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Abstract

A software package that efficiently solves a comprehensive range of problems based on coupled complex nonlinear stochastic
ODEs and PDEs is outlined. Its input and output syntax is formulated as a subset of XML, thus making a step towards a standard
for specifying numerical simulations. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Computational physics remains a rapidly growing field, and has been described by some as a third way of doing
physics in addition to theory and experiment. In a recent review titledMicroscopic simulations in physics [1]
Ceperly writes:

Sadly, the lore of experimental and theoretical physics has not yet fully penetrated into computational physics.
Before the field can advance, certain standards, which are commonplace in other technical areas, need to be
adopted so that people and codes can work together.

We present here such a standard, written in a precise form using the internationalxml language for data exchange.
The corresponding parser,xmds in turn writes a low level computer program that a C++ compiler can compile and
optimize. The executable file produced solves the problem about as quickly and efficiently as is possible, while
the input script is concise and transparent. The result of this work is an open source software package, which is
available at the following URL: http://www.physics.uq.edu.au/xmds
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2. Functionality

xmds is a software package designed to write a program that manipulates ann-dimensionalm-component field,
primarily using a given set of coupled nonlinear ODEs and PDEs (possibly with stochastic noise terms) to propagate
this field along a dimension of propagation. The equations have the general form of Eq. (1).

∂

∂t
ai(t, �x)= L

(
ai, �k

) + V
(�a, t, �x, �ξ). (1)

Here the vector�a represents them-component field, though for some problems the field may only have
one component. The propagation dimension has been labeledt , and the vector�x represents then-dimensional
transverse space — though if you wish you may specify a field of zero transverse dimensionality to simulate an
ordinary differential equation (ODE). The term�k represents coordinates in Fourier space. As an example, if the
field was a vector field representing three-dimensional fluid flow then there would be three components to the
field, which itself would exist in a three-dimensional transverse space, and propagate forward into time as a fourth
dimension.

TheL() term on the RHS represents local, linear, and diagonal functions of the field components in�k-space.
Products of the Fourier domain transverse dimensions,kj , may be used here to represent spatial derivatives of
arbitrary order. TheV() term represents local, possibly non-diagonal, functions of the field components in�x-space,
and can include additive or multiplicative stochastic terms. The forward evolution of the field is performed using
a split step semi-implicit method [2,3] in which derivative terms in the PDEs are evaluated in the Fourier domain
using theL() term. TheV() terms are evaluated in normal space semi-implicitly. The Fourier transforms employ
the FFTW libraries [4]. Gaussian stochastic noise terms are generated with the correct variances, using the Box–
Mueller technique combined withdrand48().

There are two main processes thatxmds can apply to a field: forward evolve (integrate/propagate) it according
to a set of PDEs, and reshape (filter) it according to a set of functions. These two actions may serve as the building
blocks for a sequence of operations to be performed on the field. The key toxmds is that it is acode generator.
xmds requires the user to write their particular PDEs (or ODEs) as a few lines of C code, which are transplanted
from the input script to the relevant points in the output code. This technique generates efficient and flexible code.
To save on memory and also size of output file we may sample on some reduced lattice rather than at every point
in the main field lattice. We can choose which transverse dimensions to transform to Fourier space when sampling
for a particular group of moments.

We are now in a position to draw diagrammatically the functionality ofxmds, including the steps taken to
estimate both the time-discretization and sampling errors. This is shown in Fig. 1.

Fig. 1.xmds — a functional diagram.
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3. Examples

XML is very much like HTML. However, even without any experience in HTML, it is simple to learn XML with
the help of examples. A simple, one-component case is treated here. More complex cases with multiple component
fields are available for down-load from the referenced web-site URL.

The following script describes toxmds how to write a program that solves the Nonlinear Schroedinger equation
in one dimension. Eq. (2) describes a common soliton-formation process:

∂φ

∂t
= i

[
1

2

∂2

∂x2 + |φ|2 + iγ (x)

]
φ. (2)

Hereφ is the single component complex field (phi in the input file),t is the propagation dimension,x is the local
transverse coordinate. The termγ (x) leads to linear absorption, and is used to apodize or absorb field components
reaching the periodic boundaries, which would otherwise cause aliasing errors or wrap-around. We will consider
what happens above the soliton formation threshold. The XMDS script is as follows:

<?xml version="1.0"?>
<simulation>

<prop_dim> t </prop_dim>
<field> <dimensions> x </dimensions>

<lattice> 180 </lattice>
<domains> (-5,5) </domains>
<components> phi </components> </field>

<sequence>
<initial>

<fourier_space>no</fourier_space>
<samples> 1 </samples>
<![CDATA[ phi = rcomplex(1.4*exp(-x*x/2.88),0);]]>

</initial>
<integrate>

<interval> 10 </interval>
<lattice> 1000 </lattice>
<samples> 50 </samples>
<k_propagation>

<![CDATA[dphidt = rcomplex(0,-kx*kx/2);]]>
</k_propagation>

<x_propagation>
<iterations> 3 </iterations>
<![CDATA[ dphidt = i*conj(phi)*phi*phi

- (1-exp(-pow(x*x/4/4,5)))*phi;]]>
</x_propagation> </integrate> </sequence>

<output><group><sampling>
<fourier_space> no </fourier_space>
<lattice> 60 </lattice>
<moments>pow_dens</moments>
<![CDATA[ pow_dens = conj(phi)*phi;]]>
</sampling> </group> </output>

</simulation>

The corresponding output is in Fig. 2.
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Fig. 2. Results for nlse.xmds.

xmds can also perform stochastic or Monte-Carlo style simulations. For example, Eq. (3) describes a one-
dimensional damped field which is subject to a complex noise.

∂ψ

∂t
= −i

∂2ψ

∂x2 − γψ + β√
2

(
ξ1(x, t)+ iξ2(x, t)

)
. (3)

This stochastic PDE has an analytic solution, as shown in Eq. (4).

〈|ψ(k, t)|2〉 = e−2γ t
∣∣ψ0(k)

∣∣2 + β2Lx

4πγ

(
1− e−2γ t), (4)

whereLx is the length of thex domain.
Fig. 3 displays the results of this simulation in Fourier space including an average over 1024 trajectories, which

agrees with the expected results within the sampling error. The sampling error is also computed by the program,
using the central-limit theorem and the actual variance to estimate the variance in the mean, fromσ 2

x̄ = σ 2
x /(N−1),

for N stochastic trajectories.
We have not included the simulation scripts here as they are very similar to thenlse.xmds script above, and

are included as examples supplied with thexmds package. Finally, multiple path stochastic problems such as this
may be parallelized using MPI routines, andxmds is capable of writing output code incorporating MPI routines to
distribute the paths over multiple processors.

Fig. 3. Results for laser.xmds: 1024 path mean.
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4. Summary

We have presented a brief introduction to a flexible approach for efficient numerical simulation of a
comprehensive range of problems based on complex nonlinear stochastic ODEs and PDEs. A benefit of the
technique is the use of arbitrary implied transverse dimensions. This allows the dimensionality of a problem to
be changed easily, with greatly reduced likelihood of coding errors. The simulation source, being written as a
high level script in XML, retains transparency, while the low level code generated is highly efficient at solving the
problem. This approach encourages collaboration in research through exchange of simulation scripts, and assists
reproducibility in the rapidly growing field of computational physics. The strategy used here can be used in any
field requiring standardized numerical modeling.
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