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Disagreement between correlations of quantum mechanics and stochastic electrodynamics
in the damped parametric oscillator
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~Received 16 November 1999; published 18 September 2000!

Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are
calculated for quantum mechanics and stochastic electrodynamics~SED!, a semiclassical theory. The two
theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system’s
nonlinear coupling constant and those of SED being linear in the same constant. In particular, differences
between the two theories are present in at least a mesoscopic regime. They also exist when realistic damping
is included. Such differences illustrate distinctions between quantum mechanics and a hidden variable theory
for continuous variables.

PACS number~s!: 03.65.Bz, 42.50.Dv, 42.65.Yj
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I. INTRODUCTION

Local hidden variable theories have been extensiv
compared to quantum mechanics over the last seventy o
years@1–3#. Most comparisons between the two have inv
tigated whether or not quantum mechanics is equivalent
local hidden variable theory. Much evidence indicates tha
is not. Many results in quantum mechanics have been fo
that are incompatible with all local hidden variable theor
@2–7#. Most of these results have involved idealized u
damped systems. However, all experimental systems
counter damping. Thus, it is interesting~and more realistic!
to compare quantum mechanics and local hidden varia
theories in damped systems@5#. This paper compares quan
tum mechanics and one local hidden variable theory@Sto-
chastic electrodynamics~SED!# in such a system.

One of the earliest works comparing local hidden varia
theories to quantum mechanics was Bell’s theorem@2#. It
demonstrates that quantum mechanics is incompatible
all local hidden variable theories at a statistical level. It do
so by deriving an upper bound on a function of two parti
correlations for all local hidden variable theories, whi
quantum mechanics exceeds. Extensions of it have been
mulated for large angular momentum and particle num
systems@5,6#. These extensions demonstrate nonclassical
havior in a regime usually regarded as being purely class
Greenberger, Horne, and Zeilinger~GHZ! @4# have also ex-
tended Bell’s work, differentiating quantum mechanics fro
all local hidden variable theories for single, as opposed
ensemble, measurements. The three particle GHZ theo
has an ‘‘all or nothing’’ quality and distinguishes betwe
local hidden variable theories and quantum mechanics
single experimental run, once three basic correlations are
tablished.

Comparisons between quantum mechanics and local
den variable theories have also been made using contin
variables~which are discretized in formulating the compa
son!, such as quadrature phase amplitudes@7#, and there is
currently much interest in this area. For quadrature ph
amplitude measurements, these comparisons can have d
tor efficiencies in excess of 99%@9#. They also tend to relate
more strongly to Einstein, Podolsky, and Rosen’s origi
EPR paradox@1# than earlier discrete variable ones. Indee
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the EPR paradox has been experimentally demonstrated
ing quadrature phase amplitudes@8#. Additionally, quantum
teleportation has been achieved using quadrature phase
plitudes@10#, further demonstrating the utility of continuou
variables.

One commonly used local hidden variable theory is s
chastic electrodynamics@11,12#. Some authors have pro
posed it as an alternative to quantum mechanics@11,13#. Fur-
thermore, a semiclassical approach equivalent to it@14# is
also commonly used in parametric oscillator calculatio
@15#. SED consists of adding Gaussian white noise to cla
cal electrodynamics. It is equivalent to truncating third ord
derivative terms in the quantum mechanical Moyal equati
a commonly used approximation@16#. Such terms are often
negligible and thus SED reproduces many results of quan
mechanics@14,15#. However, it cannot violate Bell inequali
ties for quadrature phase amplitude measurements, an
thus distinct from quantum mechanics@7#. Various authors
have explicitly shown differences between SED and qu
tum mechanics@17–19#. In particular, it has been shown tha
the two theories predict different transient third order cor
lations for the undamped nondegenerate parametric oscil
@17#. It has also been shown that they predict different m
roscopic quadrature phase amplitude correlations in
damped nondegenerate parametric oscillator in the ste
state@19#.

In general, differences between quantum mechanics
local hidden variable theories are reduced or eliminated
damping@20#. Furthermore, damping is a significant eleme
of many realistic systems. It is thus important to consider
effects on differences between quantum mechanics and l
hidden variable theories such as SED. However, all but a
of the comparisons between the quantum mechanics an
cal hidden variable theories referenced above have invo
undamped systems. They are thus idealized in this respec
contrast, damping is included in the calculations in this p
per. It is included to consider a theoretical model that is
realistic as possible and also to determine the sensitivity
differences between quantum mechanics and SED to its p
ence.

This paper extends a previous comparison between q
tum mechanics and SED in the nondegenerate param
oscillator@17#. In particular, it contrasts both intracavity an
©2000 The American Physical Society08-1
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external moments of the two theories in the same sys
with damping included. Expressions from both theories
compared for the intracavity moment

^DX1~t!DX2~t!DX3~t!&,

where

DXi~t!5Xi~t!2^Xi~t!&,

for i 51,2,3,Xi(t) is a quadrature phase amplitude, the su
scripts represent different radiation modes, andt is a scaled
time variable. A comparison is also made for an analog
external moment. Both analytic iterative and numerical te
niques are used to calculate moments. The results prod
by these techniques show that the intracavity and exte
moments differ greatly between the two theories. In parti
lar, the analytic method shows that the moments of quan
mechanics are cubic in the system’s nonlinear coupling c
stant to leading order while those of SED are linear. The t
theories are compared over a range of nonlinear coup
constant, damping, and average initial pump photon num
values. The results of these comparisons show a numbe
qualitative trends. Most importantly, quantum mechanics
SED differ in the situations considered with the largest rat
of particle number and damping to nonlinear coupling,
though the differences are reduced in relative size.

Stochastic techniques are used to obtain results for b
quantum mechanics and SED. The positive-P coherent state
representation@21# is used to calculate quantum mechanic
predictions. It is particularly well suited to the calculation
quantum dynamics in damped quantum optical systems w
nonclassical behavior is present. It is able to handle a
trarily large photon numbers. It converges quickly~in the
sense of sampling error! when systems’ dimensionless no
linearities are relatively small, as is the case with nonlin
optical experiments. By contrast, the method used for S
calculations corresponds to commonly used approache
quantum optics, where the field is treated as a semiclas
object surrounded by~classical! vacuum fluctuations. Both
methods are used to generate analytic predictions and
also numerically simulated.

II. QUANTUM MECHANICS

This paper considers an idealized nondegenerate para
ric oscillator, resonant at three frequenciesv1 andv2 ~signal
and idler frequencies! andv35v11v2 ~pump frequency!. It
contains a nonlinear medium that couples the modes
converts higher energy pump photons into lower energy
nal and idler ones. The system’s interaction Hamiltoni
including linear losses, is given by

Ĥ5 i\G~ â1
†â2

†â32â1â2â3
†!1(

i 51

3

Ĝ i âi
†1Ĝ i

†âi , ~2.1!

where âi
† and âi are creation and annihilation operators f

oscillator modes,Ĝ i
† andĜ i are environment mode operator

and G is a nonlinear interaction strength constant. Initial
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the system has a coherent state in the pump mode
vacuum states in the signal and idler modes.

A number of quasiprobability representations exist to d
scribe quantum states, the most famous being the Glau
Sudarshan representation@22#. It is produced by decompos
ing quantum density operators using a diagonal cohe
state basis. Thus,

r̂5E da2P~a,a* !ua&^au, ~2.2!

wherer̂ is a density operator andP(a,a* ) is the Glauber-
Sudarshan representation. The Glauber-Sudarshan repr
tation can be negative and is hence not a strict probab
density function. A more recent representation is t
positive-P representation@21#, which is an actual probability
density function over an off-diagonal coherent state basis
further differs from the Glauber-Sudarshan representation
using a phase space of doubled dimension. The positivP
variables$a i ,a i

1%, where i is a positive integer, are analo
gous to complex field amplitudes, witha i anda i

1 describing
a particular radiation mode. However,$a i% and $a i

1% are
independent and hencea iÞ(a i

1)* , though their averages ar
complex conjugates and thus^a i&5^a i

1&* . Variable aver-
ages are equal to normally ordered quantum averages
the substitutionsa i→âi and a i

1→âi
† are made. For ex-

ample,^a1a1
1&5^â1

†â1&r , where^Ô&r denotes Tr(r̂Ô), as
usual in quantum mechanics.

