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Abstract

We present a numerical simulation of an all-optical AND logic gate utilising soliton formation in a planar waveguide

with a parametric nonlinearity. We investigate switching performance as a function of input logic simultaneity and

internal geometry. A highly digital response in the transmitted pulse energy is observed, with femtosecond time dis-

crimination. Ó 2000 Elsevier Science B.V. All rights reserved.
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For around three decades now, the all-optical
processor has proved elusive, with mixed opinions
as to how it may be achieved [1]. The growth and
performance of silicon-based electronics has truly
exceeded all expectations, but as a direct conse-
quence of this performance, we have a rapidly
growing global information network which is
continually pushing networking technology to its
limits. Fibre optics is very successfully solving the
need for simple information propagation, but until
recently, optical signals had to be continually re-
ceived and re-sent for two purposes: ampli®cation
and routing. This process of receiving signals and
re-sending them is expensive and slow in compar-
ison to the huge bandwidth available with an op-

tical ®bre, and is one of the primary bottlenecks in
an optical information network. Now that the er-
bium-doped ®bre laser is proving to be a practical
and e�ective optical ampli®er, all that remains is to
be able to route information while it remains
in optical form. Signal routing, multiplexing,
demultiplexing, and regeneration are the present
applications for all-optical logic switching.

In this paper, we describe the theory of a
parametric type II soliton-based optical AND
gate. In particular, we ®nd the switching perfor-
mance to be a highly digital function of pulse
timing. The optical AND gate can operate with a
pulse FWHM as short as 30 fs, and it shows digital
response with a resolution of order 1 fs, provided
Raman scattering and higher-order dispersion can
be neglected. A closely related type I device has
already been experimentally demonstrated with
100 fs pulse duration [2].

To illustrate one of the main problems in-
volved with all-optical switching, consider ®rst the
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requirements for the operation of an AND logic
gate. In order to obtain a logic true output, each of
the logic inputs must know about the presence of
the other. This is essentially a nonlinear process.
However, light in the majority of dielectrics is the
solution to the linear Maxwell equations, and thus
does not interact with other light. A dielectric with
nonlinear response is needed. In recent years, there
have been considerable advances in the theory and
manufacture of such nonlinear optical media,
which now opens up a new and exciting range of
possibilities for all-optical logic circuits. One such
possibility is the implementation of an all-optical
AND gate, as proposed by Drummond et al. [3]
and reillustrated in Fig. 1.

In this method, two simultaneous dispersive
input pulses are collided at the boundary of a
planar parametric waveguide to form a 2� 1D
spatiotemporal soliton, which propagates towards
the output port in a stable manner. If only one
input pulse is present, then it simply disperses with
little or no energy reaching the output. Clearly, if
there are no pulses present, then there will be no
output. Hence, AND gate logic is achieved. The
basic entity used is the 2� 1D parametric spatio-
temporal soliton, which was proposed in 1997 by
Malomed et al. [4], and was experimentally ob-
served last year by Liu et al. [5]. The two main
requirements are anomalous dispersion and (near)
group velocity matching at the fundamental and
second harmonic frequencies. We emphasise that

the method uses nonlinear spatiotemporal soliton
formation [6] as the key element. In this respect, it
is completely distinct from other proposals [7±9]
for optical logic gates based on soliton collisions
or spatial soliton interactions.

