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Abstract

We introduce a unified Gaussian quantum operator representation for fermions and bosons. The representation extends exist
ing phase-space methods to Fermi systems as well as the important case of Fermi—Bose mixtures. It enables simulations of the
dynamics and thermal equilibrium states of many-body quantum systems from first principles. As an example, we numerically
calculate finite-temperature correlation functions for the Fermi Hubbard model, with no evidence of the Fermi sign problem.
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Calculating the quantum many-body physics of in- gases are capable of investigating fermion many-body
teracting Fermi systems is one of the great challengesphysics in regimes of unprecedented experimental
in modern theoretical physics. In even the simplest simplicity. This situation implies a substantial oppor-
cases, first-principles calculations are made difficult tunity to develop and test novel first-principles theoret-
by the complexity of the fermionic wave-function, ical methods for the investigation of correlations and
manifest notoriously in the Fermi sign problem. In dynamical effects.
previous quantum Monte Carlo (QMC) techniques, Here we present a phase-space method for simulat-
the sign problem appears as trajectories with negative ing many-body bosof,3] and fermion{4,5] systems,

weights, which contribute to a large sampling efidy based on a Gaussian operator expansion.
together with large, computationally intensive deter- ~ The method allows the treatment of dynamical and
minants. static problems at finite temperature. The expansion

Fermion complexity issues appear in physical prob- N the fermionic case represerairs of Fermi opera-
lems at all energy scales, from high-energy lattice ©rS- Since the pairs obey commutation relations, there
QCD to the emerging area of ultra-cold atomic physics. &€ N0 anti-commutators causing sign problems, and

Recent pioneering experiments in ultra-cold Fermi no large determinant calculations as in some previous
approaches.

The method is illustrated using the finite temper-
* Corresponding author. ature Hubbard model, which is a well-known theory

E-mail address: drummond@physicsluq‘edu_au |n Condensed matter phySICS and h|@‘] SuperCOI’l-
(P.D. Drummond). ductors. The cases chosen have an acute sign problem

0010-4655/$ — see front mattér 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2005.03.091


http://www.elsevier.com/locate/cpc
mailto:drummond@physics.uq.edu.au

P.D. Drummond, J.F. Corney / Computer Physics Communications 169 (2005) 412-415

using conventional QMC. The results are directly ap-
plicable to feasible experiments on ultra-cold fermions
in an optical latticg6].

Like path-integral QMC, phase-space methods
sample the many-body quantum density operator
But rather than expressing the density operator in a
position representation, one expands it in terms of an
overcomplete basis of operators:
ﬁ(r):/P(X,z)/T(X)dX, (1)
whereP(X t) is a positive probability distributionA
is an overcomplete operator basis for the class of den-
sity matrices being considered, ant ig the integra-

tion measure for the generalized phase-space coordi-

natex. It is the overcompleteness of the basis which
allows a positive representation of any physical den-
sity matrix in terms of Gaussian operators.

We define the operator basis= 2 A, A_ to be
the product of Gaussian forms of bosoni¢,() and
fermionic (A_) creation and annihilation operators,
over M1 modes, respectively. Heg® is an additional
weighting factor. Ifa is a row vector ofM. anni-
hilation operators, and' the corresponding column
vector of creatlon operators, their commutation rela-
tions areia, a; ]3F = 8x;. We uset to indicate bosons
(upper sign) or fermions (lower sign). For brevity, we

restrict the present discussion to number-conserving
systems. The most general Gaussian operator is therm; =

a generalized thermal density operator with a complex
covariance:

Ap(n) =l £nFhexpa((2l} — 1 £n17Y)a'];, (2)

where the additionall} in the exponent is brack-
eted to indicated that it only appears in the fermionic
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As an illustration of the use of the unified rep-
resentation, consider the canonical distribution of a
Bose or Fermi field. The thermal state at temperature
T =1/kpt can be castinto an imaginary time integro-
differential equation:

