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Abstract. Poisson representation techniques provide a powerful method for mapping master equations for
birth/death processes — found in many fields of physics, chemistry and biology — into more tractable
stochastic differential equations. However, the usual expansion is not exact in the presence of boundary
terms, which commonly occur when the differential equations are nonlinear. In this paper, a gauge Poisson
technique is introduced that eliminates boundary terms, to give an exact representation as a weighted rate
equation with stochastic terms. These methods provide novel techniques for calculating and understand-
ing the effects of number correlations in systems that have a master equation description. As examples,
correlations induced by strong mutations in genetics, and the astrophysical problem of molecule formation
on microscopic grain surfaces are analyzed. Exact analytic results are obtained that can be compared
with numerical simulations, demonstrating that stochastic gauge techniques can give exact results where
standard Poisson expansions are not able to.

PACS. 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) – 95.30.Ft Molecular and
chemical processes and interactions – 87.23.Kg Dynamics of evolution

1 Introduction

The calculation and prediction of the behavior of com-
plex systems is one of the most pressing issues in theo-
retical physics [1] and in many related fields. A common
difficulty when dealing with statistical problems is that
the state-space of possible outcomes is enormous. This
is particularly so for quantum systems — but very sim-
ilar issues can arise in many types of master equation,
with applications ranging from kinetic theory to genet-
ics. One of the earliest approaches to this problem was
the method of Langevin equations in Brownian motion,
which led to the theory of equations with random terms,
or stochastic equations. An important subsequent devel-
opment in the field of discrete master equations was the
van Kampen system-size expansion [2], which leads to
an approximate Fokker-Planck equation equivalent to a
stochastic equation — whose deterministic part has the
usual rate-equation behavior. Following this, a more sys-
tematic technique was introduced, called the Poisson [3]
expansion. This gives an exact Fokker-Planck equation in
cases with linear rate equations, and does not require a
system-size expansion.

The general advantage of Poisson methods is that they
employ a ‘natural’ basis in which the distribution is ex-
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panded in the most entropically likely distribution for lin-
ear couplings. This allows for very efficient treatment of
the underlying Poissonian statistics. The disadvantage is
that Poisson methods involve a complex extension to the
usual real space of number densities. This can result in
large errors — both random and systematic — when non-
linear interactions generate unstable trajectories in the
complex space. These are solutions to the deterministic
drift equations which can reach infinity in a finite time.
Just as in related quantum phase-space methods [4], such
trajectories result in power-law distribution tails which
can cause large sampling errors. These can also give rise to
systematic boundary term errors [5], since the derivation
of the Fokker-Planck equation requires that the result-
ing distribution can be integrated by parts with vanishing
boundary terms.

In this paper, a new method called the gauge Poisson
representation is introduced. This removes any unsta-
ble trajectories or moving singularities, which are con-
jectured [6] to be the cause of boundary term errors —
thus allowing an exact mapping of many important master
equations into stochastic differential equations, even when
the Poisson expansion cannot be used. This is an exam-
ple of a stochastic gauge [7], in which stochastic equations
are modified by introducing an equivalence class of gauges
that stabilize all complex trajectories. I find that correctly
chosen stochastic gauges appear to eliminate the bound-
ary term problem, and simultaneously give rise to greatly
reduced sampling errors in practical numerical solutions.
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Numerical simulations are presented for specific cases to
verify that gauges with no moving singularities lead to
exact results.

To illustrate the technique, I show how the gauge
method can be used to calculate means and correlation
predictions from master equations. The first example de-
scribes genetic mutations in a simple model from evolu-
tionary biology [8]. The second treats the astrophysical
problem of interstellar molecular hydrogen production on
grain surfaces [9]. The examples show relatively simple be-
havior that leads to sub-Poissonian results in cases where
there is an analytic theory available to compare with nu-
merical simulations. This demonstrates that correct re-
sults can be obtained in the stochastic gauge simulations,
with a range of stabilizing gauges — even when incorrect
results are obtained with the standard Poisson expansion,
due to boundary terms. At the same time, these master
equations have a great deal of intrinsic scientific interest.

In many cases, there are more degrees of freedom with
correlations and fluctuations that are closer to Poissonian.
A type of problem where stochastic gauge methods would
be useful is the treatment of complex systems where there
are large numbers of modes, like a lattice or spatially ex-
tended continuum model. Correlations in these types of
system are also able to be treated, in principle, by these
methods. Other examples are cases where the statistics
that are dominated by some rate-limiting step involving
only small numbers. Details of these applications will be
given elsewhere.

2 Birth-death master equations

In master equations, the fundamental object is a proba-
bility distribution P (N, t) = [P(t)]N for observing prob-
abilities of discrete outcomes, labeled with integers N =
(N1, . . . , Nd). These numbers are typically the number of
particles or atoms (in physics), molecules (in chemistry)
or organisms (in biology) [1]. The numbers may refer to a
large, well-mixed volume, or to cells within a larger volume
in the case of spatially extended systems. A common and
very significant problem is the Markovian time-evolution
of the distribution, defined by an N×N matrix M so that:

∂

∂t
P(t) = M ·P(t). (2.1)

There are severe complexity issues that arise in trying
to solve this numerically as d, the number of modes or
dimensions, increases (unless the problem is exactly sol-
uble or factorisable, which is rarely the case in practice).
The difficulty of solving this equation directly is that even
when the maximum number is bounded by Nmax, the total
number of discrete states N involved is Nd

max, which grows
exponentially large with the number of distinct modes d.
Thus, direct methods are not suitable for solving many
problems of this type.

The most general Markovian master equation consid-
ered here describes a number of coupled reactions, labeled

with an index a. Each reaction has the following generic
structure: ∑

j

νa
j Xj

ka

−→
∑

j

µa
j Xj . (2.2)

The reactions are restricted to be at most binary, so
that j ≤ 2, µa

j , νa
j = 0, 1, 2, and µa =

∑
j µa

j ≤ 2, νa =∑
j νa

j ≤ 2. The probability of a transition per unit time
is proportional to the rate ka and the number of initial
‘particles’, giving a reaction rate of:

Ra(N) = ka
∏
j

Nj !
(Nj − νa

j )!
. (2.3)

The traditional rate equation for the process (2.2),
which ignores fluctuations, assumes deterministic changes
for Nj � 1 according to:

∂

∂t
Nj =

∑
a

(µa
j − νa

j )Ra(N). (2.4)

By contrast, equation (2.1) describes both mean values
and fluctuations. In this case the master equation for the
probability of the outcome N — including fluctuations —
has the form:

∂

∂t
P (N) =

∑
a

[Ra(Na)P (Na) − Ra(N)P (N)] (2.5)

where Na
j = Nj + νa

j − µa
j is the particle number prior to

reaction (a) that leads to a current number Nj.
The propagation matrix M can now be constructed

from a class of matrix ladder operators which either in-
crease (L+

j ) the number of particles in a particular mode j,
or decrease (L−

j ) the number of particles and multiply the
probability by a factor of (Nj + 1). In terms of the prob-
ability vector P, this means that:[

L+
j P
]
N

= P (N1, . . . Nj − 1, . . .)[
L−

j P
]
N

= (Nj + 1)P (N1, . . . Nj + 1, . . .). (2.6)

Combining products of these together gives the result
that:

[(
L+

j

)µ (
L−

j

)ν
P
]
N

=

(Nj + ν − µ)!
(Nj − µ)!

P (N1, . . . Nj + ν − µ, . . .) (2.7)

This is precisely the matrix operation required to con-
struct the master-equation matrix. Hence, after using the
identities for the raising and lowering operators, one finds
that the master equation matrix has a factorized structure
given by:

M =
∑

a

ka


∏

j

(
L+

j

)µa
j −

∏
j

(
L+

j

)νa
j




∏

j

(
L−

j

)νa
j


 .

(2.8)
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2.1 Poisson representation

In this section, the results of the Poisson representation [3]
will be summarized. This important development employs
an expansion of the distribution vector P using ‘prototype’
solutions, namely the complex Poisson distribution p0(α),
without requiring a system-size expansion:

[p0(α)]N =
d∏

j=1

e−αj (αj)
Nj /Nj !. (2.9)

The positive Poisson representation [3] expands the dis-
tribution vector P with a quasi-probability, f(α), defined
over a complex d-dimensional phase-space of variables α.

