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Abstract. We review recent developments in quantum and classical soliton theory, leading to
the possibility of observing both classical and quantum parametric solitons in
higher-dimensional environments. In particular, we consider the theory of three bosonic
fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic
fields in a nonlinear optical medium this corresponds to the process of sum frequency
generation (vig¢® nonlinearity) modified by thg ® nonlinearity. Potential applications

include an ultrafast photonic AND-gate. The simplest quantum solitons or energy eigenstates
(bound-state solutions) of the interacting field Hamiltonian are obtained exactly in three
space dimensions. They have a point-like structure—even though the corresponding classical
theory is nonsingular. We show that the solutions can be regularized with the imposition of a
momentum cut-off on the nonlinear couplings. The case of three-dimensional matter-wave
solitons in coupled atomic/molecular Bose—Einstein condensates is discussed.

Keywords: Nonlinear optics, atom optics, classical parametric solitons, spatio-temporal, two
and three dimensional, optical logic gates, quantum solitons, atomic and molecular
Bose—Einstein condensates

1. Introduction of quantum effects in optical pulses in fibres, which can be
regarded as photonic bound states.

The classical view of solitons is that they are stable nonlinear Despite these developments, there are many unsolved

waveforms, which are spatially localized, yet show neither problems in soliton theory. The following questions seem to

dissipation nor dispersion. In some moving frame with time pe of particular significance:

coordinater, this implies that for a complex field;, the

time-dependent solution must satisff; () = ¢;(0)e*:". e When can classical solitons form in more than one

An early example is the nonlinear wave in shallow water [1], dimension?

described by the KdV equation [2]. In applied mathematics, e When can quantum solitons physically occur?

it is common to use an even more restrictive definition, with e Are there essential differences between quantum and

conditions on the collisions as well. In this case, the solutions classical solitons?

we refer to as solitons, would be called ‘solitary waves’ or e Do solitons require integrable dynamical equations?

just ‘lumps’ [3]. Amodern example is the short optical pulse  « Are there applications—for example, in communica-

in a single-mode fibre, which is rather precisely described tions or computing?

by the nonlinear Scladinger (NLS) equation [4], andisthe o |sthere any novel physics to be found, related to different

subject of many recent experiments [5]. These, however, are  quantum statistics?

restricted to one space dimension.

In the quantum domain, there must be corresponding In this paper, we review some recent developments
objects, and one may even expect these to show morewhich have already started to give answers to these questions.
structure than their classical counterparts. One view [6]isthat In particular, there is an important difference in modern
a quantum soliton is an energy eigenstate of a local quantumsoliton physics, as compared with that in earlier decades.
field theory, which has a spatially localized correlation Due tooutstanding technical developmentsin quantum optics
function, so that: H|W) = E|¥). It is known that, at [9,10] we are now able to generate and observe solitons under
least for sufficiently weak couplings, a quantum soliton exists conditions where operational measurements of both classical
for every classical soliton [6]. Early examples of this were and quantum effects are routinely possible [11]. This means
various theoretical models in high-energy physics. However, that soliton theory is not just a branch of applied mathematics,
until recently, the experimental evidence for quantum effects but is a true physical science in which theoretical predictions
in solitons was extremely scarce. This situation has changedoften lead immediately to an experimental verification in the
dramatically due to the prediction [7] and observation [8] laboratory.
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Accordingly, we focus here on the novel and unexpected [21-29] and experimental [30] interest. First, these nonlinear
features that have been found in both classical and quanturnrsolitary waves involve a wave coupled to its second harmonic,
parametric field theories, which lead to higher-dimensional and hence rely on the second-order (‘parametric’y &
solutions that appear to be experimentally accessible. Aswellelectromagnetic nonlinearity, rather than #t& nonlinearity
as reviewing some earlier work on degenerate parametricof conventional optical fibre solitons. This means that the
field theory, we give new results that are applicable to the nonlinear phase-shift is proportional &) rather than taz2.
nondegenerate case, and are particularly relevant to Bose-This novel feature promises to allow an improved scaling
Einstein condensates (BECs) or atom lasers [12, 13]. behaviour, allowing solitons to form at lower intensities,

