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Positive P representation: Application and validity
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The positiveP representation is a very successful tool in quantum optics. However, the usual assumption of
negligible boundary terms in the time-evolution equations is not always valid. We explore the range of validity
of the time-evolution equations both analytically and by numerical investigation of a number of specific
examples. We present practical ways of verifying the validity of the use of the poBitrepresentation and
find that the standard time-evolution equation can become invalid when nonlinear (®&rmsit photon
numbej are large relative to the damping rate. This is very much larger than is normally the case in nonlinear
optics, except possibly near resonances. We are able to show that when the posgfivesentation is invalid,
the boundary terms, normally neglected in an integration by parts, become non-negligible. When numerical
simulations are carried out using the positReepresentation, specific checks given in this paper should be
carried out to verify the compactness of the distribution. In conclusion, we findapatt from special cases
this technique of quantum time evolution is typically asymptotically valid in the limit of small nonlinearity,
rather than exacfS1050-2947@7)01803-9

PACS numbefs): 42.50.Ct, 42.55-f, 42.65—K, 42.50.Ar

I. INTRODUCTION does not occur in normally ordered representations with the
types of model nonlinear Hamiltonian that are treated here.
Since the invention more than thirty years ago of he In other cases, methods have been derived for determining
representation by Glaub¢l] and Sudarshaf2], much of  under what conditions such higher-order derivatives may be
theoretical quantum optics has been dominated by the applireglected[6]. In general, with normal-ordered representa-
cations of this representation, which mimics, but does notions, these problems are usually restricted to atomic-
precisely duplicate, the classical equations of electromagnesperator Hamiltonians, which have non-Bose commutators.
tism. The original Glauber-Sudarsh&nrepresentation is a However, even in the pure Bose commutator case, higher
normally ordered operator representation, most suited to situderivative terms create a prevalent difficulty in treating non-
ations in which the behavior of the electromagnetic field islinear Hamiltonians with representations that are not nor-
almost classical. Other well-known phase-space representasally ordered, such as the Wigner @rrepresentations.
tions include the Wignet3] (symmetrically orderedand The first problem was solved by Drummond and Gardiner
Q [4,5] (antinormally orderedrepresentations. The principal [7] by devising thepositive Prepresentation. This is a gen-
advantage of a normally ordered representation is that theralization of the normally ordered Glauber-Sudarsifan
vacuum fluctuations are included in the definition of the rep+epresentation, in which an initighondiagonal P function
resentation, and thus a low-temperature situation can be repan always be chosen, which is guaranteed both to exist and
resented almost classically. to be positive. Provided boundary terms vanish in certain
All phase-space representations are simply transcriptiongartial integrations, it was shown that a time-dependent posi-
of quantum mechanics. Sometimes this transcription yieldsive distribution function could also be chosen to satisfy a
simple and possibly illuminating results—for example, theFokker-Planck equation. This occurs in a phase space that
master equation for a damped harmonic oscillator is transhas twice the dimension of the classical phase space. The
formed into a classical Fokker-Planck equation, yielding aradditional dimensions have the simple interpretation that
interpretation of great utility. Sometimes extra noise appearthey allow an expansion of the quantum density matrix with
as a result of quantum mechanics, but the interpretation resff-diagonal coherent state terms.
mains qualitatively similar. However, this simple picture  One of the qualities that makes the positReepresenta-
does not always pertain. There are two major problems to btton so attractive is that it enables the dynamics of a system
dealt with: (i) the Glauber-Sudarsha® representation need to be explored by numerical simulation @number stochas-
not always yield theositive Pfunction that is required for tic differential equations. This allows the full nonlinearities
the interpretation of any Fokker-Planck equation that may beo be included in the analysis. All quantum-mechanical states
derived as a stochastic equation, diigl the Fokker-Planck can be treated without problem, due to the expanded phase
equations that are derived may include higher than secondpace. In contrast, other phase-space techniques for operator
order derivatives. representations can rapidly run into problems, for certain
We do not consider the second problem here. It typicallyquantum states or master equations.
The Glauber-Sudarshdn representation does not neces-
sarily exist as a well-behaved positive functi¢éalthough
*Present address: Victoria University, Wellington, New Zealand.Klauder and Sudarshd®] have shown that it does exist in
"Present address: University of Queensland, Queensland, Austréerms of extremely singular distributiondhe Wigner func-
lia. tion can be negative for some quantum states, which pre-
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cludes a probabilistic interpretation. It also typically leads toprocess and an appropriately chosen, exactly soluble, sto-
Fokker-Planck equations with higher than second-order dechastic differential equation with similar diffusion. The dif-
rivatives. This situation is not intractable, and in suitableference can then be added to the solution of the exact equa-
conditions the higher-order derivatives can be truncated, stion to give the required quantity.