P =
∫

f(α)p0(α)d2dα. (2.10)

Here the discrete variable N, which is a vector of integers,
is transformed into a continuous variable α— which is a
vector of complex numbers. In the above form it is conven-
tional to choose f(α) as positive, so that it behaves much
like a conventional probability. It is also possible to make
other choices. For example, the complex Poisson represen-
tation employs a complex contour integral form which is
useful for finding exact solutions in special cases. In this
expansion,

P =
∮

f(α)p0(α)ddα. (2.11)

With the aid of differential identities given in the next
subsection, either expansion can be used to change the
master equation given above into a differential form. In-
troducing a generalised measure dµ(α) to indicate either a
volume or contour integral, and a differential operator L′

P
that is determined by the propagation matrix M,

∂

∂t
P(t) =

∫
f(α)M · p0(α)dµ(α)

=
∫

f(α) [L′
P p0(α)] dµ(α). (2.12)

Next, provided that the relevant boundary terms van-
ish, partial integration results in a modified form with a
differential operator LP acting on the distribution rather
than the basis itself, where LP conventionally is written
with all derivative operators on the left:

∂

∂t
P(t) =

∫
[LP f(α)]p0(α)dµ(α). (2.13)

This can then be used to deduce that a sufficient condi-
tion for the distribution function f(α) is that it should sat-
isfy a partial-differential equation of Fokker-Planck form:

∂

∂t
f(α) = LP f(α). (2.14)

This form is valid in either the positive or the complex
Poisson representation. Since a contour integral can be
chosen to be closed, or to have a direction in phase-space

which gives rise to an exponentially damped behaviour,
it is generally possible to choose a contour that gives
rise to vanishing boundary terms for a complex Poisson
representation. The issue is more difficult in the case of
the positive Poisson representation, since the extended
(complex) phase-space may include directions where the
Fokker-Planck solutions have power-law tails which are
not sufficiently bounded. In such cases, the presence of
boundary terms mean the technique is no longer exact.

In the positive Poisson case, provided the partial differ-
ential equation is of second order and has positive-definite
diffusion, an equivalent stochastic differential equation is
obtained. The crucial point is that this final equation has
just linear rather than exponential growth in the problem
size, as the number of modes d increases.

Observables are calculated using the result that the
mth factorial moment is now given by a probabilistic av-
erage in the positive Poisson representation:

〈Nj(Nj − 1) . . . (Nj − m)〉 =
∫

αm
j f(α)dµ(α)

= 〈αm
j 〉P , (2.15)

with a similar contour integral result for the complex
Poisson representation.

The Poisson expansion is best thought of as pro-
viding a systematic procedure that can replace approx-
imations valid for large enough numbers Nj , including
rate-equations and system-size expansions [1]. Such large-
number approximations are inapplicable to many impor-
tant problems where the actual numbers may be small in
at least one of the steps. Examples of this are common
in problems involving nano-structures — like the grains
involved in astrophysical molecule production [9]. Other
potential applications include genetic population dynam-
ics [8], where population numbers in small regions are also
critically important to reproduction, and spatially depen-
dent master equations for diffusion or kinetic processes.
Direct Monte-Carlo simulations can be used in these prob-
lems [10], but these can be inefficient and time-consuming
for large numbers of modes, since they do not make any
use of the fact that most of the populations involved may
be nearly Poissonian.

As explained in the Introduction, the Poisson method
for birth-death master equations has similar properties to
the positive-P [4] representation in quantum mechanics. It
is exact if the resulting differential equation is linear, but
there are problems when there are nonlinear terms in the
equations. If the Poisson distribution has power-law tails
at large radius, then the resulting transformation develops
systematic boundary term errors. These typically develop
when unstable trajectories occur [5] in the drift terms of
the corresponding stochastic equations, which can reach
the boundary at infinity in a finite time.This is an intrin-
sic problem in the derivation of the Fokker-Planck form,
equation (2.14), from the earlier integro-differential equa-
tion, equation (2.12).
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2.2 Fokker-Planck equation

For the particular master equations considered here, the
Fokker-Planck equation is easily constructed from the ma-
trix factorization given in equation (2.8). The ladder oper-
ators obey identities as follows, when acting on a Poisson
distribution:

L−
j p0(α) = αjp0(α)

L+
j p0(α) = (1 + ∂j)p0(α). (2.16)

Since p0(α) is analytic in α, ∂ symbolizes either[
∂x

j ≡ ∂/∂xj

]
or −i

[
∂y

j ≡ ∂/∂yj

]
for each of the j =

1, . . . , d complex variables αj = xj + iyj. Using the iden-
tities of equation (2.16), together with equation (2.8), one
obtains:

L′
P =

∑
a

Ra(α)


∏

j

(1 + ∂j)
µa

j −
∏
j

(1 + ∂j)
νa

j


 ,

(2.17)
where the Poisson reaction rate Ra(α) corresponds to the
deterministic reaction rate when α = N, and is given by:

Ra(α) = ka
∏
j

α
νa

j

j . (2.18)

Partial integration is used next, in order to obtain
a differential operator LP acting on the distribution f
rather than the expansion kernel p0(α). This is most con-
veniently carried out using generalised spherical coordi-
nates, so that there is one boundary at large radius r,
where boundary terms should vanish. More than one type
of generalised radius is possible, and it is useful to define

r = p

√√√√ d∑
i=1

εi|αi|p, (2.19)

where εi is a multiplicity factor, and p ≥ 1 defines the
power law used to obtain the radial norm. Conventional
hyperspherical coordinates are obtained if p = 2, εi = 1.

Since the kernel can grow as fast as errN (for �(α) <
0), a sufficient condition to have vanishing boundary terms
is that the distribution should vanish faster than e−λr,
where λ > 1. Since the oscillatory nature of the kernel
for �(α) 	= 0 can cause cancellation of boundary terms,
this may not always be necessary. From equation (2.15),
a sufficient condition to obtain a well-defined observable
moment of order m, is that the distribution should vanish
at r → ∞ as r−(2d+m) or faster. If the distribution van-
ishes faster than all finite power laws, the stochastic equa-
tions have a well-defined set of moment equations which
are identical to the moment equations of the original mas-
ter equation. Provided these have a unique solution for
a given initial condition, the less stringent condition that
all moments exist is presumably sufficient to ensure that
boundary terms vanish at r → ∞.

After partial integration (provided boundary terms
vanish) the following Fokker-Planck equation is found:

∂f(α)
∂t

= LP f

=
∑

a


∏

j

(1 − ∂j)
µa

j −
∏
j

(1 − ∂j)
νa

j


Raf(α).

(2.20)

In cases of interest involving at most binary kinetics,
only first and second order derivatives occur, giving a dif-
ferential operator in the form:

LP = A+
j ∂j +

1
2
D+

ij∂i∂j . (2.21)

Here the repeated Latin indices i, j are summed over
i = 1, . . . , d, so that A+

j is a d-component complex vector
called the drift vector, while D+

ij is a d×d square complex
symmetric matrix called the diffusion matrix.

The basic drift and diffusion matrices [3] are given on
inspection of the Fokker-Planck equation (2.20), on con-
sidering all possible values and combinations of µa

j , νa
j :

A+
j =

∑
a

(
µa

j − νa
j

)
Ra(α)

D+
ij =

∑
a

[
µa

i (µa
j − δij) − νa

j (νa
j − δij)

]
Ra(α).

(2.22)

2.3 Stochastic equations

To obtain stochastic equations, it is necessary to take a
matrix square root to generate the d× d′ noise matrix B,
where

D+ = BBT . (2.23)

The lack of uniqueness of matrix square-roots allows ar-
bitrary functions in phase-space to be introduced, called
diffusion gauges [7,11]. As an example of this, it is always
possible to choose a diffusion gauge corresponding to sep-
arate matrices for each different reaction a, so that:

D+ =
∑

a

RaBaBaT . (2.24)

With this choice, the noises are always proportional to√
Ra. Since each reaction has an individual noise matrix

of size d × da, the total noise dimension d′ is given by
d′ =

∑
a da. If required, it is also possible to increase the

noise dimension to d′ = 2d +
∑

a da, by adding d matrix
terms Bj which have nonzero entries only in the jth row:

Bj =
gD

j (α)√
2




0 . . . 0 0
... . . .

...
...

0 . . . 1 i
... . . .

...
...

0 . . . 0 0


 .
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These have the property that BjBjT = 0, so therefore
they do not alter the diffusion matrix. In addition to these
gauges that change the noise dimension, it is also possible
to use orthogonal transformations on B which keep the
dimension invariant, but alter the noise correlations.

The Fokker-Planck differential operator acting on the
distribution f is then transformed into a stochastic dif-
ferential equation by taking advantage of the equivalent
analytic forms in the differential operators, as described
in more detail in the next section. The result is an Ito
stochastic differential equation:

dαj

dt
= A+

j (α) + Bjkζk(t)

= A+
j (α) +

∑
a

√
RaBa

jkζk(t) + gD
j (α)ξj(t), (2.25)

where the functions ζk(t) are delta-correlated Gaussian
real noise terms, with:

〈ζi(t)ζj(t′)〉 = δijδ(t − t′). (2.26)

The stochastic functions ξk(t) are delta-correlated
Gaussian complex noise terms, which give rise to a gauge
symmetry, in that they have no effect on the resulting
moments:

〈ξi(t)ξ∗j (t′)〉 = δijδ(t − t′)

〈ξi(t)ξj(t′)〉 = 0. (2.27)

The difficulty with the positive Poisson method [3] out-
lined above is that even normally stable drift equations
can become unstable due to movable singularities in this
extended complex phase-space, which become accessible
when the noise term develops a complex part. The stan-
dard term ‘movable singularity’ [12] describes any solu-
tion which can reach infinity in a finite time, depending
on the initial conditions. The singularity therefore ‘moves’
with the initial conditions, rather than occurring at a fixed
time.