Before moving to the parametric case, we briefly remind than in the case of conventional® solitons. Secondly,
the reader of the salient features of optical pulse propagationparametric solitons have a great deal of stability in higher
in single-mode fibres. The classical equations, which are dimensions, again unlike the conventional solitons ofthe NLS
approximately valid at large photon number, are given by:  equations. Other optical solitary waves that are known to be

a2 stable in higher dimensions have the drawback of usually
9D ho9%0 - NN o o
I =5 txP' 0% Q) involving either very high intensities, or nonlinearities with
ot 2m 9x slow response times, rather than the FS electronic response
This is the NLS equation, wher = (®) is the mean photon  ©f typical parametric nonlinear media.
field amplitude;n = fi/w” is the effective massy(’ is the As against these advantages, we note that higher-
dispersion coefficientm > 0 for anomalous dispersion), dimensional p + 1) spatio-temporal solitons in parametric
andy is the coupling constant proportional to the third-order media [31-36] require positive (i.e. anomalous) dispersion at

nonlinearity x®. The soliton that occurs for/x < 0 is both carrier frequencies, as well as group-velocity matching
observed to propagate with solutiph| « sechax,), where between the frequencies. These requirements are difficult
x = x; — vt, x; is the laboratory frame coordinate ands to satisfy with the usual nonlinear crystals, which are

the group velocity. generally optimized to operate at optical, rather than infra-

In quantum theory, there exists a set of bound states ofred wavelengths. At these short wavelengths, most optical
this quantum field, which has a Hamiltonian [14] (in a frame materials have normal dispersion, and therefore cannot form
moving at the group velocity) given by: higher-dimensional spatio-temporal solitons. Forthisreason,

so far experimental observations have been restricted to the
H= % / dx 220" /ox,|?/m + Ry ®T?d?].  (2) spatial parametric solitons.
Recent theoretical developments have shown that these
The corresponding di-photon eigenstate—as well as boundrestrictions on bulk material properties can be greatly relaxed
states with any number of photons—was discovered by Lieb if structured material is used, in which the dispersion is

and Liniger [14]: enhanced using an embedded dielectric Bragg grating to
create band-gaps near the frequencies of interest. Thus, it
|¢<2)> _ / dix dxp e‘““‘“'fiDT(xl)&T(xz)IO), ©) seems that spatio-temporal parametric solitons are feasible

in higher-dimensional structured materials [37—40], even

when prohibited by the bulk material dispersion properties.
Solitons in enhanced dispersion devices of this type generally
have greatly reduced interaction lengths, when compared
with the corresponding solitons of the same duration, in bulk

where is a constant determined by the coupling strength
and effective mass. However, a quantitative investigation
shows that this di-photon solution is far too weakly bound
to be observable in fibres. To relate these solutions to . " oo ‘
physical experiments, it is necessary to take into account the™edia- A possible application of these new solitons, to take
fact that practical experiments typically involve®ighotons advantage.of these.fast response times apd short interaction
or more. Under these conditions, the bound states exist,/€Ngths, is in all-optical logic gates or multiplexors.

but are not easily distinguished from each other, and are Of more fundamental physical interest, is the realization
subject to disruption by thermal phonons. Thus, the simplestthat this type of interaction also occurs in nonlinear atom
experiments observe classical soliton behaviour, which optics or BEC systems. Here the parametric coupling
can be regarded as a superposition of quantum solutionsdescribes a coherent process of dimerization (diatomic
[15]. These classical solitons are used (for example) in Mmolecule formation), that can lead, for example, to formation
experimental communications systems. Predicted quantumof @ molecular BEC from an atomic condensate. BEC
effects [7] require measurement of quantum interference Systems have potentially even stronger nonlinear interactions
between the bound states. This leads to the observatiorthan in the photonic case. This allows a new class of
of quantum squeezing [8, 16], quantum non-demolition nonlinear classical and quantum dynamics to be investigated,
collisions [17], and more recently—photon anti-bunching by taking advantage of recent developments in ultra-cold
[18,19]. atomic trapping and cooling, leading to the observation of

an atomic BEC [12].

2. Classical parametric system

. . . . ) . 2.1. Parametric ‘simultons’
In this section we review classical parametric soliton theory

[20]. These solitons have a number of unusual features The equations for ‘simulton’ (simultaneous solitary waves)
which have made them the subject of much recent theoreticalpropagation in nondegenerate group-velocity matched planar
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((2 + 1)-dimensional) waveguides [32, 33, 35, 44] are: n