that it is possible to arrive at stochastic differential equations More seriously, in some cases where the nonlinedsty

[6]. There can obviously be situations where this truncatiorunit photon numberis comparable with the linear decay
will lead to inaccuracies when compared with the true solurate, the positiveP representation may simply give the
tion. Thus, there have been studies where the posRve wrong resul{43—46. The issue in this case is the validity of
representation equations agree with the exact quantum solneglecting the boundary terms in the derivation of the dy-
tion, even though the truncated Wigner equations do nobhamical equations. In all cases where these problems occur,
[9-11]. Finally, theQ function, although positive and nor- they can be traced to the existence of at least one singular
malized, has the disadvantage that not every pos@ifenc-  trajectory in the deterministic dynamics of the extended
tion corresponds to a positive semidefinite Hermitian densityphase space. Even if this singularity occurs with zero prob-
operator, also the time-evolution equation is usually neithegbility (as is typically the cagethe distribution in the neigh-
second order nor positive definite. This means that no stoborhood of this singular trajectory may not vanish suffi-
chastic interpretation exists in the phase-space sense, so tlegntly rapidly at large phase-space radii. This can generate
numerical stochastic treatments are not generally possible.additional terms that are usually neglected in the partial in-

The positiveP distribution has consequently resulted in ategrations used to derive the dynamical equations.
very useful technique in quantum optif8—3§], with sys- In all cases of Hamiltonians bilinear in creation and de-
tems ranging from microdisk laser§35] to solitons  struction operators, and linear damping, the boundary re-
[16,32,31. It has, for instance, been extensively used in thequirements are trivially satisfied. Thus, for example, the lin-
study of nonclassical light. Topics include antibunchigg], = ear harmonic oscillator has no boundary terms, so that the
generation of superposition statgz8—30, Bell's inequali-  treatment of damping by the Glauber-SudarsRarepresen-
ties [26], and, in particular, the study of squeezing tation can easily be extended to cover any nonclassical quan-
[11,12,16,18-20,22,24,25,32)3Fhere has even been an in- tum state. Similarly, linear or linearized equations have no
teresting proposal to directly measure the posifvelistri-  boundary problems; and much of the use of the posiive
bution [36]. representation is in this contexi2—-27. Finally, if the

However, simulations of positiv® stochastic equations phase-space dynamics can be confined to a bounded mani-
have not been widely used as a numerical tool in quanturfold (as in the parametric oscillator with the driving field
optics. In 1978, when the ideas were first being developedadiabatically eliminate9,28—-3Q), then the boundary terms
Steyn[39] attempted such simulations for the problem of amay not exist.
phase-damped anharmonic oscillator, and found that the We emphasize that when boundary-term problems have
practical implementation of the method did have some nuoccurred they invariably have occurred in systems whose
merical difficulties. The source was not at that time entirelynonlinearity parameters were set to values much higher than
clear. In due course, other workers investigated various prolthose of any known physical system. We can define the di-
lems to which numerical positive simulations seemed ap- mensionless nonlinearity of a system @s', where y rep-
propriate. It was found that, in practice, once numerical dif-resents the boson occupation number for which the linear
ficulties were dealt with there were two problems left — decay rate equals the nonlinear rate of change. The smaller
both related to questions of stabilif#0—44. the value ofy the more nonlinear the system, and the lower

The positiveP equations of motion take place with twice the dimensionless linear damping. Typically, problems have
as many variables as in the Glauber-SudardPaepresen- been found for linear damping below a critical value of
tation. In the Glauber-Sudarshan equations, we would have g=1. Within this parameter regime of high nonlinearignd
complex amplituder, and its complex conjugate*. In the  very small photon numbershere are often other methods,
positive P equations, one has twondependentomplex vari-  such as directly simulating the master equafiry, that are
ablesa and a™. Generally, positive® equations of motion very effective. As the nonlinearity of the system is decreased
can be obtained by the deceptively simple substitutiorthe positiveP representation can quickly become accurate
a*—a’ in the Glauber-Sudarshan stochastic differentialand computationally superior to other meth¢és
equations, provided the stochastic terms are chosen correctly. There are no known problems with the positierepre-