These singular trajectories themselves are rare, and
may form a set of measure zero on the extended phase-
space. However, just one singularity has been shown in
an earlier study of typical examples to lead to Fokker-
Planck equations with power-law tails, that do not vanish
sufficiently quickly at the phase-space boundaries [6]. This
leads to systematic boundary term errors in the results, as
well as greatly increased numerical integration and sam-
pling errors.

2.4 Unary reactions

As an illustration, I will consider some elementary types of
reaction, to demonstrate the derivation given here. These
results are readily generalized to the stochastic gauge case
treated later.

First, consider one-species reactions — this can be a
simple isomerization or cell diffusion with a rate γ, of the
form:

X1
γ−→ X2. (2.28)

In this case, the master-equation reaction matrix has the
usual property that the probability of an event is propor-
tional to the rate and the initial number of particles Nx.
The master equation is therefore:

∂

∂t
P (N) = γN+

1 P (N+
1 , N−

2 ) − γN1P (N), (2.29)

where N±
j = Nj±1.

This can also be represented using matrices as:

∂

∂t
P = γ

[
L+

2 − L+
1

]
L−

1 P. (2.30)

In this case the corresponding differential operator is:

L′
P = γα1 [∂2 − ∂1] . (2.31)

On transforming into a Fokker-Planck equation, one
obtains:

∂

∂t
f(α) = γ [∂1 − ∂2] α1f(α). (2.32)

Hence, the deterministic differential equation for the char-
acteristics, which are noise-free in this case, are:

dα1

dt
= −γα1

dα2

dt
= γα1. (2.33)

The important advantage of the Poisson method is
that these equations have an identical form to simple rate-
equations, yet they are exact, and include all the relevant
statistics. Since the Green’s function is a delta-function,
an initially bounded distribution remains bounded, and
there are no boundary terms.

2.5 Dimerization

To illustrate the procedure in nonlinear cases, consider a
dimerization process:

X1 + X1
k−→ X2. (2.34)

The master equation can be represented using the elemen-
tary matrix operators as:

∂

∂t
P = k

[
L+

2 − L+
1 L+

1

]
L−

1 L−
1 P. (2.35)

The corresponding differential operator is:

L′
P = kα2

1

[
∂2 − 2∂1 − ∂2

1

]
. (2.36)

As long as partial integration is permissible (which is
questionable here) the Fokker-Planck equation would be:

∂

∂t
f(α) = k

[
2∂1 − ∂2 − ∂2

1

]
α2

1f(α). (2.37)

Hence, the corresponding stochastic differential equations
are:

dα1

dt
= −2kα2

1 + iα1

√
2kζ(t)

dα2

dt
= kα2

1, (2.38)

where 〈ζ(t)ζ(t′)〉 = δ(t − t′).
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Only the first equation needs to considered in detail,
as it is autonomous. In this case, on defining dimensionless
variables τ = 2kt, n = α1, the ungauged Poisson equation
reduces to the form

dn

dτ
= −n2 + inη(τ), (2.39)

with 〈η(τ)η(τ ′)〉 = δ(τ − τ ′).
In recent studies of these equations, clear evidence was

found of substantial numerical errors [13]. To understand
this, note that there is a movable singularity in this drift
equation of the form n(τ) = 1/(τ−τ0). In stochastic calcu-
lations, it is found that random trajectories are generated
for negative initial conditions (due to the noise term), and
these can be arbitrarily close to the singularity.

To show the analytic consequences of the singular-
ity [5], consider the inverse variable z = 1/n, which has
the linear Ito stochastic equation:

dz

dτ
= 1 − z − izη(τ). (2.40)

This equation has a uniform noiseless flow at z = 0,
with no absorbing submanifold. Hence it has a contin-
uous distribution without a zero in the inverse variable
distribution finv(z). On transforming back to the original
variables, the Jacobean of the transformation generates
a power law tail, with f(n) ∝ 1/|n|4 = 1/r4. From the
earlier analysis of boundary terms, this power-law tail is
insufficient to ensure the existence of any distribution mo-
ments. One must therefore expect systematic errors due
to boundary terms which do not vanish on partial inte-
gration.

2.6 Generic binary reactions

As a final illustration, consider a generic binary interac-
tion, in which two species are transformed at a rate k
into two new species:

X1 + X2
k−→ X3 + X4. (2.41)

The master equation is:

∂

∂t
P (N) = k(N+

1 )(N+
2 )P (N+

1 , N+
2 , N−

3 , N−
4 )

− kN1N2P (N). (2.42)

This can also be represented using matrices as:

∂

∂t
P = k

[
L+

3 L+
4 − L+

1 L+
2

]
L−

1 L−
2 P. (2.43)

Hence, in this case:

L′
P = kα1α2 [(1 + ∂3) (1 + ∂4) − (1 + ∂1) (1 + ∂2)]

= kα1α2 [∂3 + ∂4 − ∂1 − ∂2 + ∂3∂4 − ∂1∂2] . (2.44)

In the present example, this procedure — which is
only valid if boundary terms vanish during the partial
integration — would result in a stochastic equation for
the complex Poisson mean variables αj . On introducing

the complex ‘reaction rate’, R = kα1α2, the resulting Ito
equations are:

dα1

dt
= −R + i

√
R/2 (ζ1 + iζ2)

dα2

dt
= −R + i

√
R/2 (ζ1 − iζ2)

dα3

dt
= R +

√
R/2 (ζ3 + iζ4)

dα4

dt
= R +

√
R/2 (ζ3 − iζ4) . (2.45)

This shows very clearly a useful property of the Poisson
method. The modified particle statistics caused by non-
linear reactions are immediately apparent from the noise
terms, since any fluctuations represent a departure from
Poisson statistics.

As in the previous example, singular trajectories can
occur at negative values of α, which can be reached
via stochastic motion in the complex plane. Singulari-
ties like this often exist in complex nonlinear equations
of polynomial form, since these systems are generically
non-integrable or even chaotic — and the Painleve con-
jecture [14] states that movable singularities are to be
expected in analytically continued non-integrable sets of
equations. Thus, in this case also the boundary terms may
not vanish, leading to systematic errors. Although such
errors are known to be exponentially small when there is
large linear damping, they can cause problems when there
is little or no linear damping.

2.7 Numerical simulations

The results of direct numerical simulations can be used to
test the accuracy of a stochastic method. The numerical
results included in this paper are simple examples where
the detailed results of simulations can be evaluated in ex-
actly soluble cases.

2.7.1 Stratonovich calculus

Stochastic calculus is normally carried out in one of two
different forms. The first is the Ito calculus, where all
terms that multiply a stochastic noise are evaluated be-
fore carrying out the stochastic step forward in time. This
is the simplest form, and corresponds directly to the co-
efficients in the type of Fokker-Planck equation used else-
where in this section. The second is the Stratonovich form,
where all the multiplicative terms are evaluated implicitly
at the midpoint of a given step forward in time. This form
corresponds to taking the wide-band limit of a finite band-
width stochastic equation, and follows more standard cal-
culus rules for variable-changes.

For numerical simulations [16] it is generally more ef-
ficient to use Stratonovich equations [3] — in which the
Ito drift term is modified in a standard way to allow cen-
tral difference algorithms to be employed. In a generic Ito
equation like equation (2.25), the Stratonovich method
generates a modified drift term As

j , where:

As
j = Aj − 1

2
Bik∂iBjk. (2.46)
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The resulting equations can be used directly in stable im-
plicit central-difference algorithms, which are robust and
well-suited to the present nonlinear equations. Here the
(possible) ambiguity in the analytic differential notation
is immaterial, since by construction the noise matrix Bjk

is analytic or meromorphic.

2.7.2 Error estimation

Discretization error can be estimated by comparing sim-
ulations with different step-sizes, but identical underlying
noise sources. This error was typically of order 10−3 in the
simulations in this paper. The algorithm used was an itera-
tive implicit central difference method [16], which directly
implements the Stratonovich form of the stochastic equa-
tion. All numerical code was generated in C++ including
estimators of both the sampling error and discretization
error, using an XML script and an automatic code gener-
ator [17] obtained from the XMDS project web-site.

As an estimator of sampling error, I use the Gaussian
estimator of the standard deviation in the mean, σg =
σ/

√
Ns. However, more sophisticated estimators must be

used when the results are strongly non-Gaussian. To en-
sure that the results were a strong test of the stochastic
gauge method, a large number of samples (Ns = 106) were
used in the numerical calculations reported here, so as to
give low sampling errors σg.

3 Gauge Poisson representation

As shown in the previous section, the positive Poisson
method may have systematic errors in cases involving non-
linear drift, due to boundary terms on partial integration
caused by unstable trajectories. The gauge Poisson repre-
sentation introduced here treats the problem of boundary
terms, by utilizing a gauge technique similar to that re-
cently proposed for the positive-P distribution [7]. It adds
an extra variable to the distribution, which eliminates in-
stabilities by modifying the dynamical equations. A type
of gauge-invariance allows this to be carried out exactly.
The gauge equations retain the advantages of the Poisson
method, but have no boundary term errors for suitably
chosen gauges. This is essential for correct results.

