by:

f (µ, kmax) = 1

(2π)3

∫ kmax

|k|=0

d3k

µ2 + (k)2/(2m)

= m

π2

[
kmax− µ

√
m tan−1

(
kmax

µ
√

2m

)]
, (16)

and thus has a linear divergence askmax→ ∞. The effect
of this divergence depends on whether or not the additional
quartic interaction is present. If it is present (withκ > 0),
there are exact solutions without cut-off (i.e.kmax → ∞),
andg(0) = −χ/κ, so that the energy eigenvalueE(2) takes
the form of equation (14), andg(r) = 0 if |r| > 0. In other
words, the solution has a finite energy (unlike the energy
divergence in the NLS model with an attractiveδ-function
potential) but zero radius in the limit ofkmax → ∞. If,
however,κ 6 0, we must impose a finite cut-off on the
couplings to prevent an energy divergence. Simultaneously,
a finite cut-off prevents singularities in space.

With a finite cut-off, the general result for the energy
eigenvalueE(2) is given by:

E(2)(kmax) = h̄2K2

2m3
+ h̄1ω − h̄χ2

[
κ +

h̄

f (µ, kmax)

]−1

= h̄2K2

2(m1 +m2)
− h̄2µ2, (17)

where µ must be positive for a localized bound state.
Analysis of this equation shows that a positive solution for
µ is always available, ifκ > 0 and1[κ + π2h̄/(mkmax)]
− h̄χ2 < 0.

In the simplest case ofκ = 0 and1 = 0, and in the
limit kmax� µ

√
2m one can write down simple approximate

results for the binding energy:

Eb = h̄2µ2 ' χ2mkmax

π2
. (18)

The effective radius of the quantum soliton is defined
asR = 1/(µ

√
2m), since this determines the characteristic

distance over which the two-particle wavefunction can decay.
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5. BEC interactions

An example of a physical system that can directly be
treated by the Hamiltonian (6) is a coupled atomic/molecular
BEC, where8̂1,2 represent two atomic fields,̂83 is the
molecular field,m1,2 andm3 are the atomic and molecular
masses (m3 = m1 + m2), the coupling constantχ relates
to the molecular formation (coherent dimerization) rate,κ

is the effective cross-scattering between the atoms of two
different species, and ¯h1ω is the bare formation energy
of the molecular species. We note that the Hamiltonian
should also contain quartic terms due to scatterings of
atoms within each species, as well as molecule–molecule
and atom–molecule scattering terms. These, however, do
not affect the two-particle quantum soliton solutions given
earlier. In the many-particle regime, that we treat below
variationally, we neglect the contribution of these quartic
couplings as compared to theκ-coupling or assume a
low particle density limit. Physical mechanisms that can
realize coherent atomic dimerization and produce ultra-
cold molecules include Feshbach resonance and Raman
photoassociation [59,60]. Feshbach resonances have already
been observed [61], while experiments of this type with the
Raman photoassociation are underway [62] in the case of
homogeneous (degenerate) BEC the theory of which is given
elsewhere [57,58,63].

In such coupled atomic/molecular BEC systems the two-
particle (di-boson) quantum soliton solutions are ‘dressed’
molecules each of which exists in a superposition with a
pair of atoms. With a characteristicχ -value estimate of
aboutχ ∼ 10−6 m3/2 s−1 [60, 62, 63], the atomic masses
m1 ' m2 ∼ 10−25 kg, and the longest S-wave scattering
length a ∼ 5 nm, equation (14) results in the quantum
soliton binding energy of:Eb = h̄χ2/κ ' 10−11 eV,
for 1ω = 0. If we include both effects of the quartic
repulsive termκ = 2πh̄a/m and the momentum cutoff, and
assume that the scattering lengtha provides a natural cutoff
at kmax∼ 2π/a, then the binding energy from equation (17)
is reduced (for1ω = 0) to Eb ' 4h̄χ2/(5κ), which is
very close to the idealized result from equation (14) and
is comparable to achievable temperatures in current BEC
experiments.