There are two di�erent methods by which the
input pulses can interact: type I interaction,
wherein the pulses are of the same polarisation; or
type II interaction, wherein the pulses are of or-
thogonal polarisations. For the purpose of logic
switching, it would be ideal for all input and out-
put pulses to be identical, i.e., the same carrier
frequency, polarisation, and similar shape and in-
tensity. The di�culty with completely degenerate
pulses, as pointed out by Assanto [9] and also by
Drummond et al. [3], is that the interaction would
be phase sensitive, and precise optical phasing is
di�cult to control. As a result, if we are to avoid
controlling precise pulse phases, we must resort to
making the pulses nondegenerate either in fre-
quency or polarisation. Further, if we are to link
serially a number of these optical AND gates, we
need to convert one type of logic bit to another.
This is more easily done in polarisation than in
frequency, thus favouring type II interaction. Eqs.
(1)±(3) describe the 2� 1D nondegenerate (type II)
parametric interaction in dimensionless coordi-
nates [3]:
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where r is the ratio of dispersion between funda-
mental and second harmonic frequencies, and c, aFig. 1. Schematic of proposed AND gate implementation.
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phase velocity mismatch parameter for the second
harmonic ®eld. For the results presented, r was set
to 2 (yielding s±f symmetry) and c was set to 1.
The group velocities of the fundamental ®elds are
assumed to symmetrically straddle the group ve-
locity of the second harmonic ®eld; the reciprocals
of the velocities di�ering by �mGVM. C�s; f� is a
damping ®eld applied in the numerical simulations
to absorb scattered radiation at the lattice
boundaries. The theory here is somewhat idealised
in that these equations neglect higher-order dis-
persion, Raman scattering, second harmonic
group velocity mismatch, and spatial walk-o� ef-
fects as well as any possible e�ects due to nonlinear
dispersion. The variable transformation is given by
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where jU0j2 is a reference photon ¯ux, z, the di-
rection of propagation, y, the transverse coordi-
nate, and t, the time. Eqs. (5) and (6) (derived from
Ref. [11]) de®ne the scalars y0, t0, and U0:
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where k0 is the fundamental wave number in free
space, b2, the second dispersion, n, the refractive
index at the fundamental wavelength, and v, the
parameter derived from the v�2� nonlinearity and
mode shape integral.

To investigate this process of soliton formation,
numerical simulations of type I and type II inter-
actions have been performed using a central step
partial di�erence integration method [10] on a 2D
lattice. Figs. 2 and 3 display the results for type II
interaction: Fig. 2 is for the case of only one input
pulse, and Fig. 3, for the case of simultaneous in-
put pulses. Here, we are plotting the transverse
cross-section (through s � 0) of total power den-
sity (j/1j2 � j/2j2 � 2j/3j2) as a function of prop-
agation distance.

Due to reasons that will be discussed shortly,
we require nonlinear evolution of the order of 10
units of z0 in order to e�ect the switch. If this is
required within an available length of v�2� media of
say 50 mm, then z0 � 5 mm. Assuming (very ap-
proximately) a square mode pro®le, the mode
shape integral may be evaluated as 1=

���
d
p

, where d
is the depth of the planar guide. Taking typical
values for nonlinearity, dispersion, and funda-
mental wavelength of v�2� � 10 pm/V, b2 � 25 ps2/
km, and k � 1:5 lm, respectively, we obtain y0 �
24:43 lm and t0 � 7:91 fs. Finally, with a wave-
guide depth of 2 lm, we get U0 � 1:58� 1012

(photons/ms)1=2.
Figs. 2 and 3 were originally obtained in di-

mensionless coordinates, in which the propagation
was for 10 units of z0 with the GVM between the
fundamental ®elds set to zero. The initial pulses
used were radially symmetric Gaussians (r2 � s2�
f2) with an amplitude of /0 � 7:5 and radius
r0 � 2. Their initial transverse velocities were �1
unit of y0 for every unit of z0, and for Fig. 3, their
centres were still 0.40 units of y0 apart and con-
verging when they launched. The pulses were also
simultaneous, i.e. both centred on s � 0. The sec-
ond harmonic ®eld (/3) was initialised to zero.
Using the above scaling, the input pulses were
98 lm in width and 31.6 fs in duration (FWHM,
both cases). This yields a total energy for each
input pulse of 22:6 pJ. Hence, for Fig. 3, the pulses
were converging at an included angle of 0:56°, and
their centres were still 9:8 lm apart at the start of
the nonlinear medium. The software package de-
veloped for these simulations is called XMDSXMDS, 1

and the input scripts for the simulations depicted
in Figs. 2 and 3 are available on the Internet. 2

As can be seen in Fig. 3, a breathing soliton
forms when both input pulses are present, whereas
in Fig. 2, the input pulse energy of a single pulse is
seen to disperse. It is reasonable to use either of the
fundamental ®elds or even the second harmonic
®eld for the switch output, but not all three. Here,
we have chosen to plot total power density because
it is the more revealing moment with regard to

1
XMDSXMDS is available at http://physics.uq.edu.au/xmds

2 http://physics.uq.edu.au/xmds/scripts
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understanding the dynamics of the interaction, not
because it de®nes the output of the switch.

From our studies, we have found several inter-
esting points of behaviour. Firstly, it is interesting
to note that to form a soliton, the pulses must be
overlapped as they enter the nonlinear medium.
We have not been able to produce a soliton with
input pulses that are initially separate.