3.1 Gauge phase-space expansion

The technical details are as follows. Define an extended
(gauge) phase-space with −→α = (Ω, α), and a weighted
Poisson distribution as p(−→α ) = p0(α)Ω. Here Ω = α0

is a complex-valued weighting factor which weights (or
multiplies) the usual normalized Poisson basis vector. The
gauge expansion is defined for a real, positive distribution
G(−→α ), as:

P =
∫

G(−→α )p(−→α )d2Ωd2dα. (3.1)

I will show that this implies that a freedom of choice
becomes available in the equivalent stochastic equations.

Importantly, it then is possible to choose an equiva-
lent stochastic equation of motion without instabilities or
boundary terms.

As with the standard Poisson representation, time-
evolution is treated here by introducing differential iden-
tities, so that:

∂

∂t
P(t) =

∫
G(−→α )M · p(−→α )d2Ωd2dα

=
∫

G(−→α ) [L′
Gp(−→α )] d2Ωd2dα. (3.2)

Just as previously, the goal of the transformation is to
allow partial integration, so that, provided the boundary
terms vanish, this equation has an equivalent form of:

∂

∂t
P(t) =

∫
[LGG(−→α )]p(−→α )d2Ωd2dα. (3.3)

However, the crucial distinction between this method
and the usual Poisson method is that the introduction of a
weighting factor in the basis means that there are now ad-
ditional identities available. This allows the differential op-
erator LG to be chosen so that the resulting time-evolution
of the distribution G(−→α ) remains sufficiently compact at
all times to guarantee that boundary terms vanish.

So far this is similar to the positive Poisson representa-
tion [3]. However, the mth factorial moment is now given
by a weighted average, with Ω as a complex weighting
parameter in the averages:

〈Nj(Nj − 1) . . . (Nj − m)〉 =
∫ (

Ωαm
j

)
G(−→α )d2Ωd2dα

= 〈Ωαm
j 〉 = 〈〈αm

j 〉〉, (3.4)

where the notation 〈〈. . . .〉〉 for a complex Poisson variable
means a weighted stochastic gauge average. From this one
obtains the expected result that in a pure Poisson distri-
bution with G(−→α ) = δ(Ω − 1)

∏d
j=1 δ(αj − ᾱj ), the mean

and variance of modes with j > 0 are given by:

〈Nj〉 = ᾱj

〈(Nj − N̄j

)2〉 = ᾱj . (3.5)

3.2 Gauge identities

The extra variable Ω allows an additional differential iden-
tity to be used to introduce a stochastic gauge — an ar-
bitrary vector function in the extended phase-space with
d+1 complex dimensions. This can be used to stabilize the
drift equations throughout the extended phase-space, thus
allowing integration by parts. There is no free lunch here,
however! The price paid is that there is a new stochas-
tic equation in Ω, leading to a finite variance in the gauge
amplitude Ω. While this can cause practical problems due
to sampling errors — which must be minimized — it is
important to note that these errors can be estimated and
controlled by choice of gauge and by increasing the number
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of sample trajectories. By contrast, there is no presently
known technique of estimating and controlling boundary
term errors in the standard Poisson expansion.

The additional identity in the weight variable Ω has
the simple form of:

p(−→α ) = Ω∂Ωp(−→α ). (3.6)

To derive the stochastic gauge equations, I now introduce
d′ arbitrary complex drift gauge functions g = ( gi(−→α , t) ),
to give a new differential operator L′

G which is equivalent
to the usual Poisson operator L′

P , but which includes Ω
derivatives in the extended phase-space:

L′
G = L′

P +


1

2
g · g Ω ∂0 +

d∑
j=1

d′∑
k=1

gkBjk∂j


 [Ω∂0 − 1] .

(3.7)
To simplify notation, I have used ∂0 to symbolize either
[∂x

0 ≡ ∂/∂x0] or −i [∂y
0 ≡ ∂/∂y0] for the complex weight

variable Ω = α0 = x0+iy0. This allows a choice of analytic
derivatives, which is later used to obtain a positive definite
Fokker-Planck equation. Since the added term has a factor
[Ω∂0 − 1] which vanishes when operating on the gauge
basis p(−→α ), the gauge functions can be arbitrary, just as
in the analogous situation of gauge field symmetries in
electrodynamics.

Summing repeated Latin indices from now on over i =
0, . . . , d, equation (3.7) becomes:

L′
G =

[
Ai∂i +

1
2
Dij∂i∂j

]
. (3.8)

Here, the total complex drift vector, including gauge cor-
rections, is A = (0, A1, . . . Ad), where:

Aj = A+
j −

d′∑
k=1

gkBjk [j, k > 0]. (3.9)

This remarkable result shows that as long as there is a non-
vanishing noise term, the drift equation can be modified
in an arbitrary way by adding a gauge term.

The diffusion matrix changes as well. The total diffu-
sion matrix D is a (d + 1) × (d + 1) matrix, with a new
(d + 1) × d′ square root B:

D =
[

Ω2ggT , ΩgBT

BgT Ω, BBT

]

=
[

Ωg
B

] [
ΩgT ,BT

]
= B BT . (3.10)

Thus, the (d + 1) × d′ complex stochastic noise matrix B
is as before, except with one added row:

B =
[

Ωg
B

]
. (3.11)

The additional row means that whenever a gauge term
is added, a corresponding noise term appears in the equa-
tion of motion for the gauge amplitude variable Ω. The
details of this are derived next.

3.3 Stochastic gauge equations

So far, there is no restriction on which of the choices of
analytic derivative is utilized to obtain the identities. This
means that it is possible to use the free choice of equiva-
lent identities to give a differential operator which is en-
tirely real and has a positive-definite diffusion. This pro-
cedure is also followed in the positive-P [4] and positive
Poisson [3] representations. Here it is extended [7] to in-
clude the gauge variable Ω as well as the other variables.
This is achieved by introducing a 2(d + 1) dimensional
real phase space (x0, y0, . . . xd, yd), with derivatives ∂µ,
and separating B = Bx + iBy into its real and imaginary
parts. A similar procedure is followed for A = Ax + iAy.

The choice for the analytic derivative, where ∂i → ∂x
i

or ∂i → −i∂y
i , can now be made definite by choosing it so

the resulting drift and diffusion terms are always real. In
more detail, this corresponds to choosing:

Ai∂i → Ax
i ∂x

i + Ay
i ∂y

i , (3.12)
Dij∂i∂j → Bx

ikBx
jk∂x

i ∂x
j + By

ikBx
jk∂y

i ∂x
j + (x ↔ y).

At this point it is necessary to introduce a correspond-
ing real drift vector Aµ and diffusion matrix Dµν which
are defined on the 2(d + 1) dimensional real phase space.
Hence, the gauge differential operator can now be written
explicitly in this equivalent real form, as:

L′
G =

[
Aµ∂µ +

1
2
Dµν∂µ∂ν

]
, (3.13)

where D = BBT is now positive semi-definite. This can be
seen by writing B as a 2(d + 1) × d′ real matrix:

B =

[
Bx

By

]
, (3.14)

so that the diffusion matrix is the square of a real matrix,
with:

D =

[
Bx

By

]
×
[(

Bx
)T

,
(
By
)T ]

. (3.15)

Hence, choosing the analytic derivatives to give real
terms in LG generates a positive semi-definite diffusion
operator on a real space of 2(d + 1) dimensions. Provided
that one can integrate by parts, the full evolution equation
is then:

∂

∂t
P(t) =

∫
[LGG(−→α )] p(−→α )d2(d+1)−→α . (3.16)

Provided that one can integrate by parts, there is at least
one solution for G which satisfies the positive-definite
Fokker-Planck equation:

∂

∂t
G(−→α , t) =

[
−∂µAµ +

1
2
∂µ∂νDµν

]
G(−→α , t). (3.17)

It is important to note that the crucial partial integra-
tion step is only permissible if the distribution is strongly
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enough bounded at infinity (|−→α | → ∞) so that all bound-
ary terms vanish. Just as in the positive-P expansion, this
means that the distribution must be bounded in phase-
space more strongly than all power laws in 1/r as r → ∞,
in order for the moments to be defined. There is an ad-
ditional requirement that the distribution vanishes faster
than 1/|Ω|2 as |Ω| → ∞, since there is now an additional
integration over d2Ω to be carried out.

However, the freedom to choose a gauge means that
there are now ways to eliminate movable singularities from
the drift equations corresponding to Aµ. I will show in
examples given later that this removes boundary terms
as well — as expected from earlier conjectures about the
relation between boundary terms and drift singularities.