Of more importance, from the point of view of BEC
experiments, areN -particle eigenstates and the ground state
energy of this quantum many-body system. While this is
a difficult problem, some important results can be obtained
using a variational approach. Here we consider two important
examples: (i) a variational ansatz that corresponds toN/2
(where we assumeN is even) independent di-bosons [58],
and (ii) a coherent or mean-field theory (MFT) ansatz. A
remarkable result that emerges with the treatment of the first
type of ansatz is that, in the limitkmax→∞, it turns into the
exacteigenstate and provides the exact ground state energy
of: E(N) = (N/2)E(2) = h̄(N/2)[1ω − h̄χ2/κ]. The
ground state energy has no lower bound asκ → 0. This is
in contrast to the mean-field behaviour corresponding to the
classical Hamiltonian energy. The classical Hamiltonian is
known to have rigorous lower bound and to support classical
solitons [31].

With a finite cut-off, the ansatz corresponding toN/2
independent di-bosons, is no longer the exact eigenstate, and

therefore does not necessarily result in the lowest possible
energy. The corresponding variational estimate of the energy,
in three dimensions and in the low density limit, is (for
1ω = 0):

Ẽ(N) = (N/2)E(2)(kmax)− 2Nh̄χ2/(5κ). (19)

The second type of ansatz that we employ here—
the coherent or mean-field theory ansatz|ϕ(N)C 〉 =
exp[

∫
d3x

∑3
i=18i(x)8̂

†
i (x)]|0〉—may provide a lower

energy at largeN . To show this, we use trial functions8i(x)

in the form of Gaussians, and assume that81(x) = 82(x).
The final result for the corresponding minimum energy is
considerably simplified in the region where the parametric
coupling is dominant, so that one can neglect the terms due
to1ω and the inter-atomic scatteringk (as well as the intra-
atomic, intra-molecular and atom–molecule scatterings). In
this region, and form3 = m1 + m2 andm1 = m2 (so that
m3 = 4m), we obtain a coupled atomic/molecular Bose
condensate minimum energy of:

Ẽ
(N)
C = −CN3m3(χ)4/h̄2, (20)

whereC is a constant given byC ' 1.2×10−5. The relevant
length scales, corresponding to the soliton widths, are nearly
identical for the three fields and are given by:l ' 1.7 ×
102h̄2N−1(mχ)−2. Comparing equations (19) and (20) we
can see that the coherent or MFT ansatz corresponding to the
classical theory becomes more favourable at a critical boson
numberN > Ncr = (mχ/h̄)−1(5Cmκ/2h̄)−1/2, asẼ(N)c <

Ẽ(N). With the parameter values forχ and the scattering
lengtha (and thereforeκ) given earlier and characteristic for
current BEC experiments, it turns out, however, that the role
of the repulsive termκ is not negligible in the mean-field
theory analysis. In general, the effect of the repulsive quartic
interaction is towards destabilizing the soliton formation.
The result of minimization of the corresponding MFT energy
is no longer given by a simple cubic dependence onN as in
equation (20). Instead, our numerical analysis shows that
the variational results corresponding to MFT and di-boson
ansatz become comparable to each other and close to a linear
dependence onN . Further detailed analysis and comparison
is required in this regime, with a more careful treatment of the
origin of the momentum cutoff, as well as treatment of finite
density effects and the role of other quartic couplings, such
as molecule–molecule and atom–molecule scatterings. This,
however, is beyond the scope of the present paper. We also
note that the question of soliton formation and its stability
under both the parametric and quartic couplings, even at the
pure classical level and in a three-dimensional environment,
has not been analysed yet.

Thus, at low particle density, the formation of individual
‘dressed’ molecules is favoured, as atoms couple to
molecules in aparticle-like way. These dressed states
have interesting properties, reminiscent of Cooper pairs,
but cannot be described by the classical parametric soliton
equations. At large density (but not too large so that
S-wave scattering is dominant) the coherent coupling of
three entire condensates is dominant. With large enough
parametric coupling, and provided other recombination
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processes are negligible, there are coherent nonlinearwave-
like interactions between the atomic and the molecular Bose
condensates (just as in nonlinear optics), which make it
possible to form stable, three-dimensional, BEC solitons.