: 24, 9524,
pa ! [a s —; +¢§__,-¢3] (=12, \ 1| 1&0=0

9~ | 9c2 9r2

ogs _ [10%s 10%ps
E—'[ETQQ*'EW—V%*'%@], D
4)

whereg, andg, describe scaled optical fields at frequencies
w1 and w, ~ w; respectively, andps denotes the sum n\
frequency field atws = w1 + w2. The scaled fields n/n ,,,,,,,,,,,,,,,,,, 1= | 1&1=1

have the property tha;|? is proportional to the photon
number flux in thejth mode. Typically, we are most
interested in the case of degenerate frequenaies< wy),
and orthogonal polarizations, since this allows either input Figure 1. Y-geometry of colliding logic signals in a planar

signal to be treated equivalently. Orthogonal polarizations waveguide, showing inputs and output.

can be rotated into each other with simple linear dielectric

techniques. The term is a phase mismatch term, between 3 a|l-optical parametric logic gate

the signals and the second harmonic, andescribes the

dispersion ratio between the second harmonic and signalin order to illustrate a possible application of this type of
fields. All the coordinates in these equations have beensoliton, we consider an AND-gate operating via non-collinear
rescaled into a dimensionless form, as described in [35]; optical pulse collisions at the boundary of a nonlinear planar

2

T = (t — x/v)/1o indicates the elapsed time,= y/yo— waveguide. This can be thought of as a Y-geometry, in which
the transverse direction, whike = x/xo is the scaledk- two pulses are input at an angle to each other, with the output
coordinate. Note that the third-order nonlinearity has been |ogic pulse appearing at the bisector of the two input angles.
neglected in the above equations. This type of operation has several potential advantages over

The most well-studied case of spatio-temporal paramet- other proposed soliton or parametric logic gates [46—48].
ric solitons is that of the ‘radially symmetric’ solutions, in  Most importantly, the use of a Y-geometry means that the
which o = 2, so that the ratio of dispersion matches the input lines to the logic gate can be easily and efficiently
ratio of diffraction. This allows for solutions that have ara- excited using planar waveguiding techniques. This is shown

dial symmetry in the pseudo-radial coordinate /72 + ¢2. in figure 1. In addition, the use of temporal solitons has
Substituting the ansatg; = ¢;(r) into the above equations  the advantage relative to purely spatial solitons, that short
and assuming = ¢ gives: digital pulses are the natural signalling elements of the device.
5 The combination of nonlinearity and dispersion provides an
[0¢1 + ¢ + 1o¢s ¢1+ ¢l =0, automatic re-shaping of the output signal, that can be then

I —_
& a2 r or

2
|%+} 8¢3+}%
06 2| 0r2 r or

) regenerated and reused in subsequent logic steps. Ideally,
the two signals would have an orthogonal polarization, so
:| —y¢3+ ¢ =0. that the interaction is not phase sensitive.
Here, we demonstrate numerically that an all optical
Therefore one can easily prove that there exist a family AND-gate can be implemented by usin@a 1)-dimensional
of simulton solutions for arbitrary value gf by following spatio-temporal simulton. The system simulated is a planar
the known topological arguments [35] which interpret the waveguide in which light is confined along one space
coupled equations as a Newtonian system describing thedimension. In figure 2, we launch a Gaussian pulse
motion of a virtual particle in two space dimensions. A with a small initial transverse velocity if the waveguide
non-topological (bright) simulton solution is represented as is viewed from above. Due to material dispersion, the
a closed path that passes through the point (0,0). In onepulse width increases and the pulse amplitude decreases
dimension, the path becomes a straight line whegr- 1. while propagating. From figure 1, if we have a detector
Compared with one-dimensional spatial simultons, these at position 1, no (or very little) signal would be detected.
two-dimensional simultons usually have higher amplitudesin In figure 3, we launch two Gaussian pulses simultaneously,
order to compensate for the energy loss of the virtual particle both with the same parameters as those of the pulse in the first
due to the presence of ‘friction’. The path also becomes a humerical experiment, except that one of the pulses has an
straight line aty = 1 in higher dimensions. opposite transverse velocity. This time, a simulton is formed
In the two-dimensional case, soliton solutions were and stable propagation of the simulton is observed. If we
found recently [33, 44, 45] and were observed by Torruellas have a detector at position 1, a signal would be detected.
et al [30] experimentally in a configuration involving purely It is important to note that no second-harmonic field is
spatial solitons in bulk media, rather than the present case ofinput. Thisis generated by the pulse—pulse interactions inside
spatio-temporal solitons. Three dimensional simultons were the nonlinear waveguide, so that the essential signalling
also discovered both approximately [32] and numerically element is a pulse of just one frequency, as in most optical
[35]. Inaddition, these two- and three-dimensional simultons communications systems. While the inputs have different
can be approximated by a Gaussian ansatz using a variationgpolarizations, the existence of all-optical techniques for
method [36], as we discuss later in more detail. efficient polarization rotation, means that the two input
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nonlinearities are very fast, being of the order of fs. Due to
the use of ax@ rather thany® nonlinearity, we expect
power requirements to be extremely low, with pulse energy
requirements in the pJ range. This desirable combination of
low switching energies and fast response times is difficult
to implement usingy @-type nonlinearities. The device
size is determined by the dispersion characteristics of the
waveguide, and can be reduced by using enhanced dispersion
devices based on Bragg gratings [37—40].