The positive-definiteness of the diffusion matrix D im-
plies that the Fokker-Planck equation is equivalent to a set
of d + 1 Ito stochastic differential equations, with d′ real
Gaussian processes ζi(t). This central result can be writ-
ten compactly using the complex variable form, as:

dΩ

dt
= Ωgkζk(t) ,

dαj

dt
= A+

j (α) + Bjk[ζk(t) − gk]. (3.18)

The noises ζi have correlations 〈ζi(t)ζj(t′)〉 = δijδ(t − t′),
and are uncorrelated between time steps. Repeated noise
indices are summed over k = 1, d′.

As with the Poisson representation, if the Stratonovich
method is used, a modified drift term As

µ is generated
where:

As
µ = Aµ − 1

2
Bρν∂ρBµν . (3.19)

The resulting equations can be used directly in stable im-
plicit central-difference algorithms. Care should be used
here in differentiating the noise matrix Bµν . Since this in-
cludes the gauge, and is no longer an analytic function, the
real and imaginary parts need to be treated separately.

4 Asymptotics and boundary terms

It is crucial to choose the drift gauge g so that the resulting
distribution is more strongly bounded than any power-law
in the radius, in order to remove boundary terms and en-
sure that all of the moments are well-defined. Amongst
the gauges that achieve this goal, it is preferable to use
one that minimises the sampling error. An empirical rule
is that no deterministic trajectory can be allowed to reach
the boundary in a finite time, even on a set of initial con-
ditions with measure zero, as this is the signature [6] for
a distribution with a power-law tail — which cannot be
integrated by parts exactly, and has large sampling errors.

However, this is not always a sufficient condition, since
it does not take into account the radial dependence of
the stochastic noise. In the generic binary reaction equa-
tion (2.45), it is clear that noise term has at most linear
radial growth, since

√
2|α1α2| ≤ |α1| + |α2| ≤ ε1|α1| +

ε2|α2| ≤ r, where r is defined as in equation (2.19). More
generally, in all cases studied here, the noise has radial
components with no more than linear radial growth in

Brj. In some cases, the radial noise can vanish. In gen-
eral, this relatively slow growth in radial noise means that
moments remain well-defined as long as there is no more
than linear asymptotic growth in the radial drift.

4.1 Minimal gauges

A second criterion of practical significance, is to use a
gauge that generates an attractive subspace on which
the drift gauge vanishes. These gauges are called minimal
gauges. If this condition is not satisfied, then the stochas-
tic noise in the gauge amplitude Ω creates a relatively
large and growing sampling error. This is not just an issue
of mathematics, but also one of computational efficiency.
In performing a numerical calculation, there are always
some numerical errors. These are due to the finite nature
of computers (and even human calculators).

Thus, one has to estimate and minimize numerical er-
rors due to round-off error, finite step-size in time, and
sampling error due to the use of a finite sample of tra-
jectories. In general, there is an optimum gauge which
minimizes sampling errors, but even a non-optimal gauge
can be used simply by increasing the number of sampled
trajectories.

4.2 Existence of gauges

In this section, I demonstrate the existence of stabiliz-
ing gauges for systems with deterministically stable rate
equations. In later sections, the numerical simulation of
a realistic nonlinear master equation — which generates
boundary term errors without a stabilizing gauge — is
shown to give correct results within the sampling error
when suitable gauges are used. The important issue, as
always, is that the calculated result must agree with the
correct value within a known error-bar.

The gauge must be chosen to stabilise the nonlinear
drift equations. Just as in the simpler example of equa-
tion (2.44), the drift equations can only have constant,
linear and quadratic terms. Hence, the unmodified drift
equation for the ith component can always be written as:

∂αi

∂t
= A

(0)
i +

∑
j>0

A
(1)
ij αj +

∑
j,k>0

A
(2)
ijkαjαk, (4.1)

where all coefficients are real.
Any deterministic instability for standard rate equa-

tions — in the subspace of real, positive αj — is gener-
ally ruled out by number conservation laws a priori. In
this positive subspace, there is often a conservation law
such that r =

∑
i εiαi is conserved, and hence Ar = 0.

Here εi must be chosen appropriately, for example as the
number of atoms in a given chemical species. The present
equations are not always strictly number-conserving how-
ever, since reservoirs are allowed. Nevertheless, I assume
them deterministically stable, in the sense that in the pos-
itive subspace, the asymptotic Stratonovich drift must be
bounded so that Ar ≤ ar. This does permit exponential
growth, which certainly occurs in many cases.
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A movable singularity can occur in the analytic contin-
uation of the rate equations, which are the precise equa-
tions found in the usual positive Poisson equations. It is
then essential to add a stabilizing gauge that removes any
singularities if the resulting stochastic equations are to be
accurate and useful — although the equations with sin-
gularities can still be used as approximate equations for
large particle number.

The Painleve conjecture [14] states that movable sin-
gularities are a generic property of the analytic continua-
tions of nonlinear sets of equations, so it is to be expected
that these will generally occur in quadratic equations of
the form given in equation (4.1). Each singularity has the
signature that for at least one component j, it evolves to
|αj | = ∞ in a finite time t0, and hence must typically have
a leading term with an inverse power-law time-dependence
with power pj for t < t0:

αj =
α0

j

(t0 − t)pj
. (4.2)

It is necessary to demonstrate the existence of gauge
choices that eliminate these singularities.

I now wish to demonstrate that stabilizing gauges al-
ways exist, provided that the deterministic rate equations
are stable. This proof gives only minimal conditions for
gauge-stabilization. Other stable gauges also exist, and
may be more efficient in terms of sampling error in any
given case.

4.2.1 Amplitude gauge

First, it is important to choose an appropriate diffusion
gauge — that is, the choice of matrix square root of the
diffusion matrix must be specified. This is most simply
done by choosing to regard each different unidirectional
reaction as having a distinct diffusion term proportional
to the reaction rate, as in equation (2.24). Unidirectional
reactions are classified according to the number of initial
species and final species. This leads to nine reaction types,
as shown in Table 1, ignoring factors of order unity for
simplicity.

Diffusion terms occur only in reaction channels involv-
ing two particles. However, in all channels it is always pos-
sible to add a diffusion gauge so that the noise matrix is
nonvanishing, from equation (2.25). This diffusion gauge
choice may not always be optimal for sampling purposes,
but it is a possible choice, and there is a resulting drift
gauge which is stable.

Defining a phase angle φi via:

αi = |αi|eiφi , (4.3)

every drift term has the form

dαi

dt
= A+

i

= A
(0)
i + A

(1)
ij |αj |eiφj + A

(2)
ijk |αjαk|ei(φj+φk). (4.4)

Table 1. Different types of uni-directional reactions, classified
by initial and final species numbers.

Initial ν Final µ Rate Ra Initial Diffusion Final Diffusion

0 0 k 0 0

1 0 kα 0 0

2 0 kα1α2 Ra 0

0 1 k 0 0

1 1 kα 0 0

2 1 kα1α2 Ra 0

0 2 k 0 Ra

1 2 kα 0 Ra

2 2 kα1α2 Ra Ra

It is always possible to subtract the gauge term

∑
j′

Bij′gj′ = A
(1)
ij αj

[
1 − ei(φi−φj)

]

+ A
(2)
ijkαjαk

[
1 − ei(φi−φj−φk)

]
, (4.5)

which cancels the original rate and replaces it by one at a
phase angle φi equal to the phase of αi. The deterministic
part of such an equation can only modify the amplitude
of αi, and so is effectively restricted to a d-dimensional
real space, just as the usual deterministic rate equations
are. But these equations have an asymptotic linear radial
bound by hypothesis. This gauge is therefore a stabilizing
gauge.

An example of this is for r = kα2, as in the dimeriza-
tion equation (2.39) which has singular trajectories in the
standard Poisson method. In this case, one can simply
choose:

gB = A+[1 − |α|/α] = −kα[α − |α|]. (4.6)

The gauged drift equation becomes:

dα/dt = A+ − gB

= −kα|α|, (4.7)

which is clearly stable because the drift is directed toward
the origin at all times, so Ar ≤ 0.

Hence, the gauge corrected equations are stable. When
the rate-equations have an attractor, this gauge tends to
produce random circular paths of constant amplitude, in-
stead of localized behavior in the complex phase-space. I
will therefore refer to it as the ‘amplitude’ gauge.

4.2.2 Phase gauge

The amplitude gauge can be improved by modifying the
gauge term so that it also stabilizes the phase near φi =
0. This reduces the size of the gauge-induced noise, and
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hence reduces sampling errors. A suitable choice is to add
additional gauge terms of form:∑

j′
Bij′gj′ = iαiai(φ, |α|). (4.8)

Here the real function a(φ, |α|) is defined to generate
an attractor at φ = 0, where a(φ, |α|) = 0, so the gauge
corrections all vanish at zero phase.

As before, we can consider the dimerization equa-
tion (2.39), with rR = −kα2. In this situation, one can
simply choose a(φ) = ky/α, where α = x + iy, giving an
overall gauge contribution of:

gB = −kα[α − |α|] + ikαy = −kα[x − |α|]. (4.9)

The gauged drift equation then becomes:

dα/dt = −kα(|α| + iy). (4.10)

The additional term has no effect on global stability, but
increases the likelihood of trajectories near φ = 0, since
the phase gauge above generates a deterministic equation
in the form dφ/dt ∝ −φ.