The dynamical stability in this analytically continued sentation in realistic systems, which generally hazel0®.
phase space of doubled dimensions is dramatically differertlowever, larger nonlinearities leading to smalkercould
from that of the classical phase spd@®-42,49. For in-  well occur in future systems in quantum electronics, due to
stance, limit cycles are turned into two-dimensional mani-the drive towards reduced cavity size in many experiments;
folds with the diffusion spreading the distribution along theand so clarifying the validity of the positivie representation
manifold [40,45. This may eventually cause a problem, is important.
since any finite ensemble of points representing a distribu- It is now timely for a definitive statement to be made on
tion will drift apart. This ensemble may then cease to be ahe validity of the positiveP representation. This paper will
sufficiently fine sampling of the underlying distribution, give practical guidelines on how to use the positReepre-
leading to increased numerical errors. This is essentially aentation correctly and reliably. In particular the aim is to
practical problem and may be amenable to more subtle nyrovide numerical signatures that herald an unreliable solu-
merical schemes. For instance, Kinsler, Fesn@nd Drum-  tion. To this aim we will concentrate on rather unreasonably
mond [11] simulate thedifferencebetween their stochastic high nonlinearities and tiny photon numbers—a regime most
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unsuitable for the practical use of the positReepresenta-
tion, but one in which it becomes possible to analyze the
origins of unreliable solutions. In Sec. Il we present the nu- (& @
merical signatures. Sections Ill and IV examine various Lol ®) © 5
models where the positivieé representation fails and demon- ) @/ ) B
strate the usefulness of the numerical signatures, while Sec.
V examines a model where the positiPegives correct an-
swers but must be treated with care as far as the numerical
signatures are concerned. Section VI presents theoretical ar-
guments supporting the use of these signatures. Lastly, in
Appendix A we give an example of a nonlinear stochastic o
equation that is analytically tractable, and illustrates the re- T
lationship of the numerical signatures to the large-radius be-
havior of the corresponding probability distribution. FIG. 1. Mean photon number for the single-mode laser starting
from “equivalent” initial Gaussian distributions: variancéa)
0?=1, (b) 02=0.8,(c) 0*=0.6, (d) 0°=0.4, (e) 02=0.2, and(f)
II. NUMERICAL SIGNATURES o?=0.
OF BOUNDARY PROBLEMS

We have studied all the models that have appeared in thignsure that it has converged in the limit of small step size.
literature in which the positiv® representation gave a false  (2) Another readily monitored warning sign is a sudden
solution [43—46. These studies of the representation havencrease in the statistical error due to the finite ensemble size.
produced a surprising and powerful result—when the equalhis is useful because, in conjunction with the onset of spik-
tions fail they do so in a recognizable way, giving rise toing, there is also a substantially greater variance in any av-
certain simple numerical signatures that herald the appeafrage over the distribution. However, as in the previous sig-
ance of finite boundary terms and an unreliable solution. nature, this indicator can be misleading, due to its qualitative

In the derivation of a positivé Fokker-Planck equation nature. _ o
from a master equation, it is necessary to discard the bound- (3) If the previous two indicators are present then we
ary terms that turn up in the integration by parts. This is af®commend a quantitative exploration of the behavior of the
essential part of the whole procedure. If this step is not validlistribution at large radius. If the large radius tails of the
then the dynamics of the Fokker-Planck equation will not bedistribution fall off as a power law—for example,
equivalent to that of the quantum system described by th€(la " al)=|a" | "—then, ifn is too small, there will cer-
original master equation. tainly be significant boundary terms. The valuendthat can

The initial distribution presents no problem, as Drum-be considered large enough will depend on the problem be-
mond and Gardinef7] gave a prescription for writing an ing simulated. _ . .
equivalentP function for a given density operator. Provided ~ (4) Finally, an increase of the linear damping rate in the
the time evolution of the Fokker-Planck equation as given bynodel being considered will tend to restrict the large excur-
the stochastic differential equations does not explore &ons of trajectories. In effect, there is a barrier that has to be
boundary at a large distance then it will continue to havesurmounted by the diffusion. Since this serves to restrict the
solutions equivalent to the solutions from the master equalrajectories to a bounded domain then boundary-term prob-
tion. The question then becomes: Can the stochastic diffefems should cease as the linear damping rate is increased.
ential equations explore arbitrarily distant regions in phase If all these signatures occur simultaneously, it is highly
space? If this happens, there is a danger that the evolution §kely that boundary terms are becoming significant. This
the Fokker-Planck or stochastic equations will give differentmeans the solutions given by the stochastic equations are no
results from the master equation. longer equivalent to the solutions of the master equation.