Figure 2. Propagation of a single input pulse, showing a strongly 4. Quantum parametric system

dispersed pulse being absorbed at the waveguide boundary. Only . . . .
the cross section af; is shown here. The initial pulses were: Quantum solitons [6] or bound states of interacting fields

vy = 7.5exp—r?/4), v, = 0,v3 = 0, withy = 1 ando = 2. are generalizations of the nonlinear solitonic solutions of
classical wave theory, to include quantum fields. Exactly
soluble cases include the many-body bound states of
bosons interacting vid-function interactions in one space
dimension. This model (often called the NLS model) was
solved by Liebet al [14]. Recently it was predicted that
this soluble model could lead to experimentally observable
guantum effects including quantum squeezing in optical fibre
solitons [7, 15]. This prediction has now been verified
experimentally [8].

Exactly soluble models are generally restricted to one
space dimension—except for Laughlin’s highly innovative
theory of two-dimensional electron gas in an external
magnetic field [49], which was able to explain the fractional
quantum Hall effect [50]. Similar techniques have been
recently proposed for treating interacting Bose gases in higher
dimensions [51], in the limit of very weak couplings. Other
exact solutions in two or three dimensions are usually for
physically inaccessible models, like the quantum Davey—
Stewartson model [52].

In a recent paper [53], we showed that it is possible
to obtain an exact solution in one, twand three space
dimensions, in a nonlinear quantum field theory that includes
the most fundamental property that distinguishes quantum
mechanics from quantum field theory—that is, the ability to
create and destroy particles. The simplest cubic interaction
involving two boson fields—the parametric interaction of

(a)

Figure 3. Propagation of two input pulses, forming a stable the form ¥'®2—was analysed for bound states in higher
coupled solitary wave which is neither dispersed nor absorbed,  dimensions, resulting in soluble cases with unusual and
resulting in an AND operationaj Cross section ofy; (b) cross unexpected properties. This degenerate parametric theory—

section ofvs. The initial pulses werev; = 7.5 exp(—r2/4), PP . = -
vy = 7.5 exp{—r2/4), vs = 0. Both input pulses, anduv,, are with similarities to the Friedberg—Lee [42] model of higlh-T

moving towards each other with a relative speed of 0.2 andan ~ SUPerconductivity—has bound states in one space dimension
initial distance of 0.2 between themét= 0. Note that thereisno ~ [54], but is unstable (like the NLS model with an attractive
second harmoniai, até = 0. As beforey = 1 ando = 2. 3-function potential) in higher dimensions. However, unlike
the NLS model, the instability does not occur at the classical
signals are effectively interchangeable. The output has verylevel [31]. With the inclusion of an additional (repulsive)
similar characteristics to the input (after the second-harmonic quartic interaction term in the Hamiltonian, a rigorous lower
is discarded), and overall gain could be implemented via bound to the energy was proved to exist, and we demonstrated
further interactions with a second-harmonic pump. Thus, the the existence of exact two-particle bound states in higher
desirable properties of electronic gates can be implementeddimensions. These new types of quantum solitons have
in this logic, except with greater speed. a finite binding energy, but the corresponding two-particle
In summary, we have demonstrated that an all optical wavefunction has a zero radius; the point-like structure of
AND-gate can be implemented using the collision of two these bound states can be termed a ‘quantum singularity’.
pulses in a planar nonlinear parametric waveguide. The With a momentum cut-off imposed on the couplings, the
switching mechanism is not phase sensitive and therefore hasound states develop a finite radius.
advantages over other phase sensitive switching proposals. It In this paper, we extend these earlier results to include
is not strongly limited by relaxationtimes, since the electronic the non-degenerate case of parametric interaction of three
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distinct fields with either Bose or Fermi statistics (rather than proportional to the Bloembergen quadratic and cubic
two bosonic fields). Once again, the results demonstratenonlinearities,x® and x®, and Aw is a phase mismatch
the existence of exact two-particle eigenstates in higher term) would first require that the longitudinal coordinate, say
dimensions, having a point-like structure in space, with a x, is defined in a moving frame with = x; — v, wherex;
finite energy. These hitherto unexpected eigenstates of a veryis the laboratory frame and= dw; /dk is the group velocity
simple form of quantum field theory appear to us to provide which is assumed equal at all three carrier frequensjesf
a theoretical counter-example to the usual belief in quantum the fields. Inaddition, the effective masses will be, in general,
field theory, that composite structures can be necessarilydifferent in the longitudinal and transverse directions, #
identified by their extended spatial properties. We also m;, ; the effective longitudinal mass,; = &/w! is due to
discuss the case of interactions in hybrid atomic/molecular the group-velocity dispersion, whei = 3°w; /0k? is the
Bose-Einstein condensates, where a cut-off is necessarilydispersion coefficient in théth frequency band, while the
present, and extended spatial structure can form. transverse mass;;, = hw;/v? is due to diffraction. This
Here we give a summary of results in three space means that the kinetic energy terms in the above Hamiltonian
dimensions. A complete derivation in more general cases must be modified, to incorporate this asymmetry, according