As the most likely trajectory is in-phase and has zero
gauge correction, this gauge is minimal. Correspondingly,
the gauge noise and resulting sampling errors are reduced,
as I will show later in the numerical examples. This gauge
will be called the ‘phase’ gauge, as it stabilizes the phase-
angle of α as well as the modulus. Although similar non-
linearities occur in spatially extended systems [15], more
subtle gauge choices may be better in these cases.

5 Genetic mutation master equation

To demonstrate how the positive Poisson method can be
usefully employed, consider the important genetic problem
of a stochastic master equation for the evolution of a finite
population, where the Nj are simply the populations of
genotype j. A simple model for linear evolution through
asexual reproduction and mutation is of the form [8]:

Xj
kj−→ 0

Xi
kij−→ Xi + Xj. (5.1)

Here kij is the birth rate, and kj is the death rate. It is
sometimes convenient to also define kb

i =
∑

j kij as the
total birth rate and Qi as the mutation rate, where kii =
(1 − Qi)kb

i . Defining N±[i] = (N1, Ni ± 1 . . . , Nd), the
corresponding master equation is:

d

dt
P (N) = −


∑

i,j

kijNi +
∑

i

kiNi


P (N)

+
∑

i

ki(Ni + 1)P (N+[i])

+
∑
i,j

kij(Nj − 1)P (N−[j]). (5.2)

This has well-known problems: the state-space may
be very large, preventing a direct matrix solution. On
the other hand, while the corresponding average rate-
equations reduce to the widely-studied Eigen [8] quasi-
species model, the rate-equations are unable to treat pop-
ulation fluctuations in small samples.

An interesting exactly soluble case involves two
species, with Q = 1, so that reproduction always leads
to mutation. This has rates given by:

k1 = k2 = k

k12 = k21 = km

k11 = k22 = 0. (5.3)

5.1 Stochastic equations

The equivalent Ito stochastic equation is exact for all mas-
ter equations of the form of equation (5.2). It is:

dαj

dt
= −kjαj +

∑
i

kijαi +
∑

k

Bjkζk(t). (5.4)

Here, the noise matrix Bjk is determined from the sym-
metrized diffusion matrix, Dij = [αikij + αjkji], where:∑

k

BikBjk = Dij . (5.5)

This leads immediately an important result: an ini-
tially Poissonian distribution is invariant under pure de-
cay processes, but can develop increased fluctuations with
non-Poissonian features due to birth and mutation events,
described by the matrix Dij . In general, constructing the
square root of a symmetric real matrix Dij is non-unique.
The most powerful technique requires a matrix diagonal-
ization through an orthogonal transformation, and may
result in eigenvalues of either sign. If all the eigenvalues are
positive, the resulting fluctuations are super-Poissonian. If
some are negative, at least one sub-Poissonian feature will
occur, and a complex stochastic process will result.

A simple example is obtained by considering the sym-
metric two-species case of equations (5.3). In this case, the
diffusion is entirely off-diagonal, and the Poisson represen-
tation exactly transforms a complicated master equation
into a soluble stochastic equation. The Ito equations can
be simplified further as follows, on introducing popula-
tion sum and difference variables n± = (α1 ± α2) and
k± = (k ∓ km) :

dn+

dt
= −k+n+ +

√
2kmn+ζ1(t)

dn−
dt

= −k−n− + i
√

2kmn+ζ2(t). (5.6)

In this situation, there is an absorber at n+ = 0, since
any stochastic trajectory that reaches this value has a
zero derivative. This is due to the randomness of birth
or death events, which mean that it is always possible for
the random walk in this low-dimensional population space
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to finish at extinction. In addition, any initial differences
between the two populations decays, and is replaced by a
strong sub-Poissonian correlation. This is due to the fact
that all births must occur in a way that tends to equalize
the two species that are present.

5.2 Means and correlations

To calculate analytic solutions, standard Ito calculus can
be used to obtain the exact time-evolution of correla-
tions and expectation values. This is straightforward,
since in Ito calculus the noise terms are not correlated
with the other stochastic variables at the same time, so
〈f(αi)ζj(t)〉 = 0. Thus, the means and variances are all
soluble from their respective time-evolution equations —
which is also possible using the master-equation form.

Equations for general correlations αlαj = 〈αlαj〉P can
be either calculated from the master equation, or from the
stochastic equations. Defining ∆kij = kij−δijki and using
the rules of Ito calculus, one obtains:

dαj

dt
=
∑

i

∆kijαi

dαlαj

dt
=
∑

i

∆kijαlαi +
∑

i

∆kilαiαj + Dlj (5.7)

In the symmetric two-species case, the initial means
and correlations are defined as: n+ = 〈n+(0)〉P , n− =
〈n−(0)〉P , n2

+ = 〈n2
+(0)〉P , n2− = 〈n2

−(0)〉P and n+n− =
〈n+(0)n−(0)〉P . Solving the moment equations (5.7) gives
the following exact results:

〈n+(t)〉P = n+e−k+t

〈n−(t)〉P = n−e−k−t

〈n2
+(t)〉P = n2

+e−2k+t + 2kme−3k+t/2n+
sinh(k+t/2)

k+/2

〈n2
−(t)〉P = n2−e−2k−t+

(
2kmn+

k + 3km

)(
e−k+t−e−2k−t

)
〈n+(t)n−(t)〉P = n+n−e−2kt. (5.8)

Suppose that birth and death rates are equal (km = k),
so the mean population 〈n+(t)〉P is time-invariant. Then
the asymptotic population differences have a mean and
variance of:

lim
t→∞〈N−(t)〉 = 0

lim
t→∞〈[N−(t)]2〉 = lim

t→∞〈n2
−(t) + n+(t)〉P

=
n̄+

2
. (5.9)

This indicates that the population difference has a
steady-state variance of half its usual value, owing to the
fact that all births are correlated between the species, thus
causing sub-Poissonian statistics — while all deaths are
uncorrelated, tending to restore the Poissonian distribu-
tion. By comparison, the variance in the total population
shows linear growth in this case, as some populations in
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 〈 
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 〉 P
 

Fig. 1. Sampled mean populations 〈n+〉P for genetic muta-
tion example in the Poisson representation, parameters as in
text, showing upper and lower one standard deviation error
bounds. Sampling error (σm) is of order 10−3 or less. These
results agree with the analytic theory (dotted line) within the
sampling error.

the total ensemble become extinct, while others can ran-
domly grow to a large population.

In this case there are no unstable trajectories, and the
positive Poisson method can be used directly. However, it
should be noted that this model ignores inter-species com-
petition — which could lead to nonlinear effects involving
boundary terms.

5.3 Numerical results

Applying the Stratonovich rules to generate equations for
numerical stochastic integration results in:

dn+

dt
= −km/2 − k+n+ +

√
2kmn+ζ1(t)

dn−
dt

= −k−n− + i
√

2kmn+ζ2(t). (5.10)

This illustrates the typical feature of the Stratonovich
calculus, which is the generation of terms in the drift equa-
tions due to the noise. Some care is needed in calculations
near the absorbing boundary at n+ = 0, which is treated
by imposing an appropriate boundary condition at this
point.

Figure 1 shows the mean values obtained from nu-
merical simulation of these equations for an ensemble of
106 trajectories, showing that the exact analytic result is
compatible with the upper and lower one standard devia-
tion error bounds from the simulations. Results for cross-
correlations are shown in Figure 2, also agreeing extremely
well with the analytic predictions. The numerical and an-
alytic results are indistinguishable at this graphic resolu-
tion.

The stochastic equations were integrated for a total
time of t = 5, using values of k = km = 1. The minimum
step-sizes used were ∆t = 0.01 and ∆t = 0.005 (to enable
a check on the errors due to finite time-steps, which were
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Fig. 2. Sampled moments of 〈n2
−〉P , for genetic mutation ex-

ample in the Poisson representation, parameters as in text.
Sampling error is of order 10−3 or less. Negative values in-
dicate sub-Poissonian statistics due to mutations that cause
strong inter-species correlations. To this graphical resolution,
the exact and numerically simulated results are indistinguish-
able.

Table 2. Table of observed moments, comparing analytic and
simulated results for the genetic mutation equations in the
Poisson expansion at t = 5. Standard deviations σg for the last
significant digit are in brackets. These results for mean pop-
ulations, variances and correlations demonstrate that in this
case, the Poisson stochastic equations agree with the known
analytic results within the sampling error of the simulations.

Moment Analytic Poisson

〈n+〉P 5.0 5.002(7)

〈n−〉P 0.9080 × 10−4 0.9079(0) × 10−4

〈n2
+〉P 75 75.1(2)

〈n2
−〉P −2.5 −2.502(7)

〈n+n−〉P 0.4540 × 10−3 0.4541(6) × 10−3

negligible). Initial values were set to n+ = 5, n− = 2,
to give results in low population regions with large de-
partures from Poissonian behavior. All simulation results
agree well within the sampling error at t = 5, as shown in
Table 2.