Stochastic equations of motion for positive-P variables
for the damped nondegenerate parametric oscillator are
terms of t ~time scaled byG, a typical damping constan
with units of inverse time!,

da1

dt
52g1a11ga2

1a31Aga3j1 ,

da1
1

dt
52g1a1

11ga2a3
11Aga3

1j1
1 ,

da2

dt
52g2a21ga1

1a31Aga3j2 ,

~2.3!
da2

1

dt
52g2a2

11ga1a3
11Aga3

1j2
1 ,

da3

dt
52g3a32ga1a2 ,

da3
1

dt
52g3a3

12ga1
1a2

1 .

Herej1 ,j2 ,j1
1 , andj2

1 are complex Gaussian white noise
with the following correlations:

^j i~t1!j j~t2!&5d32 i , jd~t12t2!,
8-2
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^j i
1~t1!j j

1~t2!&5d32 i , jd~t12t2!, ~2.4!

^j i
1~t1!j j~t2!&50,

wherei , j 51,2. In Eq.~2.3!, g i5G i /G, whereG i is a damp-
ing constant for modei with units of inverse time,g5G/G,
and t5Gt. It is assumed thatG, G i , andG are real. Initial
conditions area1(0)50,a2(0)50, and a3(0)5e. It is
noted that Eq.~2.3! is valid only when boundary terms i
phase space can be neglected. These are asymptotically
in the limit of short times or large damping ratios@23#.

Equation ~2.3! is solved using an analytic iterativ
method. This method treats damping terms exactly,
noise and nonlinear terms iteratively. It involves, first, r
writing the equations forming Eq.~2.3! as ȧ i52g ia i

1 f i($a j ,a j
1%,t) or ȧ i

152g ia i
11 f i

1($a j ,a j
1%,t), where

i , j 51,2,3. Successively higher order approximations
$a i(t),a i

1(t)% are then found using increasingly better a
proximations forf i and f i

1 . Thus, (m11)th order terms are
given by

a i
(m11)~t!5a i

(0)~t!1E
t150

t15t

dt1exp@g i~t12t!#

3 f i~$a j
(m) ,a j

1(m)%,t1!, ~2.5!

a i
1(m11)~t!5a i

1(0)~t!1E
t150

t15t

dt1exp@g i~t12t!#

3 f i
1~$a j

(m) ,a j
1(m)%,t1!,

Here ak
(0)(t)5ak(t50) 3exp(2gkt) and ak

(0)1(t)
5ak

(0)(t)* , wherek51,2,3. For example,

FIG. 1. The three basic classes of stochastic diagrams,~a! initial
value term,~b! noise term, and~c! nonlinear term, and a stochast
diagram~d! representing a higher order term.
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(m11)~t!5a1

(0)~t!1E
t150

t15t

dt1exp@g1~t12t!#

3@ga2
1(m)~t1!a3

(m)~t1!1Aga3
(m)~t1!j1~t1!#

~2.6!

and first order approximations are

a i
(1)~t!5E

t i50

t i5t

dt iexp@g i~t i2t!#Age expS 2
g3t i

2 D j i~t1!,

a3
(1)~t!5e exp~2g3t!,

~2.7!

a i
1(1)~t!5E

t i50

t i5t

dt iexp@g i~t i2t!#Age*

3expS 2
g3t i

2 D j i
1~t1!,

a3
1(1)~t!5e* exp~2g3t!,

wherei 51,2.

III. STOCHASTIC DIAGRAMS

The iterative method of the previous section can be us
in conjunction with stochastic diagrams, to readily produ
analytic approximations for the intracavity moments of qua
tum mechanics considered in this paper. Stochastic diagr
@24# are schematic representations of the combinatoric p
of an iterative process. They clearly lay out all terms p
duced by different orders of iteration. Fundamental stoch
tic diagrams appear as one of three classes. Those assoc
with initial conditions appear as straight lines, those w

FIG. 2. Stochastic diagrams representing the lowest order n
zero terms required to determine the intracavity moment of qu

tum mechanicŝ M̂ (t)&QM for ~a! a1(t),a1
1(t),a2(t) and a2

1(t)
and ~b! a3(t),a3

1(t),^a3(t)& and ^a3
1(t)&.
8-3
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noise terms as straight lines with a cross at their end,
those with nonlinear terms as straight lines containing a fo
as shown in Figs. 1~a!–1~c!. Higher order iterative terms ar
represented by stochastic diagrams using combinations o
three basic classes. For example, one of the iterative term
a1

(2)(t) is

E
t150

t15t

dt1exp@g1~t12t!#ga3
(0)~t1!E

t250

t25t1
dt2

3exp@g2~t22t1!#Age* expS 2
g3t2

2 D j2
1~t2!.

It combines all three basic classes and is represented b
stochastic diagram in Fig. 1~d!. All iterative terms can be
represented by stochastic diagrams.

Stochastic diagrams can also be used to determine
orders of iterative terms. In particular, they can be used
determine the orders of such terms in the system’s nonlin
coupling constantg. This paper focuses on the order of term
in this constant. For quantum mechanics, initial value ite
tive terms areO(g0), noise iterative termsO(g1/2), and non-
linear iterative termsO(g). Hence, lines in stochastic dia
grams count as order zero, crosses as order a half,
vertices as order one. A term’s order is simply found
considering its stochastic diagram and adding one-half to
order for every cross and one for every vertex. For exam
the term represented in Fig. 1~d! has one vertex and on
cross and thus isO(g3/2). A notation that denotes the order
g of a term by a superscript@n# is used in this section.

Stochastic diagrams are now used to determine
intracavity moments of quantum mechanics conside
in this paper. Consider all eight moments of the fo
^DA1(t)DA2(t)DA3(t)&, where DAi(t)5Ai(t)
2^Ai(t)& andAi(t) is either âi or âi

† . These are equal to

the positive-P variable moments that replaceâi and âi
† by
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a i(t) anda i
1(t), respectively. Now, consider the equatio

that constitute Eq.~2.3!. Their forms do not change whe
they are expressed in terms of2a i(t),2a i

1(t),a3(t), and
a3

1(t), where i 51,2. From this, it follows that̂ Ai(t)&
5^2Ai(t)& and hencê a i(t)&5^a i

1(t)&50, where again
i 51,2. Thus,̂ DA1(t)DA2(t)DA3(t)& can be simplified to
^A1(t)A2(t)DA3(t)&.

An approximate expression for^A1(t)A2(t)DA3(t)& is
now obtained using the iterative method in Sec. II~and sto-
chastic diagrams!. This method can be used to produ
power series expressions ing for the positive-P variables.
These expressions can then be used to generate power
expressions in g for the moments of the form
^A1(t)A2(t)DA3(t)&. As g!1 in realistic systems, thes
power series expressions can be approximated by their
est order nonzero terms.