will be given in [55]. to: (1/m;)V? — (1/m,)d% + (1/m;1)V2. In this paper
we only consider the symmetric cagg, = m;, = m;, the
4.1. Hamiltonian and di-photon eigenstate general asymmetric case and required modifications (similar

to those in [53]) of the corresponding results will be treated
elsewhere [55].

To construct the general candidate for the eigenstate to
the Hamiltonian (6) we note that the parametric interaction
|V, |2+ Aw&%@s} here conserves a generalized particle number (Manley—Rowe

The quantum effective Hamiltoniarffl( = ﬁo + Iflim) we
consider has the following simplified form [7,41]:

. 3.0n
H0=E/d311:|:22

im1 “mi invariant) equal toN = [ Bz [| 1|2 +|d,[? +2|d3[?]. We
N _ 3 A oA At Atata fta At therefore search for states that are eigenstat&safd /. In
Hiy = h/ Pz [x (P1D2P3 + 1D, P3) + kD DD, D). the case of two-particle bound stafé & 2), that we study

(6) in this paper, this must be a superposition state of the form:
Here &1.2 and &, represent three quantum fields of masses 3 st
m; (i = 1,2,3). Their commutation relations in the case 19') = [/ d°z P (z) P3(x)
of Bose fields are given byif; (z), ®!(2)] = 6;;6(x — a/).
Although we have specified Bose statistics for definiteness, +/ d*z by O(x, y)éi(w)cﬁ‘z‘(y)]m), (8)
we note here that some of our main results for quantum
solitons are also valid if the field®, and &, obey Fermi where P and Q are one- and two-particle wavefunctions,
statistics and anticommutation relations, as in the ‘s-channel’ respectively.

model of Friedberg-Lee [42]. Similarly, the case wheére We note that the interaction part of the Hamiltonian
and @3 are fermionic (as in the Lee-Van Hove model of (6) could also contain other quartic interaction terms, such
nuclear interactions [43]) is also tractable. In additioAw as self-interaction of theb; fields and cross-interaction

is the formation energy of the fielils, while x and« arethe ~ between theby,, and s fields. These have no effect on
coupling constants responsible for the parametric and quarticthe two-particle eigenstates studied here, so that we only
couplings, respectively. The role of the higher-order (quartic) consider the quartic cross-interaction between the fidlds
interaction term that we have included in the quantum theory and &,. Operating on equation (8) with the Hamiltonian
will be discussed below. (6) one can obtain that the eigenvalue probl&hy?@) =

An example of a physical system that can directly be E@|¢@) is equivalent to a set of differential equations.
treated by the Hamiltonian (6) is a coupled atomic/molecular To solve these equations we introduce the relative and
BEC, where the parametric coupling represents a coherentcentre-of-mass coordinates according te: = = — y,
process of formation of di-atomic moleculésg(-field) from R = (mix + moy)/(m1 + my). Taking into account
pairs of atoms ¢, and &, fields) either of distinct atomic  translational invariance, we may then assume fhat) =
species, or in distinct quantum states. The quartic term Pyexp(iK - x), where K is the soliton momentum. As a

represents atomic S-wave scattering [56], such that consequenceQ (x, ) will then be proportional toP (x).

