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Abstract

Quantum dynamics simulations can be improved using novel quasiprobability distributions based on non-orthogonal
Hermitian kernel operators. This introduces arbitrary functions (gauges) into the stochastic equations, which can be used to
tailor them for improved calculations. A possible application to full quantum dynamic simulations of BEC’s is presented.
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1. Introduction

One of the oldest problems in quantum physics
is also conceptually the simplest. How does one
calculate the quantum dynamical time evolution of
many-body or strongly interacting systems? In this
paper, we will treat some recent progress towards
solving this problem. This uses a novel technique
of stochastic gauge fields. We will focus here on a
relatively simple example, which allows us to compare
numerical results with an exact solution. The present
results show dramatic improvements in sampling error
compared to the previous positive-P [1] distribution
methods.

The chief difficulty in many-body quantum dynam-
ics, is that the relevant Hilbert space of all but the
most trivial cases is typically enormous. For exam-
ple, the formation of a small Bose–Einstein conden-
sate [2] may easily involveN = 1000 atoms with
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M = 1000 modes, giving 10600 participating quantum
states. Similar problems also occur in the static calcu-
lation of many-body ground states and thermal equi-
librium ensembles. These problems have been solved
by the use of methods called quantum Monte Carlo
techniques [3,4]. It is noteworthy that the difficulty of
a large Hilbert space is exactly the same in both the
dynamic and static calculations. Thus, we have to con-
clude that dimensionality is not an insuperable barrier.

The main technique treated here is a class of
stochastic methods which sample the Hilbert space,
rather than storing every element of a quantum dy-
namical problem. Provided sampling errors can be
controlled, there is no reason why stochastic meth-
ods shouldn’t be used for quantum dynamics, just
as they are in QMC [3–5] methods used for cal-
culating ground-state or thermal equilibrium proper-
ties. We present methods that are a great improve-
ment on the previously used positive-P simulation
method [1], which is most useful for open systems
coupled to damping reservoirs. In comparison to an
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earlier approach of modifying the noise terms dynam-
ically [6], we focus on methods that allow the drift
terms responsible for the deterministic evolution, to be
changed.

The approach used here is to expand the quantum
density matrix using non-orthogonal coherent state
projection operators, together with a phase term. This
allows a choice of time-evolution equations to be made
in a way that minimizes the phase-oscillations that
would otherwise occur in a direct path-integral ap-
proach, while still preventing the phase-space oscilla-
tions that can occur in the positive-P method.

2. The anharmonic oscillator: a tractable model
system

A very successful method for time-domain simula-
tions of damped quantum systems is the positive P-
representation used in quantum optics. In this method,
the quantum state is expanded using non-orthogonal
coherent states. This allows multi-boson and multi-
mode interacting quantum systems to be simulated as
stochastic processes in the time-domain. These meth-
ods have been applied to quantum solitons [7], BEC
phase fluctuations [8], and to the theory of evapora-
tive cooling [9] — where the theory correctly repro-
duces the formation of a BEC, as observed in experi-
ment [2].

However, the positive P-representation usually has
large sampling errors for times after the BEC has con-
densed. This is typical for this method, which is most
effective for open systems coupled to reservoirs. For
this reason, the remainder of the research presented
here has been into methods of minimizing the sam-
pling error for a very simplified, one-mode version of
the BEC Hamiltonian:

Ĥ = h̄

2
(â†â)2. (1)

Here â† is the creation operator for a single mode
of the boson field, with a positive scattering length
constant. The exact solutions for some observables
can be found directly for this simple case, which is
clearly very helpful while investigating errors. We will
focus on the evolution of the Y-quadrature observable:
Ŷ (t) = 〈[â − â†]/(2i)〉, given an initial coherent
state.

3. Hermitian P-distribution

The positive-P expansion of the density matrixρ̂
uses a kernel of non-Hermitian coherent-state projec-
tion operators. Instead, consider a P-like distribution
with a Hermitian kernel:

ρ̂ =
∫
P(
α, 
β, θ, t)Λ̂e−g d2N 
α d2N 
β dθ, (2)

with kernel:

Λ̂= eiθ‖
α〉〈 
β‖ + h.c.,
(3)

eg = Tr[Λ̂] = 2enr cos(θ + ni).

Here, ‖
α〉 = exp(
∑
αiâ

†
i )|0〉 is an un-normalized

coherent state,θ is a real variable representing a
quantum phase, andn = nr + ini = 
α · 
β∗. Any
state can be represented with a positive Hermitian P-
distribution, and expectation values of an observable
like Ŷ can be calculated according to averages over
P . For example, in the one-mode case, if the initial
condition is a coherent state witĥρ = ‖ 
α0〉〈 
α0‖, then
we expect that:〈
Ŷ

〉 = 〈
Tr[Ŷ Λ̂]/Tr[Λ̂]〉traj.