Figures 2~a! and 2~b! show the stochastic diagrams r
quired to determine the moments of the for
^A1(t)A2(t)DA3(t)&. Naively, it might be thought that the
lowest order nonzero terms fromA1(t),A2(t), andDA3(t)
simply need to be multiplied together and the average of
subsequent product determined to calculate the lowest o
nonzero term in̂ A1(t)A2(t)DA3(t)&. This is not always
true. Sometimes,A1(t),A2(t), andDA3(t) are not neces-
sarily zero and yet̂ A1(t)A2(t)DA3(t)& is zero. For ex-
ample, the lowest order nonzero terms for the positiveP
variables in^a1(t)a2(t)Da3

1(t)& are

a i
[1/2]~t!5E

t i50

t i5t

dt iexp@g i~t i2t!#Age

3expS 2
g3t i

2 D j i~t i !, ~3.1!

wherei 51,2, and
Da3
1[2]~t!5E

t350

t35t

dt3exp@g3~t32t!#gE
t450

t45t3
dt4exp@g1~t42t3!#Age* expS 2

g3t4

2 D j1
1~t4!

3E
t550

t55t3
dt5exp@g2~t52t3!#Age* expS 2

g3t5

2 D j2
1~t5!2K E

t350

t35t

dt3exp@g3~t32t!#g

3E
t450

t45t3
dt4exp@g1~t42t3!#Age* expS 2

g3t4

2 D j1
1~t4!E

t550

t55t3
dt5exp@g2~t52t3!#Age*

3expS 2
g3t5

2 D j2
1~t5!L . ~3.2!

However, the average of their product is zero as

^a1
[1/2]~t!a2

[1/2]~t!Da3
1[2]~t!&5g3ee* E

t150

t15tE
t250

t25tE
t350

t35tE
t450

t45t3E
t550

t55t3
dt1dt2dt3dt4dt5exp@g1~t12t!#

3expS 2
g3t1

2 Dexp@g2~t22t!#expS 2
g3t2

2 Dexp@g3~t32t!#exp@g1~t42t3!#
8-4
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3expS 2
g3t4

2 Dexp@g2~t52t3!#expS 2
g3t5

2 D
3@^j1~t1!j2~t2!j1

1~t4!j2
1~t5!&2^j1~t1!j2~t2!&^j1

1~t4!j2
1~t5!&# ~3.3!

and

^j1~t1!j2~t2!j1
1~t4!j2

1~t5!&5^j1~t1!j2~t2!&^j1
1~t4!j2

1~t5!&. ~3.4!

Thus, the two noise terms cancel each other and the right hand side of Eq.~3.3! is zero. Taking such a consideration in
account, the moments of the form

^A1~t!A2~t!DA3~t!&

are determined by carefully considering the lowest order nonzero terms of their constituent positive-P variables and then
finding the average of these variables’ products.

Consider Fig. 2~a!, which contains the lowest order stochastic diagrams fora i(t) and a i
1(t), where i 51,2. The first

diagram in it represents the initial value termsa i
(0)(t) anda i

(0)1(t), which are zero and do not contribute to any momen
The second represents noise terms containingj1 ,j1

1 ,j2, or j2
1 , which are not necessarily zero and thus may contribute

moments. Figure 2~b! contains the lowest order stochastic diagrams fora3(t) and a3
1(t). In it, all terms represented b

stochastic diagrams containing initial value lines are zero except for theO(g0) ones. This is so as these terms contain eit
a i

(0)(t) or a i
1(0)(t), wherei 51,2, which are both zero. In addition, allO(g0) terms represented by stochastic diagrams in F

2~b! are canceled out by otherO(g0) terms. This occurs becauseDA3(t) appears in the moments considered. Its t
components,A3(t) and^A3(t)&, contain the sameO(g0) term and hence theirO(g0) terms cancel each other. It follows tha
the only remaining stochastic diagram in Fig. 2~b!, which represents theO(g2) term containing two noise components, deno
the lowest order term inDA3(t) that is not necessarily zero.

The lowest order nonzero terms determined above are now used to calculate^a1(t)a2(t)Da3(t)&. The lowest order
contribution toDa3(t) that is not necessarily zero,Da3lowest(t), is

Da3 lowest~t!5E
t350

t35t

dt3exp@g3~t32t!#gE
t450

t45t3
dt4exp@g1~t42t3!#Age expS 2

g3t4

2 D j1~t4!

3E
t550

t55t3
dt5exp@g2~t52t3!#Age expS 2

g3t5

2 D j2~t5!2K E
t350

t35t

dt3exp@g3~t32t!#g

3E
t450

t45t3
dt4exp@g1~t42t3!#Age expS 2

g3t4

2 D j1~t4!E
t550

t55t3
dt5exp@g2~t52t3!#Age

3expS 2
g3t5

2 D j2~t5!L . ~3.5!
f

to

e

the
an

rms
When g15g25g35g, the average of the product o
Da3lowest(t) and the lowest order nonzero terms ina1(t)
and a2(t) is approximately equal tôa1(t)a2(t)Da3(t)&
wheng!1 and thus

^a1~t!a2~t!Da3~t!&.2
e2g3exp~23gt!

g2

3S exp~gt!

g
22t2

exp~2gt!

g D .

~3.6!

As daggered positive-P variables are complex conjugate
undaggered ones on average,^a1

1(t)a2
1(t)Da3

1(t)&
5^a1(t)a2(t)Da3(t)&* . The other six moments of th
04210
form ^A1(t)A2(t)DA3(t)& are zero to O(g3). Like
^a1(t)a2(t)Da3

1(t)&, they all have twoO(g3) terms that
cancel each other. To explain such behavior in general,
following argument is given. These other six moments c
be rewritten as

^A1~t!A2~t!A3~t!&2^A1~t!A2~t!&^A3~t!&, ~3.7!

where it is understood that the moments in whichA1(t)
5a1(t),A2(t)5a2(t),A3(t)5a3(t) and A1(t)5a1

1(t),
A2(t)5a2

1(t),A3(t)5a3
1(t) are excluded. All O(g3)

terms in the six moments of the form̂A1(t)A2(t)A3(t)&
under consideration contain noises in one of the three fo

^j1~ta!j2~tb!j1
1~tc!j2

1~td!&,
8-5



di
e
-

pl

th
n
co

o
de

.
ie

es

e

tu

y

e
the

e-

e to
eld

-
es
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^j i~ta!j32 i
1 ~tb!j i~tc!j32 i~td!&,

and ^j i
1(ta)j32 i(tb)j i

1(tc)j32 i
1 (td)&, where i 51,2 and

time arguments are dummy variables. AllO(g3) terms in the
six moments of the form̂A1(t)A2(t)&^A3(t)& under con-
sideration contain the same noises as their correspon
^A1(t)A2(t)A3(t)& terms. However, in these terms of th
form ^A1(t)A2(t)&^A3(t)& four noise averages from corre
sponding terms of the form̂A1(t)A2(t)A3(t)& are split
into the product of two averages of two noises. For exam
^a1(t)a2(t)a3

1(t)& contains noises in the form
^j1(ta)j2(tb)j1

1(tc)j2
1(td)& while ^a1(t)a2(t)&^a3

1(t)&
contains them in the form
^j1(ta)j2(tb)&^j1

1(tc)j2
1(td)&. Using the formula

^j1~ta!j2~tb!j3~tc!j4~td!&

5^j1~ta!j2~tb!&^j3~tc!j4~td!&1^j1~ta!j3~tc!&

3^j2~tb!j4~td!&1^j1~ta!j4~td!&^j2~tb!j3~tc!&,

~3.8!

it can be shown that noise expressions in moments of
form ^A1(t)A2(t)A3(t)& under consideration factorize. I
particular, they reduce to the noise expression in the six
responding terms of the form̂A1(t)A2(t)&^A3(t)&. It fol-
lows that cancellation occurs between theO(g3) terms in
corresponding moments of the form̂A1(t)A2(t)A3(t)&
and ^A1(t)A2(t)&^A3(t)& under consideration as the tw
terms are identical. Consequently, all six moments un
consideration areO(g4). They are also typically much
smaller than the twoO(g3) moments,̂ a1(t)a2(t)Da3(t)&
and ^a1

1(t)a2
1(t)Da3

1(t)&, as g!1 for realistic systems
To be precise, as all moments are complex quantit
the magnitudes of ^a1(t)a2(t)Da3(t)& and
^a1

1(t)a2
1(t)Da3

1(t)& are much larger than the magnitud
of the other six moments.