—=—}/P(X,t)[ﬁ, X(X)de (4)

To solve this, we first use identities derived 5] that
describe the action of operators on the density operator
as derivatives on elements of the Gaussian basis. After
integrating Eq(4) by parts, we arrive at the following
mappings:

A A

9 T
fip—>nP—}—0+n'} npP
an
) - (%)
ph—>nP—{—n"! (1 £nPr.
oh— {an } ( )

The matrix derivative is here defined &&/on);; =
d/dn;;. In the free-field case ofi = Y ok Wik, We
arrive at a first-order Fokker—Planck equation for
the distribution functionP. This leads to determin-
istic equations for the mode occupations of form
ong /9t = —awgnig (1 £ ng), which can be integrated
to get the well-known Bose—Einstein (Fermi-Dirac)
distribution:

1
explwrt) F1° ©)

For systems ofinteracting particles, the unified
representation gives nonlinear, stochastic phase-space
equations, which must be solved numerically. Due to
the non-uniqueness of the expansion, a careful choice
of identities is mandatory7] to keep the nonlinear

case. Normal ordering is defined as usual for Bose andequations stable. We term this choice a stochastic

Fermi systems, for examplez, =+a) Jaj =En;;.
The My x My matrixn corresponds to a generalized
thermal covariance.

gauge in analogy to the gauge fields in QED, since
it results in freely chosen fields in the resulting sto-
chastic equations. The choice in the fermionic case is

Using these Gaussian operators in the density op- €specially large, since the fermionic anti-commutation

erator expansion of Eq1), one finds that operator

relations result in a non-unique algebraic form of the

expectation values become weighted moments of the Hamiltonian.

distribution P, denoted ag..)p. Thus the first- and
second-order number correlations are

(A) = / NP, 1) di = (n)p,
3)

atata A
(a; ajajai)= (niinjj)p £ (njjnji)p.

As an example, consider the Hubbard model, which
is the simplest nontrivial model for strongly inter-
acting electrons. It is an important system in con-
densed matter physics, with relevance to the theory
of high-temperature superconduct@®$. The Hamil-
tonian is:
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H(h, A1) =— Z(t[j + wéijiij o average very inefficient, as most paths in the ensemble
ij.o may end up contributing very little to the final result.
A N 2. To increase efficiency, we instead use a simple branch-
—1Ul Z'(njj’l —shji-0%/20 (1) ing algorithm adaptgd from Green’s functign Monte
/ Carlo methodq11], in which low-weight paths are
whereii;; « :&Zd&j,g = {fs};;. The coupling;; =1 deleted and high-weight paths are cloned, according
if the i, j correspond to nearest neighbor sites and is to the rate:
otherwise 0. The index denotes spin{1), the in-

(p) — (2N0s}
dicesi, j label lattice location, and = U/|U| = £1. men= Intege{é +827/82 ] (12)
Traditional QMC methods for this problem have large where¢ is a random variable uniformly distributed on
sign problems in the repulsive case=£ 1) [9,10]. [0, 1] and wheres2 is a reference weight, which is

Because of the way we have written the interaction adapted to keep the number of pathsunder control.
term in Eq.(6) (which constitutes a kind of fermionic At branching, the weights are equalized and there-
gauge choice), the Hubbard model maps to a set of realafter the clones evolve independently with spreading

Stratonovich stochastic equations: weights. To avoid biasing, the branching must occur
dn, 1 L 5 sufficiently often to limit the diversity of weights at
o E{(I —n)TPne +n, TP (1 —ng)}.  (8) the branching times. For the results presented here, the
Here we have introduced the stochastic propagation branching algorithm is sufficient to control sampling

error—other situations may require the use of more

matrix: sophisticated importance sampling meth{f]s
Tl% =t + 8 {n— o(”l)/zgj(’)} The stochastic phase-space equations are simulated