In summary, all the simulation results are in excellent
agreement with analytic predictions for this model. No
boundary term errors are found using these linear equa-
tions, as one might expect, since there is no possibility of
movable singularities with linear drift equations.

6 Astrophysical molecular hydrogen
production

Stochastic gauges are only needed when the equations
are nonlinear, which comes about when multi-component
competition or formation processes are present. To give
a typical example of this, consider the astrophysically
important problem of hydrogen recombination to form

molecules on interstellar grain surfaces [9]. This is thought
to be the major source of interstellar H2, and it is known
that conventional rate equations are unable to describe
this accurately, due to low occupation numbers at the crit-
ical step of dimer formation. The main reactions are:

H(IN) R−→ H

2H
k1−→ H2

2H
k2−→ H∗

2

H
γ−→ H∗

H2
γ2−→ H∗

2 . (6.1)

This describes hydrogen atoms H adsorbed onto a
grain surface, and forming hydrogen molecules H2 on the
grain. The number of adsorbed atoms can grow via a gen-
eration rate (R) from an input flux H(IN), until it reaches
an equilibrium. This occurs due to losses from molecule
formation with a total rate of k = k1+k2, and from desorp-
tion (γ), which stabilizes the concentration of H through
emission of unbound hydrogen atoms H∗. The concentra-
tion of H2 is also stabilized by desorption (γ2), leading to
unbound hydrogen molecules H∗

2 .
There are additional effects due to flux-blocking caused

by adsorbed molecules and atoms, as well as dissociation
processes — which are neglected here for simplicity. Inter-
stellar grains have a distribution of sizes and compositions,
which means that master equations like these need to be
solved for a variety of parameter values to give the total
molecular production rate.

Of course, competing processes involving other atomic
and molecular species can also occur, leading to an over-
all situation of great complexity if all possible molecu-
lar species were included. Here I will focus on the ele-
mentary case of hydrogen molecule production. Poisson
variables α1, α2, α3, α4 can be introduced representing
[H ], [H2], [H∗], [H∗

2 ] respectively. In the positive Poisson
representation, this leads to the following system of equa-
tions:

dα1

dt
=
[
R − γα1 − 2kα2

1

]
+ iα1

√
2kζ(t)

dα2

dt
= k1α

2
1 − γ2α2

dα3

dt
= γα1

dα4

dt
= k2α

2
1 + γ2α2. (6.2)

It should be noted that the first equation can be solved
independently from the other ones — one can also show
this at the level of the Fokker-Planck equation, by simply
integrating out all the other variables. The astrophysical
molecular production rate of interest is:

RH∗
2

= 〈k2α
2
1 + γ2α2〉. (6.3)

In this model, all hydrogen molecules created are even-
tually desorbed, since in the steady-state 〈k1α

2
1〉 = 〈γ2α2〉.
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Hence, the total molecular production rate in the steady-
state is obtainable from the solution to the first equation:

RH∗
2

= k〈α2
1〉

= k〈N1(N1 − 1)〉. (6.4)

The important point of physics here is that the hy-
drogen molecule production rate is proportional to the
auto-correlation function of the hydrogen atom density —
and hence requires a knowledge of the correlations and
fluctuations present. This of course, has a simple physical
origin, since hydrogen molecules can only form if at least
two atoms are present simultaneously.

6.1 Analytic solutions

For notational simplicity, I define n = α1, which is the
Poisson variable that correspond to the hydrogen atom
number. From the Poisson expansion viewpoint, the only
non-trivial term is the hydrogen equation, as this intro-
duces noise. All the other equations can be solved once
the hydrogen number fluctuations are known.

It is useful to obtain the steady-state hydrogen fluc-
tuations from the complex Poisson representation defined
in equation (2.11), as this has an analytic solution for the
steady state. The reduced Fokker-Planck equation for the
hydrogen atom variables is simply:

∂

∂t
f(n, t) =

[
∂

∂n

(−R + γn + 2kn2
)− k

∂

∂n2
n2

]
f(n, t).

(6.5)
This has a steady-state which is exactly soluble,

though defined on a complex contour starting and end-
ing at the origin:

f(n,∞) = Cn(γ/k−2) exp
(

2n +
R

kn

)
. (6.6)

Here I have kept the derivatives in analytic form, to
obtain the simplest potential solution. However, the result
is instructive, since it is clear that this analytic form is in-
herently complex. This is the essential reason why a gauge
variable Ω is useful in order to get simulations that behave
like this simple, compact solution. The gauge variable can
attain complex values during a stochastic calculation, even
when the distribution itself is constrained to have positive
values.

In the case of complex valued solutions as in equa-
tion (6.6) it is necessary to choose an appropriate integra-
tion contour to define the manifold over which the analytic
derivatives are defined. For simplicity, I introduce relative
flux and relaxation parameters, ε = R/(2k) and ρ = γ/2k.
Next, using a Sommerfeld contour-integral identity in the
inverse variable z = 1/n, one obtains the result for the
moments that:

〈nm〉 = C

∫ (0+)

−∞
z(2−m−2ρ)e2ε(z+1/(εz))dz

= εm/2I2ρ+m−1(4
√

ε)/I2ρ−1(4
√

ε). (6.7)

This exact solution gives the steady-state H∗
2 production

rate (neglecting dissociation): RH∗
2

= k
〈
n2
〉
.

An obvious result, coming from the asymptotic prop-
erties of Bessel functions, is that

lim
ε→∞ 〈nm〉 = εm/2

lim
ε→0

〈
nM

〉
=

rm

(γ + k[m − 1]) × . . . × (γ)
. (6.8)

Thus for large grains with ε → ∞ the high flux limit is just
RH∗

2
= R/2, which is also the rate-equation limit. At low

fluxes (i.e., small grains) a dramatic and physically under-
standable feature is obtained: the H∗

2 production rate can
be suppressed below the rate equation result. In this limit
of ε → 0,

〈n〉 =
R

γ〈
n2
〉

=
R2

γ(k + γ)
. (6.9)

For k � γ, this predicts enormously reduced hydro-
gen molecule production rates compared to normal rate
equations. The reason for this is simply that when there
is only one atom at a time on the grain, no molecules are
produced. Similar results have been found in earlier Monte
Carlo calculations as well [9].

6.2 Poisson equations

It is simplest to use a scaled time τ = 2kt to calculate
the stochastic equations in the Poisson representation for
n = α1. With this variable the drift and noise matrices
are both scalars; the resulting Ito equations of motion are
unstable in the absence of gauge terms :

dn

dτ
=
[
ε − ρn − n2

]
+ inη(τ), (6.10)

where 〈η(τ)η(τ ′)〉 = δ(τ − τ ′).
There is a singular trajectory n → −∞ which can

be accessed via the complex diffusion of n into the nega-
tive half-space of n < 0 ; this is the instability already
encountered in the solutions to the dimerization equa-
tion (2.39). For numerical purposes, it is advantageous to
use the Stratonovich form, suitable for central difference
algorithms:

dn

dτ
= ε − n [ρ − 1/2 + n] + inη(τ). (6.11)

Results of the numerical simulations of the
Stratonovich equations for hydrogen molecule for-
mation problem in the standard Poisson representation,
showing upper and lower one-standard deviation error-
curves, are given in Figures 3 and 4. The results clearly
show the problems caused by the dynamical instabilities
in these equations, which cause both a large sampling
error, especially in 〈n2〉, as well as systematic errors.
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Fig. 3. Sampled moments of 〈n〉 for astrophysical hydrogen
molecule production in the Poisson representation, parameters
as in text. Adjacent lines give upper and lower (±σg) error
bounds caused by sampling error.

Fig. 4. Sampled moments of 〈n2〉 for astrophysical hydrogen
molecule production in the Poisson representation, parameters
as in text. Adjacent lines give upper and lower (±σg) error
bounds caused by sampling error.

This is especially noticeable in 〈n〉, which has a relatively
low sampling error, and is systematically incorrect. The
steady-state value for these parameters is 〈n〉 = 0.407..,
which disagrees with the simulations by a margin much
larger than the measured sampling error. The large
sampling error in 〈n2〉 is exactly what is expected from
the inverse power law distribution tails, which mean that
the standard deviation in this moment is undefined.

These equations are difficult to integrate numerically,
owing to the instabilities, and it is essential to integrate
by alternating between n (for |n| < 1), and z = 1/n (for
|n| > 1) in order to obtain stable numerical results. Nu-
merical results throughout this section were obtained us-
ing parameters of ε = 0.1, ρ = 0.1 for which the ana-
lytic results can be easily calculated from the Bessel func-
tion representation. In this region the rate equations break

down, and occupation numbers are very small, which is a
testing region of parameter space for these expansions —
since the fluctuations are far from Poissonian. The inte-
grations were for a total time of τ = t = 40 to allow an
approximate numerical steady-state to be reached from an
initial value of n = 0 (for simplicity, a value of k = 1/2
was taken). The minimum step-sizes used were ∆t = 0.005
and 0.0025.