The above results are now more closely related to exp
ments by considering quadrature phase amplitudesXi ,u i

(t).
In particular, calculations are performed to determine the~in
principle experimentally observable! third order quadrature
phase amplitude moment^M (t)&, where ^M (t)&
5^DX1,u1

(t)DX2,u2
(t)DX3,u3

(t)&, according to quantum
mechanics and SED. In quantum mechanics, quadra
phase amplitudes are expressed in terms of creation and
nihilation operators by the equation

X̂i ,u i
5

âiexp~2 iu i !1âi
†exp~ iu i !

2
. ~3.9!

Using Eq.~3.9! and operator-positive-P variable correspon-
dences^M̂ (t)&QM , the value of^M (t)& for quantum me-
chanics can be expressed as

^M̂ ~t!&QM5
1

8 K )
i 51

3

Da i~t!e2 iu i1Da i
1~t!eiu iL .

~3.10!
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Upon expanding the right hand side of Eq.~3.10!, the two
lowest order terms ing, ^Da1(t)Da2(t)Da3(t)& and
^Da1

1(t)Da2
1(t)Da3

1(t)&, usually dominate. When the
do,

^M̂ ~t!&QM. 1
4 @cosQ Rê a1~t!a2~t!Da3~t!&

2sinQ Im^a1~t!a2~t!Da3~t!&#,

~3.11!

where Q5u11u21u3. However, when cosQ50 and
Im@^a1(t)a2(t)Da3(t)&#5O(t4) or when sinQ50 and
Re@^a1(t)a2(t)Da3(t)&#5O(t4), Eq. ~3.11! is not neces-
sarily true. Such situations can be avoided though becausQ
and e are controllable parameters. They are ignored in
present consideration. Whene is real, theO(g3) term in
^a1(t)a2(t)Da3(t)& is also real and so

^M̂ ~t!&QM. 1
4 cosQ^a1~t!a2~t!Da3~t!&

.2
e2g3cosQ exp~23gt!

4g2

3S exp~gt!

g
22t2

exp~2gt!

g D . ~3.12!

Thus, Eq.~3.12! shows that̂ M̂ (t)&QM is cubic ing, within
the domain considered, as shown in Fig. 3.

IV. COMPARISON OF QUANTUM MECHANICS AND
STOCHASTIC ELECTRODYNAMICS

This section compares the predictions of quantum m
chanics and SED for the intracavity moment^M (t)&. SED is
a semiclassical theory which adds Gaussian white nois
classical electrodynamics. It describes electromagnetic fi
modes by complex field amplitudesb. For the nondegener
ate parametric oscillator, the set of such amplitud

FIG. 3. Analytic results for ^M̂ (t)&QM ~solid line! and
^M (t)&SED ~dotted line! versus scaled timet for N51, g51, g
51, and cosQ5cosF51.
8-6
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$b1 ,b2 ,b3% evolves via the equations

]b1

]t
52g1b11gb2* b31Ag1j1 , ~4.1!

]b2

]t
52g2b21gb1* b31Ag2j2 ,

]b3

]t
52g3b32gb1b21Ag3j3 ,

where the same time variable as in the quantum case is
and thej ’s are independent complex Gaussian white noi
with the correlations

^j i~t1!j j* ~t2!&5d i j d~t12t2!, ~4.2!

where i , j 51,2,3. The field amplitudesb1 ,b2, and b3 ini-
tially have Gaussian fluctuations in their real and imagin
parts of variance 1/4. The only nonzero correlations pres
in these fluctuations are thus

^Db i~0!Db i* ~0!&5 1
2 , ~4.3!

wherei 51,2,3. Initial conditions arêb1(0)&5^b2(0)&50
and ^b3(0)&5e.

The SED prediction for the intracavity moment^M (t)& is
^M (t)&SED, which is given by the equation

^M ~t!&SED5^DX1,u1
~t!DX2,u2

~t!DX3u3
~t!&, ~4.4!

whereXi ,u i
(t)5@b i(t)e2 iu i1b i* (t)eiu i#/2. It is calculated

using a similar iterative method to the one in Sec. II, exc
that noise terms are now treated exactly instead of iterativ
Zeroth order approximations for this iterative method a
thus

b i
(0)~t!5b i~0!exp~2g it!1E

t i 50

t i5t

dt i

3exp@g i~t i2t!#Ag ij i , ~4.5!

b3
(0)~t!5b3~0!exp~2g3t!,

where i 51,2. Higher order (m11)th order approximations
are

b i
(m11)~t!5b i

(0)~t!1E
t i50

t i5t

dt iexp@g i~t i2t!#

3gb32 i* (m)~t i !b3
(m)~t i !, ~4.6!

b3
(m11)~t!5b3

(0)~t!2E
t350

t35t

dt3exp@g3~t32t!#

3gb1
(m)~t3!b2

(m)~t3!,

wherei 51,2.
The lowest order nonzero term ing of ^M (t)&SED is now

found using the same method as for the lowest order non
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term of ^M̂ (t)&QM . Consider the moments of the form
^DB1(t)DB2(t)DB3(t)&, where Bn(t) is either bn(t) or
bn* (t). The stochastic diagrams required to determine
order of the lowest order nonzero terms of these moments
shown in Fig. 4. Note that noise terms are nowO(g0), in-
stead ofO(g1/2) as for quantum mechanics. Using the st
chastic diagrams in Fig. 4 it is found that, wheng15g2
5g35g andg,t f!1,

^Db1~t!Db2~t!Db3* ~t!&.
g

12g
@12exp~23gt!#

.^Db1* ~t!Db2* ~t!Db3~t!&* .

~4.7!

The other six moments of the form̂DB1DB2DB3&
are all O(g2). Thus, ^Db1(t)Db2(t)Db3* (t)& and
^Db1* (t)Db2* (t)Db3(t)& dominate these other six mo
ments wheng!1 and hence

^M ~t!&SED. 1
4 cosF^Db1~t!Db2~t!Db3* ~t!&

.
g cosF

4g
@12exp~23gt!#, ~4.8!

where F5u11u22u3. Equation ~4.8! shows that
^M (t)&SED is linear in g, as shown in Fig. 3. This is in
contrast to the cubic behavior of^M̂ (t)&QM . Thus, quantum
mechanics and SED predict greatly different values
^M (t)& wheng!1.

Consideration is now given to the effect of dampin
strength on the size of the difference between^M (t)&SED and

^M̂ (t)&QM . Figure 5~a! shows^M̂ &QM and ^M &SED as func-

FIG. 4. Stochastic diagrams representing the lowest order n
zero terms required to determine the intracavity moment of SE
^M (t)&SED, for b i , wherei 51,2,3.
8-7



nl

s
in
e
is
re

ss
m

ta
s
i

s.
cted

of
ith

ial
ot
ri-

the
they
licit

ion
of

ions
t are
r is
r-

D. T. POPE, P. D. DRUMMOND, AND W. J. MUNRO PHYSICAL REVIEW A62 042108
tions of g for g50.1,t51, ande51. It indicates that the
difference between them is somewhat sensitive tog, decreas-
ing exponentially with increasingg and quickly approaching
zero. However, for the shorter timet50.1, Fig. 5~b! shows
that this difference is not as sensitive to damping. It o
decreases approximately linearly with increasingg.

SED and the positive-P representation treat fluctuation
very differently, as is evident by comparing noise terms
Eqs~2.3! and~4.1!. This difference in treatment underlies th
differences between the two theories’ results. First, no
terms in the positive-P representation are nonlinear and a
scaled by eitherAga3 or Aga3

1, while those in SED are
linear and are scaled byAg i . Secondly, noise terms posse
different correlations in the two cases. Thirdly, in quantu
mechanics no energy fluctuations occur in the vacuum s
while in SED $b i% fluctuates, as does the total energy. A
suming quantum mechanics is true, in SED fluctuations
the vacuum lead to an overestimate of^M (t)& for small g.