Secondly, it is possible to repeat the above
simulations for the case of completely degenerate
pulses simply by superposing both inputs in one
fundamental ®eld and using the appropriate
equations for frequency degenerate type I inter-
action. The pulses must be separate initially in
order to superpose them, and a length of linear
propagation is then necessary to overlap the
pulses. In the case where the input pulses are in
phase, we ®nd that soliton formation occurs in
much the same way as for the type II case, but
when they are anti-phased, we ®nd the energy

scatters after collision, thus con®rming that this is
a phase-dependent process [9,3].

Thirdly, we ®nd that the process of soliton
formation is sensitive to exactly how the input
pulses overlap in transverse dimension and in time.
Fig. 4 shows the transmitted energy to the output
port as a function of time and transverse separa-
tion. The width of the output port was the same as
that of the input pulses: four units of y0, or 98 lm.
The notation here is that negative transverse sepa-
ration indicates that the pulses still converge at
launch. The response is symmetric in time sepa-
ration as mGVM was maintained at zero.

There are four key regions in this ®gure. Firstly,
a relatively ¯at plateau can be seen in the central
region of the ®gure. This is where one crisp soliton
is formed and propagates stably to the output
port; it represents logic 1 output. Secondly, note
the steep wall in the region of ÿ26 lm transverse
separation and zero time separation. This is where

Fig. 2. Single pulse input.
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the soliton formation process becomes unstable
and the initial packet of energy breaks into two
solitons, which then repel each other. When the
time separation is zero, they repel each other in the
transverse direction; thus, they straddle the output
port at the end of the switch, and no energy is
transmitted. However, with the right ratio of ini-
tial transverse separation and time separation, we
®nd that the break-up is purely along the longi-
tudinal (time) coordinate. This results in both
solitons arriving at the output port one after the
other ± their combined energy being visible in Fig.
4 as the ``arms'' leading away from the plateau: the
third region. This behaviour is highly undesirable
but may be easily avoided: the initial transverse
separation of the pulses is determined by the ge-
ometry of the lead in channels in the switch, and as
such is a manufacturing tolerance issue. If the
switch can be manufactured so that this separation
is within an appropriate tolerance band (say

ÿ8� 2 lm for this set-up), then all should be well.
We will see a response which is primarily a func-
tion of time separation. This is shown in Fig. 5 for
ÿ9:8 lm transverse separation, and brings us to
the fourth and ®nal region of interest ± the plateau
wall in this vicinity.

Here, we see what appears to be a fairly digital
response to the time separation of the input pulses.
In fact, the switch appears to be capable of rising
from a near zero response to near maximum re-
sponse for about a 1 fs change in input pulse
timing. The e�ect is not quite as digital as the wall
at the front of Fig. 4 (earlier referred to as the
second region), because here the break-up mech-
anism forms three solitons: two ¯ying away with
both transverse and longitudinal velocities, and
the third remaining central. In order that the re-
sponse be as digital as possible, we require that any
soliton break-ups be fully e�ected before the soli-
ton reaches the output port. This is why we

Fig. 3. Soliton formation process.
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required a nonlinear propagation of 10 units of z0,
as stated earlier.

Finally, we must consider the reality that there
will be some degree of GVM between the funda-
mental ®elds. This has been investigated using the

base case (as used in Fig. 3) and by varying the
GVM from mGVM � 0 to mGVM � 2. The results are
shown in Fig. 6, in which the abscissa is shown in
units of jng2 ÿ ng1j. Here, we can see that a mis-
match of up to 0.0005 in jng2 ÿ ng1j has little e�ect,
but beyond this, the soliton fails to form.

Fig. 5. Transmitted energy vs. time separation for transverse

separation � ÿ9:8 lm.
Fig. 6. Transmitted energy vs. FF GVM.

Fig. 4. Transmitted energy for the type II interaction with a relative convergence angle of 0:56°.
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In conclusion, we have shown that it is possible
to achieve an all-optical AND gate using spa-
tiotemporal soliton formation in a parametric
medium. The interaction between fully degenerate
input pulses was studied brie¯y and proved to be
highly sensitive to the relative phase di�erence
between the input pulses. The interaction between
input pulses that were nondegenerate in polarisa-
tion was studied in detail and was found to be
complex in nature. In particular, a highly digital
response with regard to relative pulse timing was
found. Our estimates indicate that pulse durations
as short as 30 fs are feasible, with pulse energies in
the picojoule range and digital timing discrimina-
tion as short as 1 fs, in this idealised model.
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