2wl Hence, we may look for the general expressio@@t, y) =

K = , ) g(r)P(R). Dividing the energy into centre-of-mass and
m relative component£® = E. + E,, we then solve the

whereq is the S-wave scattering length between two atoms equation forP (R), yielding P(R) = Poexp(iK - R), with
from different species anth = mimy/(my + m>) is the K% = 2(my +mp)E,/h?. As aresult, we obtain:
corresponding reduced mass. In the case of identqal @ 22 _ _
and @, fields (i.e. degenerate interaction) this matter-wave E™ =h"K*/(2m3) + hAw + 1y g(0). ©)

analogue of the nonlinear optical process of frequency

doubling has been considered in [57, 58], while the results The remaining equation, for the(r)-function, is

of the present nondegenerate case are discussed in section gewritien as
Employing the above Hamiltonian with photonic 1, ) 1
interactions (in which case the couplings and « are o ¥ 8 — pg(r) = ﬁ[x +xg(0)]5(r), (10)
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where we have introduced a reduced mass mymy/(mq+
m3), which we note differs from the conventional definition
by a factor of two. In addition, we have defingd =
—E, /h* = K?/[2(m1 + mp)] — E@ /R?, implying that the
following simultaneous equation must be satisfied:

7 KZ _ _ 722
E®@ = W+hAw+th(0) =
3

— R 11
2o +mpy Y

Here . must be real and positive for a localized bound
state solution, withy/2mu representing an inverse scale
length, andh?u2 can be interpreted as the binding energy
of the soliton with the momentur .

kmax < 27 /a) [56], and a cut-off also occurs in cases where
fermionic fields are involved [42]. The eigenvalue problem
H|p@) = E@|¢p®@) can now be analysed directly, in Fourier
space, by introducing a cut-off dependent Fourier transform
ofg(r) = [y ik G (k) explik-r)/(21)?, sothatthe two-
particle eigenstate in Fourier space is written as:

kmax
lp@ (K)) = [a§<K> +(21) %2 / &k G (k)
|k|=0

K
XaI( +k>a;< e —k)]lO),
my+mp miy +mp

whereq; (k) is the Fourier component @;, and the cut-off

(15)

Equations (10), (11) can easily be analysed using is in the relative momentum of the fields, and ..

the Fourier transform method.
for a solution to equation (10) in the forrg(r)
[ &k G (k) explik-r)/(27)3, wherer = |r|. Expanding the

3-function into a Fourier integral, we then obtain the Fourier
transform equivalent to equation (10), solving which we find:

— q 3
(271)3/ ok

whereg =[x +«g(0)]/h.
Using the definition of;, we then solve forg(0) and
obtaing (0) = —x[x + i /f (w)]~, where

1 (o]
f(l/«):?/o dk

This integral diverges; a strict treatment of this
divergence, as a mathematical limit, is given in the next
section, where it is attributed thn.x — o0, With kmax
being the upper limit in the integral. Hence we find that
g(0) = —x /x, and the energy eigenvaldg? is given by:

expik - r)
n2+k?/(2my’

g(r) = (12)

k2

12 +k2/(2m)” (13)

FZKZ_”_ZA hix?
- w—- 2
Mg K

h2K?

E@ — S
2(my +my)

—h%u. (14)
With respect tou, this equation always has one positive
solution if the following conditions are met« > 0 and
Ak — hx? < 0, where A TAw + B2K2/(2m3) —
W2K?/[2(my + m2)].

With the above result fog (0) it also follows thaty = 0,
and hence (see equation (12))) = 0if r # 0. Thatis, the

exact bound state solution in three dimensions has a point-

like (zero-radius) structure, which is in the relative position
of the ®; and®, quanta.

4.2. Cut-off dependent results

The zero-radius behaviour of the two-particle quantum

solitons in three space dimensions represents a rather unusual
situation, since the classical co_u_nterpgrt ofthe b(_)somc th(_eory”mit Kmax > (iN/2m
has well-behaved, stable multidimensional nonlinear-optical

soliton solutions [31]. Thisleadsto the ‘paradox’ of how such

a quantum field theory can describe real physical processes.
To resolve this paradox, we note that physical applications

usually involve some type of momentum cut-off.