FIG. 5. Results for̂ M̂ (g)&QM ~dotted lines! and ^M (g)&SED

~solid lines! as a function of the damping constantg for g50.1,N
51, cosQ5cosF50, and~a! t51, ~b! t50.1.
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V. NUMERICAL RESULTS

The analytic results for̂ M (t)&SED and ^M̂ (t)&QM in
Secs. III and IV include only lowest order nonzero term
This leaves the sums of all higher order terms as negle
and these may be significant. For this reason, the validity
the analytic approximations are checked by comparison w
highly accurate numerical simulation results.

Numerical simulation methods for stochastic different
equations ~SDE’s! are both somewhat complex and n
widely known. Thus, explanations are given for the nume
cal technique used to solve the SDE’s in Eqs~2.3! and~4.1!.
Normal ordinary differential equation techniques such as
Runge-Kutta method cannot be used to solve SDE’s as
contain discontinuous source terms. Instead, a semi-imp
numerical method@25# is employed. Only its application to
Eq. ~2.3! is explained as its application to Eq.~4.1! is similar.
Each of the equations in Eq.~2.3! can be rewritten as

]xi

]t
5Ai~x!1(

j
Bi j ~x!z j~t!, ~5.1!

wherexi is eithera i or a i
1 , for i 51,2,3,x is a vector whose

components are$a i ,a i
1%, Ai is the function ofx formed by

the damping and nonlinear terms in the evolution equat
for xi , andbi j is a matrix whose elements are coefficients
the noise terms$z j% wherez j is eitherj j or j j

1 , for j 51,2.

The semi-implicit method used determinesx̄(n), an approxi-
mation tox at the midpoint of the interval (tn ,tn11). This
approximation is found using iteration such that thepth or-
der approximation to a component ofx̄(n), x̄i

(n)[ p] , is given
by the equation

x̄i
(n)[ p]5xi

(n)1 1
2 FDtAi~ x̄(n)[ p21]!

1(
j

Bi j ~ x̄(n)[ p21]!DWj~ t̄n!G , ~5.2!

where xi
(n) is the value ofxi at time tn , Dt5tn212tn ,

DWj ( t̄n)5z j
(n)( t̄n)Dt, andt̄n is the midpoint of the interval

(tn21 ,tn). The zeroth order approximation tox̄i
(n) is given

by the equationx̄i
(n)[0]5xi

(n) . The approximation tox̄(n) cal-
culated is then used to generateDxi

(n) , an approximation to
the change inxi over the interval (tn ,tn11). This is done by
solving the equation

Dxi
(n)5Ai~ x̄(n)!Dtn1(

j
Bi j ~ x̄(n)!DWj~ t̄n!. ~5.3!

Repeated use of Eq.~5.3! determinesxi
(n) for successively

later and later times and thus solves Eq.~5.1!. Two of the
most important parameters used in the numerical simulat
are the step size and the number of stochastic paths tha
averaged over. The former is always 0.0025 and the latte
O(106) for most simulations. However, large sampling e
rors necessitated averaging overO(107) paths for g50.1
SED simulations.
8-8
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DISAGREEMENT BETWEEN CORRELATIONS OF . . . PHYSICAL REVIEW A 62 042108
Results from the numerical and analytic simulations

^M (t)&SED and ^M̂ (t)&QM over a range ofg and N values,
whereN is the average initial number of pump photons (N
5ue2u), are shown in Figs. 6–8. In all casesu15u25u3
50 and relative numerical errors are small. Allg50.1 ana-
lytic results are in agreement with their numerical count
parts. However,g51 analytic results forN51 andN510
are not. This disagreement is explained by noting that
analytic results are only necessarily valid wheng!1.

A number of qualitative trends can be seen in Figs. 6
In Figs. 6 and 7 (N51 andN510) the results of SED and
quantum mechanics are so distinct that they have diffe
signs, with those of quantum mechanics being negative

FIG. 6. Numerical and analytic results for̂M̂ (t)&QM and
^M (t)&SED for N51,g51, and cosQ5cosF51. ~a! Analytic re-
sults for ^M (t)&SED for g50.1 ~solid line! andg51 ~dotted line!,
and numerical results for̂M (t)&SED represented by dots with asso
ciated error bars for~i! g51 and~ii ! g50.1.~b! Analytic results for

^M̂ (t)&QM for g50.1 ~solid line! and g51 ~dotted line!, and nu-

merical results for̂ M̂ (t)&QM represented by dots with associat
error bars for~i! g51 and~ii ! g50.1.
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those of SED being positive. This trend holds only for sh
times (t,0.07) in Figs. 8~a! and 8~b! (N5100). For longer
times, SED and quantum mechanics predict the same s
This trait is consistent with the fact that Figs. 8~a! and 8~b!
show results for the largest number of photons in the pu
mode. SED and quantum mechanics are at their most cla
cal level for this case and thus might be expected to differ
least. For constantN Figs. 6–8 also show that asg is de-
creased the results of quantum mechanics and SED bec
more similar. This occurs because lowerg values are asso
ciated with larger damping to nonlinear coupling ratios a
therefore move SED and quantum mechanics closer to
classical domain.

VI. EXTERNAL MOMENTS

Thus far, only intracavity fields have been consider
However, it is the external fields that leak out of a cavity th
are observed. In realistic systems, intracavity photons
transmitted through imperfect mirrors into the external en
ronment where they are detected. Thus, an external field
log of ^M (t)&,^M (E)(ts ,t f)&, wherets andt f are initial and
final measurement times, is calculated according to quan
mechanics and SED to consider what is actually observe
the laboratory.

The first step in calculating the external mome

^M̂ (E)(t)&QM for quantum mechanics is to define the extern
quadrature phase amplitudes constituting it. This is do
within the context of homodyne detection as quadrat
phase amplitudes are commonly measured using it. A sc
matic diagram for balanced homodyne detection is shown
Fig. 9. An external signal field fluxF̂ i OUT , where i

FIG. 7. Numerical and analytic results for̂M̂ (t)&QM and
^M (t)&SED for N510,g51, and cosQ5cosF51. Analytic results
for ^M (t)&SED are indicated by solid lines for~i! g51 and~iii ! g
50.1. Numerical results for̂M (t)&SED are indicated by dots with
associated error bars for~ii ! g51 and~iii ! g50.1. Analytic results

for ^M̂ (t)&QM are indicated by dotted lines for~v! g51 and ~iv!

g50.1. Numerical results for̂M̂ (t)&QM are indicated by dots with
associated error bars for~v! g51 and~iv! g50.1.
8-9



s

le
a

r

oted
ite

vity

nt-
llett
the

-
m

ro

r

ion.

D. T. POPE, P. D. DRUMMOND, AND W. J. MUNRO PHYSICAL REVIEW A62 042108
51,2,3, and a local oscillator field fluxEi are incident on a
50-50 beam splitter BS. An external local oscillator pha
variable is represented byū i . The two field fluxes combine
and are detected by two photodiodesD1 i and D2 i . The
detected photocurrents are then converted to amplified e
trical currents whose difference is found. An extern
quadrature phase amplitude for quantum mechanicsX̂i ,ū i

(E) is

defined as this difference, yielding, whenEi is real,

X̂i ,ū i

(E)
~t!5

eAh iEi@F̂ i OUT~t!e2 i ū i1F̂ i OUT
† ~t!ei ū i#

2
,

~6.1!

wheree is the magnitude of the charge of an electron,A is an
amplification factor, andh i is a detector efficiency factor fo

FIG. 8. Numerical and analytic results for̂M̂ (t)&QM and
^M (t)&SED for N5100,g51, and cosQ515cosF51. ~a! Numeri-
cal results for̂ M (t)&SED represented by dots with associated er
bars for~i! g50.1 and~ii ! g51, and analytic results for̂M (t)&SED

for g50.1 ~dotted line! andg51 ~solid line!. ~b! Numerical results

for ^M̂ (t)&QM represented by dots with associated error bars fo~i!

g50.1 and~ii ! g51, and analytic results for̂M̂ (t)&QM for g51
~dotted line! andg50.1 ~solid line!.
04210
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both detectors associated with external field modes den
by i. In realistic experiments detection occurs over a fin
period of time and thus

E
t5ts

t5t f dt

G
X̂i ,ū i

(E)
~t! ~6.2!

corresponds to what is observed. Only theū i50 case is con-
sidered. Thus, an external moment analog of the intraca
moment^M̂ (t)&QM can be defined as

^M̂ (E)~ts ,t f !&QM

5K G23)
i 51

3 E
t i5ts

t i5t f
dt iDX̂i ,ū i

(E)
~t i !L

5G23E
t15ts

t15t f E
t25ts

t25t f E
t35ts

t35t f K )
i 51

3

DX̂i ,ū i

(E)
~t i !L .