6.3 Stochastic gauges

Fortunately, it is simple to stabilize these equations by
adding non-analytic corrections to the drift. From the
basic stochastic gauge equations (3.18), with a scalar
gauge g, the resulting Ito equations for astrophysical hy-
drogen production, are:

dΩ

dτ
= Ωgη(τ)

dn

dτ
=
[
ε − ρn − n2

]
+ in[η(τ) − g]. (6.12)

For example, consider the effects of three different
gauges which all stabilize the equations. The first two cor-
respond to the amplitude [a] and phase [p] gauges treated
in the previous section, described by equations (4.6, 4.9)
respectively. The third one is another stabilizing gauge
which only acts in the left half-space of �(n) < 0, where
the instabilities are located in this example. This is called
the ‘step’ [s] gauge.

Defining n = x + iy, the three stabilizing gauges con-
sidered are:

ga = i(n − |n|) [a]
gp = i(x − |n|) [p]
gs = 2ixθ(−x) [s]. (6.13)

Noting that here B = in, these give rise to the follow-
ing three Ito equations in phase space, each of which is
manifestly stable at large |n|:

dn

dτ
= ε − n [ρ + |n|] + inη(τ) [a]

dn

dτ
= ε − n [ρ + |n| + iy] + inη(τ) [p]

dn

dτ
= ε − n [ρ + |x| + iy] + inη(τ) [s]. (6.14)

For numerical integration, it is more efficient to trans-
form to the Stratonovich form, and of course the gauge
weight equations are necessary for weighting purposes. In
the amplitude gauge, the Stratonovich equations are:

dΩ

dτ
= Ω

[
ga η(τ) + (n − g2

a)/2
]

dn

dτ
= ε − n [ρ − 1/2 + |n|] + inη(τ). (6.15)
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In the phase gauge, the Stratonovich equations are:

dΩ

dτ
= Ω

[
gp η(τ) + (iy − g2

p)/2
]

dn

dτ
= ε − n [ρ − 1/2 + |n| + iy] + inη(τ). (6.16)

In the step gauge, the equations are:

dΩ

dτ
= Ω

[
gs η(τ) + iy − g2

s/2
]
Θ(−x)

dn

dτ
= ε − n [ρ − 1/2 + |x| + iy] + inη(τ). (6.17)

Clearly the first two equations only have inward drift
vectors with d|n|/dτ < 0 at large enough |n|. The last, the
step gauge, is similar, except that it shows linear growth
if ρ < 1/2 and x = 0. At worst this can only lead to a
singularity in infinite time, and in any event the y-axis is
not an attractor: so growth along the y axis only leads to
a temporary increase in radius, not a singularity. Hence,
all three gauges are completely stable, with no movable
singularities.

6.4 Numerical simulations

As results in all three gauges were similar, apart from
changes to the sampling error, I will only show graphs of
the detailed results in the phase-stabilized gauge, using
the same parameter values as previously.

Results of the numerical simulations in the phase-
stabilized gauge, showing upper and lower one-standard
deviation error-curves, are given in Figure 5. It is clearly
dramatically improved compared to the Poisson results.

Figure 6 shows that there are reductions of up to four
orders of magnitude in the sampling error of molecule pro-
duction rates, relative to the Poisson method.

6.5 Comparison of moments and sampling errors

Apart from the unmodified Poisson or ‘zero gauge’ results,
the gauge simulations are stable. Nevertheless, on closer
inspection, the stable gauges don’t behave in an identical
way as regards the sampling error with a finite set of tra-
jectories. This can be seen from the previous figure, which
compares two stable gauges.

For each gauge and for the Poisson expansion, the ob-
served moment and its sampling error σg (standard de-
viation in the mean) is given in Table 3, which tabulates
the final near-equilibrium simulation results at τ = 40,
and compares them to the equilibrium analytic result for
τ = ∞. For the stable gauges, the results are within σg

of the analytic calculations in most cases, and are within
2σg in the remaining more accurate cases — where the
residual discrepancy was partly due to the finite time-
step discretization error of around ±10−3. This indicates
that all these (stable) gauges converge to the analytically
known correct answer.

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

τ

 〈 
 〈 

n 
〉 〉

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

τ

〈  
〈 n

2  〉 
〉 

Fig. 5. Sampled moments of 〈〈n〉〉 (upper plot) and 〈〈n2〉〉
(lower plot) for astrophysical hydrogen molecule production in
the ‘phase’ gauge, parameters as in text. Adjacent lines give
upper and lower (±σg) error bounds caused by sampling error.

Fig. 6. Sampling errors: standard deviation σg in the mean
of 〈〈n2〉〉 for astrophysical hydrogen in the phase gauge (lower
curve), and amplitude gauge (upper curve).

The corresponding (unstable) Poisson method clearly
gives incorrect answers due to boundary term and/or sam-
pling errors, with up to 12σg discrepancy in the case of the
mean number of hydrogen atoms, 〈n〉. The graphical and
tabular evidence indicates that the mean atom number is
incorrect because the unstable trajectories cause power-
law tails in the distribution, and consequent boundary
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Table 3. Table comparing analytic and simulated results for
three different stochastic gauges and the Poisson expansion;
the moment 〈〈n2〉〉 is critical for molecule production. Sampling
error (σg) in brackets.

Moment Analytic Poisson Phase Amplitude Step

〈Ω〉 1.0 1.0 1.003(4) 0.993(10) 1.005(6)

〈〈n〉〉 0.407 . . . 0.456(4) 0.409(2) 0.399(5) 0.406(4)

〈〈n2〉〉 0.059 . . . 0.077(5) 0.061(1) 0.058(2) 0.064(3)

term errors. In addition, the graph shows that the Poisson
time-history has large fluctuations with sampling errors
of up to 1000%, showing no signs of equilibration for the
molecule production rate, which is proportional to 〈n2〉.
This is further evidence for power-law tails, which are also
found in a similar quantum-optical master equation.

The amplitude gauge has no systematic errors, but
gives the worst sampling error of the stable gauges, as
the n variable is the least constrained in this gauge, tend-
ing to diffuse in a circle. For these parameters the phase
gauge gives the best results, as it localizes the n variable
near a deterministic stable point. The last gauge is a step
gauge — only giving non-zero corrections when x < 0.
This has the feature that the gauge term Ω only changes
when the trajectory reaches x < 0, and gives sampling
errors intermediate between the others.

One might expect that the step gauge would give lower
sampling errors in 〈Ω〉, since this gauge is zero in the right
half-plane. Instead, the phase-stabilized gauge gives the
lowest overall sampling errors for all quantities with these
parameter values, even for the gauge amplitude 〈Ω〉. This
is an example of ‘prevention is better than cure’. That is,
phase-stabilization is also able to prevent amplitudes from
growing along the ±y axis. The step gauge corrects this
growth too late for optimal results, having to use a nu-
merically bigger gauge correction — with larger sampling
errors.

7 Conclusion

The gauge Poisson method is shown to generate a stochas-
tic differential equation that is exactly equivalent to a
nonlinear master equation in certain cases. By compar-
ison, the system-size expansion is only approximate, and
the positive Poisson representation is not exact for prob-
lems which have boundary terms due to movable singu-
larities. The gauge technique provides a way to eliminate
boundary-term errors due to singular trajectories. The
price paid for this advantage is an extra stochastic gauge
amplitude, which generates a sampling error that grows
in time. The focus of numerical simulations in this paper
is on cases where the existence of exact analytic results
allows the issue of random and systematic errors to be

carefully investigated. While this is not a complete proof
that boundary terms can be eliminated in all cases, it
suggests that choosing a stabilizing gauge is a necessary
condition.

This type of model is very general. For example, one
can easily include linear diffusion and extend the theory
to treat fluctuations in reaction-diffusion models or even
Boltzmann kinetics [3]. The method simply requires that
the populations are defined as occurring in a lattice of
bounded cells, either in ordinary space or in a classical
phase-space, together with the appropriate hopping rates.
The resulting deterministic equations are just the same
as would occur in discretized non-stochastic equations.
However it is necessary to include cell-volume factors in
the nonlinear rate constants, so that the noise terms vary
with the jth lattice cell volume Vj - typically resulting in
stochastic noise terms proportional to 1/

√
Vj . Applica-

tions to these problems will be treated elsewhere.
The technique can be easily extended to include a large

number of coupled kinetic processes, as occurs both in ge-
netics, and in the generation of chemical species of astro-
physical importance: for example, OH, H2O, CO and so
on. By contrast, the direct solution of the master equa-
tion grows exponentially more complex as the number of
interacting species increases. Similar considerations arise
when treating biological species with typically very large
numbers of genotypes, or when treating extended spatial
(multi-mode) problems. The method of choosing stable
gauges developed here may also be useful for the corre-
sponding quantum problems.

Numerical calculations were carried out using open software
from the XMDS project [17]. Thanks to the Australian Re-
search Council and the Alexander von Humboldt-Stiftung for
providing support. Useful discussions on genetic models with
A.J. Drummond and on astrophysical models with O. Biham
are gratefully acknowledged.
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