= Im
(
α0 exp

[|α0|2
(
e−it − 1

) − it/2
])
. (4)

4. Stochastic gauges

Let us now apply the Hermitian P-distribution to the
case of the anharmonic oscillator. The master equation
is

∂ρ̂

∂t
= − i

h̄
[Ĥ , ρ̂]. (5)

The next step is to note that there are a number of
operator identities between terms in the Hamiltonian
and differential operations on the kernel. The ones of
interest for this system are

â†âΛ̂=
(
α
∂

∂α
+ β

∂

∂β

)
Λ̂, (6)

and its adjoint. By using this identity, it is possible to
transform the operator equation into a corresponding
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Fokker–Planck equation forP . First, we change to the
more convenient variablesφ andψ defined by:

α = exp

[(
1− i

2

)
φ

]
,

β = exp

[(
1− i

2

)
ψ

]
.

(7)

To take advantage of the new phase variableθ , con-
sider that the Hermitian P-distribution kernel̂Λ also
obeys a number of additional differential identities in
θ . In particular:

F

(
∂2

∂φr∂θ
− ∂

∂φi

)
Λ̂= F

(
∂2

∂ψr∂θ
+ ∂

∂ψi

)
Λ̂= 0,

(8)

E2
(
∂2

∂θ2 + 1

)
Λ̂= 0.

Since these are equal to zero, any multiple of them
can be added to the master equation with no effect,
so we have multiplied them by the completely arbi-
trary functionsF,F ,E2, which can be dependent on
φ,φ∗,ψ,ψ∗, θ and t . In the Fokker–Planck equation
formalism, these become correspondences forzero.
For example, definingT = tan(θ + ni) we have:

0 ↔
[
∂

∂θ
2T + ∂2

∂θ2

](
E2P

)
. (9)

These correspondences can be added in any amount
without disturbing the dynamics, as long as the bound-
ary terms from partial integration vanish [10]. We

now wish to convert the Fokker–Planck equation to
stochastic Langevin equations. To do this, the diffu-
sion must be positive, and hence we choose:E2 =
F 2 + F

2
. It is convenient to definẽθ = θ + ni , and

to introduce the functionsG(F) andG(F):

G= F + 1
2[ni − nr ];

G= F + 1
2[ni + nr ].

(10)

When these are zero the equations are identical to
those obtained using the positive P-distribution. Con-
verting the differential equation inP to Ito stochastic
equations, we obtain:

dφ = [
n(1− i)− 2G(T + i)

]
dt + √

2dW,

dψ = [
n∗(1− i)− 2G(T − i)

]
dt + √

2dW, (11)

dθ̃ = −2T
[
G2 +G 2]dt + √

2(GdW −GdW).

The noises dW and dW are random, Gaussian, mutu-
ally uncorrelated, and uncorrelated for different times,
with variance〈dW(t)dW(t)〉 = dt .

5. Anharmonic oscillator with stochastic gauges

SinceG andG arecompletely arbitrary, they can
be used to tailor the equations to our liking, without
changing the final results. This is akin to what is done
with electromagnetic gauges, which is why we refer to

Fig. 1. Expectation value and variance of theY quadrature for the anharmonic oscillator withρ̂ = |3〉〈3| at t = 0. The positive P (µ = 0) is
shown by the dotted line, the Hermitian P (µ= 1) by the dashed line, and an optimized Hermitian P (µ= 0.001) by the solid line. Broad shaded
line is the exact analytic result.
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theG’s as itstochastic gauges. A suitable gauge, with
a free parameterµ is as follows:

G= µ

2

[
ni − nr + |α|2],

(12)
G= µ

2

[
ni + nr − |β|2].

The results of simulating the one-mode anharmonic
oscillator with this gauge (with two different values of
µ) are shown in Fig. 1, together with the positive P
results. It can be seen that the sampling error in the
quadratures has been contained and reduced byover
twenty orders of magnitude!

Closer inspection of Fig. 1, reveals that the simu-
lated expectation value of thêY quadrature, does not
quite match the analytically predicted value forµ= 1
for large times. This systematic error is due to non-
vanishing boundary terms in thẽθ variable, making
the change from master to Fokker–Planck equations
inexact. The discrepancy can be reduced by using the
optimized gauge withµ = 0.01, given by the solid
line, although the sampling error increases. It is clear
that further investigation into the trade-offs between
reducing sampling error and reducing boundary term
error is required.

6. Final comments

The successful control and immense reduction of
sampling error in the above one-mode example gives
us confidence that the sampling error in the many-
mode calculation can also be reduced using this

method, and BEC’s can be simulated after the point
of condensation reached in [9]. The particular real-
ization of the stochastic gauge idea discussed above
is aimed toward the simulation of a BEC. However
the approach is quite general, and may also be fruit-
ful for simulations of many-mode higher dimensional
bosonic systems.
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