More than this, the coherent nonlinear dynamics of
these BEC interactions may result in completely novel
type of chemical reactions at ultralow temperatures. This
‘superchemistry’ behaviour can give enormous (Bose-
enhanced) chemical reaction rates (∝ N1

√
N3), due to the

effect of bosonic stimulated emission, similar to lasing. This
is in sharp contrast to the predictions of chemical kinetics,
where the rates do not depend on the number of product
particles, and go to zero at low temperatures, according to
the Arrhenius law.

6. Summary

In summary, we have reviewed some recent developments
in soliton theory, focussing on nondegenerate parametric
solitons (or simultons), in two and three dimensions. In the
classical case of a photonic soliton, a possible application
to a classical logic gate is given. In the quantum soliton
case, we have given relevant results in three dimensions for
a Bose condensate of two different atomic states, in which
the interaction is due to coherent molecule formation. As
in the degenerate parametric case, the di-boson quantum
soliton without a cut-off has a quantum point-like (zero-
radius) structure. The reason for this behaviour—which is
quite different to the classical solutions—is the inherently
nonclassical structure of the bound state, which is a quantum
superposition state. We note that most previous analyses of
quantum solitons treated cases where the quantum soliton was
at least qualitatively similar to the corresponding classical
theory. This is not the case here, at least at low densities.

The physical interpretation of these bound states is that
they are a superposition of states containing either one or
two particles. The basic solution can formally be written as
A|01, 02, 13〉+B|11, 12, 03〉, which we note is related to states
employed in quantum computation applications. Thus, one
might envisage molecule formation as part of a logic gate in
a quantum computer. With the inclusion of momentum cut-
offs on the nonlinear couplings, the two-particle bound state
has a finite radius even in the simplest case of pure parametric
interaction—i.e. without the quartic term.

Most significantly, these quantum solitons form in
physically testable regimes. Our estimates for characteristic
sizes and soliton binding energies result in much more
realistic values than examples of quantum solitons based on
pure quartic couplings with cubic optical nonlinearities [64].
Another promising experimental environment is available
with current BEC technology. It seems possible that one
could investigate a transition between the di-boson regime,
and the semi-classical ‘superchemistry’ regime of coupled
condensates, which could dominate at large particle number,
provided inter-particle repulsion is small. In this regime
stable matter-wave solitons may form inthreedimensions,
implying an intense stable atom/molecular laser output. We
note that earlier examples of matter wave BEC type solitons
(see, e.g., [65] and references therein) were only for a one-
dimensional geometry.

Finally, the bosonic character of the fields is not relevant
for the quantum bound state theory derived here. Exactly the
same results would occur if fermionic fields were involved,
and we changed the corresponding commutation relations
to anticommutators. In this respect, the present theory
differs from the previous degenerate case [53,58], where the
results were only applicable to bosonic fields. This suggests
that part of these results (but not the semi-classical soliton
theory) could be extended to possible atomic fermionic
superconductors, in which coupling between fermionic
atoms is enhanced by the coherent production of bosonic
molecules. Thus, the applications of quantum soliton theory
in experimentally accessible regimes is a rich and rapidly
developing science, built on the novel technologies and ideas
of quantum and atom optics.
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[34] Berǵe L et al 1995Phys. Rev.A 52R28
[35] He H, Werner M and Drummond P D 1996Phys. Rev.E 54

896
[36] Malomed B Aet al 1997Phys. Rev.E 564725–35
[37] Peschel Tet al 1997Phys. Rev.E 554730
[38] Conti C, Trilo S and Assanto G 1997Phys. Rev. Lett.782341
[39] He H and Drummond P D 1997Phys. Rev. Lett.784311
[40] He H and Drummond P D 1998Phys. Rev.E 585025
[41] Caves C M and Crouch D D 1987J. Opt. Soc. Am.B 4 1535