~6.3!

To calculate^M̂ (E)(ts ,t f)&QM , the relation between the
unknown external output fields that define it and known i
racavity fields needs to be ascertained. Gardiner and Co
@26# have formulated an input-output theory that relates
two via the equation

F̂ i OUT~t!5A2Gâi~t!1F̂ i IN~t!, ~6.4!

whereF̂ i IN(t) is the input field flux associated with intrac
avity modei. All input fields are assumed to be in vacuu
states. This allows the use of Eq.~5.3! from @26#, which can
be expressed as, in this paper’s notation,

r

FIG. 9. Schematic diagram for balanced homodyne detect
Photodetectors are labeled byD1 i andD2 i , for i 51,2,3, BS is a

beam splitter,ū i is a local oscillator phase variable,Ei is a local

oscillator amplitude, andF̂ i is an external signal field operator.
8-10
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DISAGREEMENT BETWEEN CORRELATIONS OF . . . PHYSICAL REVIEW A 62 042108
^F̂ i OUT
† ~t1!F̂ i OUT

† ~t2!•••F̂ i OUT
† ~tn!

3F̂ i OUT~tn118 !•••F̂ i OUT~tm8 !&

5~2G!m/2^T̃@ âi
†~t1!âi

†~t2!•••âi
†~tn!#

3T@ âi~tn118 !•••âi~tm8 !#&, ~6.5!

whereT̃ and T are time antiordering and time ordering o
erators, respectively. Using Eq.~6.1!, the integrand of Eq.

~6.3! can be expressed in terms ofF̂ i OUT andF̂ i OUT
† . It can

then be expressed in terms of particularâi(t i) and âi
†(t i)

averages using Eq.~6.5!. In turn, these averages are equiv
lent to the eight positive-P averages of the form
^DA1(t1)DA2(t2)DA3(t3)&, whereAi is eithera i or a i

1 .
As was determined in Sec. III, two of these averages,

^Da1~t1!Da2~t2!Da3~t3!& and

^Da1
1~t1!Da2

1~t2!Da3
1~t3!&,

are of lower order ing than the others and hence domina
wheng!1. Thus, the external field moment of quantum m
chanics ^M̂ (E)(ts ,t f)&QM can be expressed, whenū i50,
wherei 51,2,3, as

^M̂ (E)~ts ,t f !&QM.
A2~eAhE!3G23/2

4

3E
t15ts

t15t f E
t25ts

t25t f E
t35ts

t35t f
dt1dt2dt3

3^Da1~t1!Da2~t2!Da3~t3!&

1^Da1
1~t1!Da2

1~t2!Da3
1~t3!&,

~6.6!

Here h5h i and E5Ei , where i 51,2,3. To simplify the
algebra only thets50 case is investigated, so that only th
moment ^M̂ (E)(t f)&QM@[^M̂ (E)(0,t f)&QM# is considered.
External fields are considered only for small times (t f!1),
and so, to a given order ing,^M̂ (E)(t f)&QM’s lowest nonzero
order term int f dominates. HencêM̂ (E)(t f)&QM can be ap-
proximated by its lowest nonzero order term in bothg and
t f . Thus,

^M̂ (E)~t f !&QM.2
A2

48
g3e2~eAhE!3G23/2t f

6 . ~6.7!

The SED external moment^M (E)(t f)&SED is now calcu-
lated. It is given by the same expression as^M̂ (t f)&QM , the
right hand side of Eq.~6.3! ~when ts50!, except that the
quadrature phase amplitude operatorX̂i ū i

(E)(t) is replaced by

its SED c-number analog. This external SEDc-number
quadrature phase amplitude is defined, whenEi is real, as
04210
-

Xi ,ū i

(E)
~t!5

eAh iEi~b i OUT~t!e2 i ū i1b i OUT* ~t!ei ū i !

2
,

~6.8!

whereb i OUT(t) is the output field flux associated with th
intracavity field denoted byi. In analogy with Eq.~6.4!, it is
assumed that the SED input-output relation is

b i OUT~t!5A2Gb i~t!1b i IN~t!, ~6.9!

whereb i IN(t) is the input field flux for the intracavity mod
i. When all input fields are in vacuum states, as is the c
b i IN(t) is a Gaussian white noise with a self-correlati
characterized by

^b i IN~t i !b i IN* ~t i8!&5
d~t i2t i8!

2G
. ~6.10!

A calculation analogous to the quantum mechanical one
lier in this section can be performed using Eqs.~6.8! and
~6.9! to obtain an expression for^M (E)(t f)&SED in terms of
particular intracavity averages. When lowest order nonz
approximations to these averages are considered, the fol
ing result is obtained whenū i , for i 51,2,3, andg,t f!1:

^M (E)~t f !&SED.
A2

16
gt f

4~eAhE!3G23/2. ~6.11!

Upon comparing Eq.~6.11! to the result of quantum mechan
ics in Eq.~6.7!, it is seen that the leading order term ing in
Eq. ~6.7! is O(g3) while in Eq. ~6.11! it is O(g). Hence, as
was the case for the intracavity moment, quantum mecha
and SED predict significantly different results for the obse
able external field moment^M (E)(t f)&.

VII. SIGNAL TO NOISE RATIO

In actual experiments, only finite samples of results
obtained, as opposed to infinite ones. Hence, in practice
population means considered thus far are estimated f
sample means. These sample means fluctuate from samp
sample and thus have signal to noise ratios, which are
determined for small times (t f!1). This paper focuses o
differences between quantum mechanics and SED. Thu
calculation is performed of the signal to noise ratio of t
difference between the two theories’ external sample m
ments. First, the noise of the external sample momen
quantum mechanics is determined. It is then assumed tha
noise of the external sample moment of SED is the sa
Noise results are combined with the external moment res
of Sec. VI to produceS(t f), the signal to noise ratio of the
difference between the two theories’ external sample m
ments. This quantityS(t f) is given by

S~t f !5
Šu^m(E)~t f !&SED2^m̂(E)~t f !&QMu‹

As2
„^m(E)~t f !&SED…1s2

„^m̂(E)~t f !&QM…

5
An21u^M (E)~t f !&SED2^M̂ (E)~t f !&QMu

A2s„M̂ (E)~t f !…
, ~7.1!

wheren is the number of observations in the sample cons
ered,^m(E)(t f)&SED and ^m̂(E)(t f)&QM are sample average
8-11
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of ^M (E)(t f)& according to SED and quantum mechani
respectively, ands2(A) denotes the sample variance ofA.
The only significant unknown quantity on the right hand s
of Eq. ~7.1! is s„M̂ (E)(t f)…, which is now determined. Ex
pressings(M̂ (E)) explicitly yields

s„M̂ (E)~t f !…5A^M̂ (E)~t f !
2&QM2^M̂ (E)~t f !&QM

2 .
~7.2!