In the case of nonlinear atom optics interactions, that

In this approach we seek

The simultaneous equations for the eigenstate still have
the form of the Fourier transform of equations (10) and
(11), except that they are now valid fok| < kmax. In
order to evaluate the binding energy and the effective radius,
we next solve these equations f@(0), and obtaing(0) =
—x[k +R/f (i, kma] . Here the cut-off structure function
is given by:

f( k ax) _ 1 /kmax dSk
Ho Emad = 2m)3 Jico 12 + )2/ (2m)
LN P -1 (Kmax
T p2 |:kmax pu~/mtan (M ,—2m>:| ) (16)

and thus has a linear divergencekgsx — oo. The effect
of this divergence depends on whether or not the additional
quartic interaction is present. If it is present (with> 0),
there are exact solutions without cut-off (ilgax — ©0),
andg(0) = —x/k, so that the energy eigenvalu? takes
the form of equation (14), ang») = 0 if |»| > 0. In other
words, the solution has a finite energy (unlike the energy
divergence in the NLS model with an attracti&#unction
potential) but zero radius in the limit dfnax — oo. I,
however,k < 0, we must impose a finite cut-off on the
couplings to prevent an energy divergence. Simultaneously,
a finite cut-off prevents singularities in space.

With a finite cut-off, the general result for the energy
eigenvalueE @ is given by:

@ R?K? 5 ] -
E" (kmax) = +hAw—h |:K+7i|
ma) = X £ (s kma)
S 72,2
= ———— — R 17
2(my +my) H ()

where u must be positive for a localized bound state.
Analysis of this equation shows that a positive solution for
w is always available, ik > 0 and A[x + 72h/(mkmad]
—hx? <O.

In the simplest case of = 0 andA = 0, and in the
one can write down simple approximate
results for the binding energy:

(18)

The effective radius of the quantum soliton is defined

we focus on here, the minimum relevant length scale for asR = 1/(u+/2m), since this determines the characteristic

the cut-off kmax is the S-wave scattering length(so that
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distance over which the two-particle wavefunction can decay.
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5. BEC interactions therefore does not necessarily result in the lowest possible
energy. The corresponding variational estimate of the energy,

An example of a physical system that can directly be in three dimensions and in the low density limit, is (for
treated by the Hamiltonian (6) is a coupled atomic/molecular A¢ = 0):
BEC, where®, , represent two atomic fieldsps is the

molecular field,n1, andmg are the atomic and molecular EM™ = (N/2)E® (kmay) — 2N x?/(5¢). (19)
massesriz = mi + my), the coupling constang relates
to the molecular formation (coherent dimerization) rate, The second type of ansatz that we employ here—

is the effective cross-scattering between the atoms of twothe coherent or mean-field theory ansa[t,zéN )
different species, and Aw is the bare formation energy expl/ d*x Z?:l d>,-(m)éf(m)]|0)—may provide a lower
of the molecular species. We note that the Hamiltonian energy at largev. To show this, we use trial functiors; ()
should also contain qUartiC terms due to Scatterings of in the form of GaussianS, and assume kb@tx) — qyz(m)
atoms within each species, as well as molecule—moleculeThe final result for the corresponding minimum energy is
and atom-molecule scattering terms. These, however, doconsiderably simplified in the region where the parametric
not affect the two-particle quantum soliton solutions given coupling is dominant, so that one can neglect the terms due
earlier. In the many-particle regime, that we treat below g A4, and the inter-atomic scatterirtg(as well as the intra-
variationally, we neglect the contribution of these quartic atomic, intra-molecular and atom-molecule scatterings). In
couplings as compared to the-coupling or assume a ihig region, and foms = mq +mp andmy = m; (so that
low particle density limit. Physical mechanisms that can ms = 4m), we obtain a coupled atomic/molecular Bose
realize coherent atomic dimerization and produce ultra- .onqensate minimum energy of:
cold molecules include Feshbach resonance and Raman
photoassociation [59,60]. Feshbach resonances have already E<CN) — —CN3m3(x)*/R2, (20)
been observed [61], while experiments of this type with the
Raman photoassociation are underway [62] in the case OfwhereC is a constant given bg ~ 1.2 x 10-5. The relevant
homogeneous (degenerate) BEC the theory of which is givenjength scales, corresponding to the soliton widths, are nearly
elsewhere [57,58, 63]. identical for the three fields and are given by~ 1.7 x