Raymer M G, Drummond P D and Carter S J 1991Opt. Lett.
161189

Hillery M and Mlodinov L D 1984Phys. Rev.A 301860
Drummond P D 1990Phys. Rev.A 426845

[42] Friedberg R and Lee T D 1989Phys. Rev.B 406745
Wang Y 1993Phys. Lett.A 17619

[43] Lee T D 1954Phys. Rev.541329
Van Hove L 1955Physica21901
See also, Schweber S S 1961An Introduction to Relativistic

Quantum Field Theory(New York: Row Peterson)
[44] Buryak A V, Kivshar Y S and Steblina V V 1995Phys. Rev.

A 521670–4
[45] Steblina V Vet al 1995Opt. Commun.118345–52
[46] Drummond P D and Man W 1994Opt. Commun.10599–103
[47] Assanto G 1995Opt. Lett.201595–7
[48] Asobe Met al 1997Opt. Lett.22274–6
[49] Laughlin R B 1983Phys. Rev. Lett.501385
[50] Tsui D C, Sẗormer H L and Gossard H C 1982Phys. Rev.

Lett.481559
[51] Wilkin N K, Gunn J M F andSmith R A 1998Phys. Rev.

Lett.802265
[52] Schultz C L, Ablowitz M J and BarYaacov O 1987Phys.

Rev. Lett.592825

Pang G D, Pu F-C and Zhao B-H 1990Phys. Rev. Lett.65
3227

Pang G D 1994Phys. Lett.A 184163
[53] Kheruntsyan K V and Drummond P D 1998Phys. Rev.A 58

2488
[54] Drummond P D and He H 1997Phys. Rev.A 56R1107
[55] Kheruntsyan K V and Drummond P D inpreparation
[56] Fetter A L and Walecka J D 1991Quantum Theory of

Many-Particle Systems(New York: McGraw-Hill)
Abrikosov A A, Gorkov L P and Dzyaloshinski I E 1963

Methods of Quantum Field Theory in Statistical Physics
(New York: Dover)

Bogoliubov N N 1947J. Phys.(USSR)1123
Huang K 1963Statistical Mechanics(New York: Wiley)
Proukakis N P, Burnett K and Stoof H T C 1998Phys. Rev.A

571230
[57] Kheruntsyan K V and Drummond P D 1998Phys. Rev.A 58

R2676
[58] Drummond P D, Kheruntsyan K V and He H 1998Phys. Rev.

Lett.813055
[59] Vogels J Met al 1997Phys. Rev.A 56R1067

Julienne P Set al 1998Phys. Rev.A 58R797
[60] Tommasini P, Timmermans E, Hussein M and Kerman A

1998Preprintcond-mat/9804015
[61] Inouye Set al 1998Nature392151

Courteille Ph, Freeland R S and Heinzen D J 1998Phys. Rev.
Lett.8169

[62] Heinzen D J Private communication
[63] Heinzen D J, Wynar R H, Drummond P D and Kheruntsyan

K V submitted
[64] Deutsch I H and Chiao R Y 1992Phys. Rev. Lett.693627

Cheng Z and Kurizki G 1995Phys. Rev. Lett.753430
Deutsch I H, Chiao R Y and Garrison J C 1993Phys. Rev.A

473330
Shnirman A G, Malomed B A and Ben-Jacob E 1994Phys.

Rev.A 503453
[65] Morgan S A, Ballagh R J and Burnett K 1997Phys. Rev.A

554338
Reinhard W P and Clark C W 1997J. Phys. B: At. Mol. Opt.

Phys.30L785
Scott T F, Ballagh R J and Burnett K 1998J. Phys. B: At.

Mol. Opt. Phys.31L329
Zobay O, P̈otting S, Meystre P and Wright E M 1999Phys.

Rev.A 59643

395