The moment̂ M̂ (E)(t f)&QM was determined in Sec. VI an
so ^M̂ (E)(t f)

2&QM is now calculated. In the calculation tha
follows only theū i50, wherei 51,2,3, andg,t f!1 case is
considered.

The moment̂ M̂ (E)(t f)
2&QM can be expressed in terms

external quadrature phase operators as

^M̂ (E)~t f !
2&QM

5K S G23)
i 51

3 E
t i50

t i5t f
dt iDX̂i

(E)~t i !D 2L
5G26E

t150

t15t f E
t1850

t185t f E
t250

t25t f E
t2850

t285t f E
t350

t35t f

3E
t3850

t385t f dt1dt18dt2dt28dt3dt38

3K )
i 51

3

DX̂i
(E)~t i !DX̂i

(E)~t i8!L , ~7.3!

where X̂i
(E)(t i)5X̂i ū i50

(E) (t i). The integrand of Eq.~7.3!,

which is denoted byK, can be expressed as

K5)
i 51

3

^DX̂i
(E)~t i !DX̂i

(E)~t i8!&1 f ~t i ,t i8!, ~7.4!

where f (t i ,t i8) is a function that includes terms resultin
from coupling between modes. These coupling terms van
wheng50 and thus are at leastO(g). It follows thatK can
be reexpressed as

K5)
i 51

3

^DX̂i
(E)~t i !DX̂i

(E)~t i8!&1O~g!. ~7.5!

The moment̂ DX̂i
(E)(t i)DX̂i

(E)(t i8)& is now calculated us-
ing a normally ordered approach that has been previo
employed to solve similar problems@27,28#. This method
expresseŝ DX̂i

(E)(t i)DX̂i
(E)(t i8)& in terms of normally or-

dered photocurrent averages and then determines these
ages. It first definesX̂i

(E)(ta), whereta is anyt variable, as
the difference between the amplifiedelectrical currents
X̂1 i

(E)(ta) and X̂2 i
(E)(ta) produced by thephotocurrents de-

tected at the detectorsD1 i and D2 i in Fig. 9 in Sec. VI.
Using this definition @X̂i

(E)(ta)5X̂1 i
(E)(ta)2X̂2 i

(E)(ta)#,

^DX̂i
(E)(t i)DX̂i

(E)(t i8)& can be expressed as
04210
,
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^DX̂i
(E)~t i !DX̂i

(E)~t i8!&5^@DX̂1 i
(E)~t i !2DX̂2 i

(E)~t i !#

3@DX̂1 i
(E)~t i8!2DX̂2 i

(E)~t i8!#&.

~7.6!

Upon expansion, the right hand side of Eq.~7.6! contains
two types of terms, those of the form̂X̂Ci

(E)(ta)&, whereC is

either 1 or 2, and those of the form̂X̂Ci
(E)(t i)X̂Di

(E)(t i8)&,
whereD is either1 or 2. Terms of the form̂ X̂Ci

(E)(ta)& are
given by the equation

^X̂Ci
(E)~ta!&5E

2`

1`ds1

G
GCi

(1)~s1!J0~ta2s1!, ~7.7!

whereGCi
(1)(s1) is a first order Glauber correlation functio

and J0(ta2s1) is an electrical current pulse produced by
single photodetection event. Following previous work@27#,
square electrical current pulses of the form

J0~a2b!5H AeG/td , b<a<b1td

0, a,b and a.b1td ,
~7.8!

are considered in the limit oftd→0, which is taken at some
appropriate later stage of the calculation. The Glauber co
lation functionGCi

(1)(s1) can be expressed as a power ser
in g ands1 and thus as(m,n50

`,` cmng
ms1

n . Due to the form of
J0(ta2s1), whenta!1, as is being assumed, only photod
tection events at small timess1 contribute to^X̂Ci

(E)(ta)&.
This fact, coupled with the knowledge that only theg!1
case is considered, means that then5m50 term in the
power series forGCi

(1)(s1) dominates whenJ0(ta2s1) is
nonzero. Hence, upon calculating this dominant term by
pressingF̂ i andF̂ i

† in terms of intracavity field operators, in
the limit of large local oscillator amplitude,

GCi
(1)~s1!.

hCi

2
Ei

2 , ~7.9!

wherehCi is a detector efficiency factor for the photodete
tor DCi . It follows that

^X̂Ci
(E)~ta!&.

hCiEi
2Ae

2
. ~7.10!

Terms of the form̂ X̂Ci
(E)(t i)X̂Di

(E)(t i8)& in Eq. ~7.6! can be
expressed as

^X̂Ci
(E)~t i !X̂Di

(E)~t i8!&5dCDE
2`

1`ds1

G
GCi

(1)~s1!J(0)~t i2s1!

3J(0)~t i82s1!1E
2`

1`E
2`

1` ds1ds2

G2

3GC,Di
(2) ~s1 ,s2!J(0)~t i2s1!

3J(0)~t i82s2!, ~7.11!
8-12
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TABLE I. Table of realistic values for the parametersde f f , volume V, pump, signal, and idler wave
lengthsl3 ,l2, andl1, nonlinear coupling constantG, damping constantG, and nonlinear coupling constan
to damping ratiog for the nonlinear crystals AgGaSe2 and KTP.

Crystal de f f (pm V21) V (m3) l3.l2/2.l1/2 (mm) G (s21) G (s21) g(5G/G)

AgGaSe2 33 ~at l52.1 mm! @30# 1.031029 1.4 1.33105 1.53107 8.331023

KTP 7.2 ~at l52.3 mm! @30# 1.631029 1.6 1.83104 1.53107 1.231023
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where GC,Di
(2) (s1 ,s2) is a second order Glauber correlatio

function anddC,D is 1 whenC andD are the same and zer
otherwise. In the limit oftd→0,

E
2`

1` ds1

G
GCi

(1)~s1!J(0)~t i2s1!J(0)~t i82s1!

.
~eAEi !

2hCid~t i2t i8!G

2
~7.12!

to leading nonzero order ing,t i , andt i8 . It is of equal order
in g and lower order int i andt i8 than the second term in Eq
~7.11! and hence is much larger than this second term w
it is nonzero as thet i ,t i8!1 case is being considered. Thu

^X̂Ci
(E)~t i !X̂Di

(E)~t i8!&.
dCD~AeEi !

2hCid~t i2t i8!G

2
.

~7.13!

From Eqs~7.10! and ~7.13! it can be seen that the sing
integral terms in̂ X̂1 i

(E)(t i)X̂1 i
(E)(t i8)& and ^X̂2 i

(E)(t i)X̂2 i
(E)(t i8)&

are of the same order ing and lower order int i andt i8 than

any other terms contributing tôX̂i
(E)(t i)X̂i

(E)(t i8)& and
hence dominate. It follows that

^X̂i
(E)~t i !X̂i

(E)~t i8!&.~AeE!2h id~t i2t i8!G, ~7.14!

where h i5hCi5hDi and E5Ei , where i 51,2,3. As the
right hand side of Eq. ~7.14! is
O(g0),) i 51

3 ^DX̂i
(E)(t i)DX̂i

(E)(t i8)& is alsoO(g0) and hence
from Eq. ~7.5!

K.@~AeE!2G#3)
i 51

3

h id~t i2t i8!. ~7.15!

Substituting this approximation forK into Eq. ~7.3! yields

^M̂ (E)~t f !
2&.G26@~eAE!2hG#3

3)
i 51

3 E
t i50

t i5t f E
t i8

t i85t f dt idt i8d~t i2t i8!

5S ~eAE!2ht f

G D 3

, ~7.16!

whereh5h i , for i 51,2,3. Thus

s„M̂ (E)~t f !….S ~eAE!2ht f

G D 3/2

. ~7.17!
04210
n

Hence, the signal to noise ratio of the difference between
external sample moments of quantum mechanics and SE

S~t f !.
An21h3/2gt f

5/2

16
. ~7.18!