1 by a robust semi-implicit algorithifi 2], with an adap-
—1U8ij{snjj— —njjo + 3} ©) tive stepsize to overcome stiffness. Unlike Projector
The real Gaussian noisg*é’)(t) is defined by the cor-  QMC methods, the Gaussian phase-space method can

relations calculate any correlation function, at any tempera-
" s ) ture. Unlike Path Integral QMC, a single run generates
(&" (@& () =2U18(x — )818y. (10) results for a range of temperatures: longer simula-

The weights for each trajectory evolve as phys- tion tir_nes correspond to lower temperatures. Strictly
ically expected for energy-weighted averages, with speaking, zero-temperature results are obtained only
ds2/dr = —2H(n1, n_1). Because the equations for in the limit of long simulation times. Ir_1 practi_ce, how-
the phase-space variables , are all real, the weights ever, one on!y has to.run the simulation until the rele-
of all trajectories will remain positive. Thus the tradi- Vant correlation functions have plateaued.
tional manifestation of the sign problem is avoided, as  Precision is of course limited by sampling error,
there is no ‘deterioration of the sign’ from averaging Put this can be reduced by several means. For ex-
over positive and negative weights. Furthermore, the @mple, one can (a) include more trajectories in the
mapping to real phase-space produces a stable set ofample, (b) employ a more sophisticated branch-
equations, and thus there is no need to invoke addi- ing/importance sampling technique to reduce the
tional gauge choices. spread in weights, and (c) make a better ‘stochastic

There is, however, the issue of spreading weights, 9auge’ choice to obtain phase-space equations with
which becomes serious for large lattice sizes and long Smaller sampling error for the correlations to be calcu-

simulations times. Physical quantities are weighted av- lated. ) _ )
erages: Typical results for a 16« 16 lattice are shown in

Figs. 1 and 2which plot the energyt and second-
o o d lation functi tively, for differ-
_ ) (1 AP oW 1 order correlation functiorz, respectively, for differ-
(A(f)>1> - ZQ (T) WZ ., (1) ent chemical potentials. The estimation of sampling
p=1 r=1 error shown in the figures assumes independent sam-
whereN,, is the total number of paths in the sample. ples, for simplicity. While this is liable to underesti-
A large spread in the weights makes a straightforward mate the error, especially far, where there is also
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Fig. 1. Total energyE per site versus inverse temperaturéor a

16 x 16 2D lattice for chemical potentialg = 2 (solid), n =1
(dashed) andu = 0 (dot-dashed). Curves without crosses give
the number of particles per site for = 1 (dashed) ange = 0
(dot-dashed)U = 4, r = 1, and 100 paths initially. Dotted curves
give an approximate sampling error.
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Fig. 2. Second-order correlation functign = ( jﬁjj,lﬁjj,_l)/

<Zj ﬁj_m)(zj iij; _1) versus inverse temperaturdor a 16x 16
2D lattice for chemical potentiajs = 2 (solid), » = 1 (dashed) and
u =0 (dot-dashed)U =4, + = 1, and 100 paths initially. Dotted
curves give an approximate sampling error.

spatial averaging, it does indicate the approximate de-
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tion, even away from half filling, where there is known
to be a sign problem. A more detailed sampling error
analysis will be given elsewhere.

In conclusion, we have presented a unified operator
representation that is able to represent arbitrary phys-
ical states of bosons and fermions. By use of this rep-
resentation, non-interacting systems can be mapped
to deterministic phase-space equations, whereas sys-
tems with two-body interactions can be simulated by
use of stochastic sampling methods, provided a suit-
able gauge is chosen to eliminate any boundary terms.
For the example of the Hubbard model, we show how
the thermal equilibrium problem can be mapped to a
set of real, stable phase-space equations with positive
weights. Bosonic problems can be solved in similar
manner, and the method can also be used to simulate
dynamics (although typically with an increased sam-
pling error). Thus the one, unified method can solve
both fermionic and bosonic problems, which makes it
well suited to simulating Bose—Fermi mixtures, and to
studying the BEC/BCS crossover.
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