In such coupled atomic/molecular BEC systems the two- 1232y —1(;5x)~2. Comparing equations (19) and (20) we
particle (di-boson) quantum soliton solutions are ‘dressed’ can see that the coherent or MFT ansatz corresponding to the

molecules each of which exists in a superposition with a ¢|assical theory becomes more favourable at a critical boson
pair of atoms. With a characteristig-value estimate of  nympern > Ng = (my /B)~"L(5Cmi/2k) Y2, asEN <

abouty ~ 10°m¥? s [60, 62, 63], the atomic masses )
m1 =~ my ~ 1072% kg, and the longest S-wave scattering
lengtha ~ 5 nm, equation (14) results in the quantum
soliton binding energy of: E* = hyx?/k ~ 107! eV,
for Aw = 0. If we include both effects of the quartic
repulsive ternk = 2rha/m and the momentum cutoff, and
assume that the scattering lengtprovides a natural cutoff
atkmax ~ 27 /a, then the binding energy from equation (17)
is reduced (forAw = 0) to E® ~ 4hx?/(5«), which is
very close to the idealized result from equation (14) and
is comparable to achievable temperatures in current BEC
experiments.

Of more importance, from the point of view of BE

. With the parameter values for and the scattering
lengtha (and therefore) given earlier and characteristic for
current BEC experiments, it turns out, however, that the role
of the repulsive ternx is not negligible in the mean-field
theory analysis. In general, the effect of the repulsive quartic
interaction is towards destabilizing the soliton formation.
The result of minimization of the corresponding MFT energy
is no longer given by a simple cubic dependenceVoas in
equation (20). Instead, our numerical analysis shows that
the variational results corresponding to MFT and di-boson
ansatz become comparable to each other and close to a linear
c dependence oN. Further detailed analysis and comparison

experiments, ar&/-particle eigenstates and the ground state is required in this regime, with a more careful treatment of the
energy of this quantum many-body system. While this is origin of the momentum cutoff, as well as treatment of finite

a difficult problem, some important results can be obtained density effects and the role of other quartic couplings, such
using a variational approach. Here we consider two important & molecule—molecule and atom-molecule scatterings. This,
examples: (i) a variational ansatz that correspondy 1@ however, is beyond the scope of the present paper. We also
(where we assum# is even) independent di-bosons [58], Note that the question of soliton formation and its stability
and (i) a coherent or mean-field theory (MFT) ansatz. A under both the parametric and quartic couplings, even at the
remarkable result that emerges with the treatment of the firstpure classical level and in a three-dimensional environment,
type of ansatz is that, in the limifyax — oo, itturnsintothe ~ has not been analysed yet.
exacteigenstate and provides the exact ground state energy ~ Thus, atlow particle density, the formation of individual
off EM = (N/2)E®@ = R(N/2)[Aw — Fx%/k]. The ‘dressed’ molecules is favoured, as atoms couple to
ground state energy has no lower boundras- 0. This is molecules in aparticle-like way. These dressed states
in contrast to the mean-field behaviour corresponding to the have interesting properties, reminiscent of Cooper pairs,
classical Hamiltonian energy. The classical Hamiltonian is but cannot be described by the classical parametric soliton
known to have rigorous lower bound and to support classical equations. At large density (but not too large so that
solitons [31]. S-wave scattering is dominant) the coherent coupling of
With a finite cut-off, the ansatz correspondingXg'2 three entire condensates is dominant. With large enough
independent di-bosons, is no longer the exact eigenstate, angharametric coupling, and provided other recombination
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processes are negligible, there are coherent nonlinaae- Finally, the bosonic character of the fields is not relevant
like interactions between the atomic and the molecular Bose for the quantum bound state theory derived here. Exactly the
condensates (just as in nonlinear optics), which make it same results would occur if fermionic fields were involved,
possible to form stable, three-dimensional, BEC solitons.  and we changed the corresponding commutation relations
More than this, the coherent nonlinear dynamics of to anticommutators. In this respect, the present theory
these BEC interactions may result in completely novel differs from the previous degenerate case [53, 58], where the
type of chemical reactions at ultralow temperatures. This results were only applicable to bosonic fields. This suggests
‘superchemistry’ behaviour can give enormous (Bose- that part of these results (but not the semi-classical soliton
enhanced) chemical reaction rates {V1./N3), due to the theory) could be extended to possible atomic fermionic
effect of bosonic stimulated emission, similar to lasing. This superconductors, in which coupling between fermionic
is in sharp contrast to the predictions of chemical kinetics, atoms is enhanced by the coherent production of bosonic
where the rates do not depend on the number of productmolecules. Thus, the applications of quantum soliton theory

particles, and go to zero at low temperatures, according toin e€xperimentally accessible regimes is a rich and rapidly
the Arrhenius law. developing science, built on the novel technologies and ideas

of quantum and atom optics.
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