VIII. REALISTIC SYSTEMS

Realistic parameter values are now considered to de
mine if the theoretical difference between SED and quant
mechanics could be observed experimentally. In particu
the signal to noise ratio of the difference between the sam
moments of quantum mechanics and SED,S, is calculated
using realistic parameter values for nondegenerate para
ric oscillators containing the commonly used crystals silv
gallium selenide (AgGaSe2) and potassium titanyl phospha
~KTP!. The nonlinear interaction strengthG for parametric
down-conversion is given by@29#

G.de f fA2\v1v2v3

e0V

l

L
, ~8.1!

whereV is the cavity volume,l the crystal length, andL the
cavity length. Cavity and crystal length values of 10 cm a
chosen. The cavity volumeV is given by the formulaV
5pV2L, where V is the spot size. This volume is mini
mized in order to maximizeG and thus the external differ
ence between quantum mechanics and SED. It is assu
that the damping constant used to scale time,G, equals the
unscaled damping constant for each mode,G i(G5G i). This
common damping constantG is calculated from the formula
G5T3c/2L, wherec is the speed of light andT is a mirror
transmission coefficient. AT value ofT50.01 is used. Using
the above information, Table I shows realistic parameter v
ues forde f f , V, G, pump, signal, and idler wavelengths, an
the resultingg and G values. Results for̂ M̂ (E)&QM and
^M (E)&SED are obtained using Eqs.~6.7! and~6.11! for when
h51,t f50.1, E5109 s21/2, A51/e, ande5103. These are
displayed in Table II, which shows that the external resu
of quantum mechanics and SED differ greatly. Due to lo
oscillator amplification, they are also macroscopically d

TABLE II. Table of the external moments of quantum mecha
ics and SED for AgGaSe2 and KTP.

Crystal ^M̂ (E)(t f)&QM ^M (E)(t f)&SED

AgGaSe2 22.93108 1.33109

KTP 28.83105 1.83108
8-13
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tinct with respect to photon number, even though the ini
number of intracavity photons is small on average. Anot
appealing feature of the difference between the two theo
is that detector efficiencies approach one as photodiode
opposed to photomultipliers are used for detection. Thus
fair sampling assumptions need to be made.

The question remains of whether or not the populat
difference between SED and quantum mechanics could
reliably observed in a finite sample of results. To answer iS
is now considered. Figures 10 and 11 show graphs ofS ver-
sus sample sizen for AgGaSe2 and KTiOPO4 ~KTP! for the
same parameter values as used in the last paragraph. T
show reasonableSvalues and indicate that large sample siz

FIG. 10. Plot of signal to noise ratio of the difference betwe
the sample moments of quantum mechanics and SED,S, versus
sample sizen for AgGaSe2 for g55.831025,t f50.1, h51, and
G57.53108 s21.

FIG. 11. Plot of signal to noise ratio of the difference betwe
the sample moments of quantum mechanics and SED,S, versus
sample sizen for KTP for g51.031025,t f50.1, h51, and G
57.53108 s21.
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must be obtained to produce a signal to noise ratio of 1,
smallest signal to noise ratio required to observe the sig
clearly. In particular, sample sizes of 1.831013 ~KTP! and
3.731011 (AgGaSe2) need to be obtained to generate a s
nal to noise ratio of 1. An individual observation takes a tim
of the ordert5t f /G56.731029 s and so, assuming mini
mal time delay between measurements, 1.831013 observa-
tions would take about 33 hs and 3.731011 observations
about 41 min. It is conceivable that measurements could
taken over both times. Furthermore, as the signal to no
ratio scales as 1/g, higherg materials would enable the dif
ference to be observed even more readily.

IX. DISCUSSION

It has been shown that there exists a significant, pot
tially experimentally observable, difference between qu
tum mechanics and SED. Due to local oscillator amplific
tion, this difference can involve macroscopically distin
external fields for the two theories. Thus, it can be cons
ered macroscopic if it is legitimate to include the local osc
lators as part of the system and not as external measu
apparatuses. The difference is also potentially experiment
observable, as a realistic system and state are considere
it is present at realistic parameter values. The system is p
tical as parametric oscillators and balanced homodyne de
tion are widely used, and damping is included. The state
realistic as the initial intracavity coherent state can be
proximated well by a laser. It follows that the difference c
be seen as providing the basis for anexperimentally achiev-
able macroscopictest of quantum mechanics against one
cal hidden variable theory~SED!. Such a test is significant a
all experimental tests of quantum mechanics against lo
hidden variable theories to date have been microscopic.
true that many macroscopic tests have been proposed
most of them consider highly idealized states or systems
are not currently able to be experimentally implemented.
particular, many of them do not consider damping, ev
though it is known to rapidly destroy the correlations
quantum mechanics present in Schro¨dinger cat @31# and
other entangled states. The calculations in this paper do
clude damping and show that the difference between S
and quantum mechanics is not overly sensitive to it. M
importantly, it remains for realistic damping values. The t
proposed in this paper can be seen as being in the novel
largely unexplored domain of macroscopic experimen
tests of quantum mechanics.

Even if the local oscillators are not included as part of t
system investigated, the external difference between qu
tum mechanics and SED is still at least mesoscopic as a
age initial pump photon numbers up to 106 are considered.
From this perspective, the difference is still distinct fro
many earlier microscopic ones known to exist between qu
tum mechanics and all local hidden variable theories. I
also, perhaps, more surprising than some of them as it oc
in a larger particle number system.

Two noteworthy features of the external difference b
tween quantum mechanics and SED are that it involves c
tinuous variables and high efficiency detection. That it
8-14
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volves continuous variables is significant because m
previous differences between quantum mechanics and l
hidden variable theories have involved discrete ones. F
thermore, it is, perhaps, more surprising that a differe
between quantum mechanics and a local hidden vari
theory can be found for continuous variables as continu
variables are more closely related to classical ones~which
are all continuous! than discrete ones. Low detector ef
ciency forms the basis of a significant loophole in most te
between quantum mechanics and SED to date@32#. The use
of photodiodes for detection in the scheme discussed m
that such a loophole is avoided.

The calculations in Sec. VIII show that it is difficult t
observe the external difference between quantum mecha
and SED. This is mainly a result of small experimental no
linearities. They cause few signal and idler photons to
created and thus the experimental signal is weak relativ
its noise. For small enough measurement samples, SED
sults cannot be clearly distinguished from those of quan
mechanics. This fact is consistent with the knowledge t
SED reproduces many features of quantum mechanics. H
ever, it is a distinct theory and does differ from quantu
mechanics in particular cases, as this paper has shown.

The external difference between quantum mechanics
SED would be easier to observe if larger nonlinear coupl
constants were used. These could be achieved by usin
ganic nonlinear crystals such asN-(4-nitrophenyl)-
L-prolinol @33#. However, phase matching would be difficu
with such crystals. In addition, they are typically only tran
parent within a small frequency range. Alternatively, high
rs

ev

n-
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nonlinearities could be achieved by using Josephs
parametric amplifiers@34#, which can have even larger non
linearities than organic nonlinear crystals. Another possi
ity, in the area of atom optics, is to utilize Bose-Einste
condensate nonlinear effects, in which atom-molecule c
pling is induced through photon associaton@35#.

To conclude, this paper compared particular moments
quantum mechanics to those of SED for the nondegene
parametric oscillator. Both internal and external mome
were considered and an analytic iterative technique sho
them both to be cubic in the system’s nonlinear coupl
constant for quantum mechanics and linear for SED. N
merical simulations were performed to check the appro
mate intracavity analytic result and were in agreement w
them when the system’s nonlinear coupling constant w
much less than 1. Realistic parameter values were consid
and it was shown that the external sample difference betw
SED and quantum mechanics had a small signal to n
ratio in typical parametric oscillators. The presence of
tense local oscillators means that the results could be see
providing the basis for a macroscopic experimental test
quantum mechanics against SED.
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