In particular, we have found that the following signs in- We now examine several models where the posifive
dicate that boundary terms are likely to have a significanfn€thod yields an incorrect solution and in each model we
effect. present the various numerical indices described above to-

(1) The presence of near-singular trajectories, which mak&ether with any analytical work possible.
large excursions into regions of phase space wher@nd
a’ are far from being complex conjugate. In particular, the
time of the earliest such trajectory in a large ensemble is a
good indicator of when the solution develops significant In a recent publication Schack and Schen2ig] claimed
boundary terms. It has been a common practice to removihat for the positiveP model of the single-mode laser, the
these trajectories from ensemble averagin,48,49, al-  vacuum initial condition, when represented by
though such a procedure in no way solves the problem.
These trajectorie®r “spikes”) give one of the first warning
signs to pick up. However, care must be taken that trajecto-
ries of this type are not just numerical artifacts due to un-
stable integration algorithms. In our simulations, we usegives the correct results depicted in Fig. 1 curfg put that
stable implicit algorithms that are strongly convergent in thethe choice of initial distribution corresponding to that given
stochastic sense. This allows each trajectory to be checked ty Drummond and Gardindf],

. —

051 g

Ill. THE SINGLE-MODE LASER

P(a,a™,t=0)=68(a)d(at), (3.1
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gave different results, depicted in curva)(of Fig. 1. This . ] o )
choice is of interest because any quantum state can be reBlrom this we can write the Ito stochastic differential equa-
resented in this form, even though there are often simpletions[51]
choices available in any particular case—such as the vacuum

state, which also has a delta-function representation. We will da=(ea—a+a?)dr+\/Qdw, (3.69
show that Schack and Schenzle did not treat this distribution _ o
consistently, and that their anomaly does not occur for any da™=(ea™—a*?a)dr+ \/ad\/\/*, (3.6b

practical values of parameters. In other words, even the _ _ - _
model itself is questionable when using their approximatevhere time has been scaled by settiitg=d7 no/«C with
laser equation, with parameters that result in the abov@=QxC/ny and e=ny(C—1)/C. The noise dW=dW;
anomaly. Nevertheless, we can draw some interesting cont idW, and(dW*dW)=2dr. Equations3.6) are the equa-

clusions from their work.
We start from theunscaledFokker-Planck equation for
the single mode las¢60],

tions as used by Schack and Scheri#ig].
The initial condition in thescaledvariables(3.4) is

2

P(a,a",t=0)= %exp[ - %/(|'&|2+ 2?1, (3.7)

&P(a,a+)_ 0 1 C
at ~ | da| 1+a alng

+ i 1 c
dar | ¢ 1+a’alng

whose variance is?=1/A"?, which in any practical case is
very small. The effect of this scaling was omitted by Schack
and Schenzle, so that their conclusions, while interesting, do
not invalidate the choice of Eq3.2) as an initial distribu-
tion. In fact as the variance of the initial distribution as used

—g?| & . by Schack and Schenzle is reduced, the results become in-
+|2kn+ M1+d) = raoa |Plaan), distinguishable from those obtained from an initial delta dis-
Y tribution as shown in Fig(1l). One could argue that the laser
(3.3 model could also be applied in the critical region near thresh-

old, which would give a larger value for the initial variance.

where V' is the number of atoms; is the cooperativity pa- This is possible, but is accompanied by a great increase in
rameter, which determines the behavior of the laser,rand the noise parameter; see Appendix B. This increased noise
is the saturation photon number, d, andg are parameters. Was also omitted by Schack and Schenzle.
It is important to note that in the derivation of this equation  The initial vacuum state can, however, be represented by
several assumptions were made and hence the equation ddedussian distributions of arbitrary varianicd, so the con-
not correspond exactly to a master equation. Despite this, th@usions of Schack and Schenzle are worthy of study, espe-
mechanism by which the positive representation breaks c!ally as we shall see that they |Ilum|nat9 the general mecha-
down here appears to be generic. nism of the breakdown of the positiv simulations.

Now, in order to simplify Eq.(3.3) we introduce the
scaledquantitiesg, Ny, @, andq defined by

A. Analytic treatment via the deterministic equation

In this section we will demonstrate that the mechanism

g=§/\/f/’, (3.43 for the breakdown of the positive simulations exists even
in the deterministic equations alone. To show this we con-
Ne=TioV'=72M1(252), (3.4b centrate on the closed equation for the photon nunb2y
N=a"a,
a=a N, (3.49 dN=—2(N-a)(N-b)dr+2/ONdW, (3.9
'd=[Kn/N+§2(1+d_)/(27/\/)]. (3.49 Wwhere dW is now a real Wiener increment, with

(dW?)=d7. In the Stratonovich form of the equatiom,and

Finally, since for the validity of the choice of the form of b are given by
;

q it was assumed that "a<n,, we can again make use of
this assumption to invoke a binomial expansion to first order

S ! ; (3.9
to arrive at the rotating-wave van der Pol laser equation a

O
_~
Il
N| m
[+
ﬁ

2+9
>
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Im(N) The Gaussian initial condition can be thought of as an
appropriately weighted sum of concentric rings of radius

The average photon number, averaged over a(rii]‘{g))r is
given by[52]

- 1 dn~
(N =5~ ﬁ: N, (3.13

Re) where the contour of the integrdl, is over the circle
[n|=r. As long asN(t,n) is analytic inn inside C, we can
use contour integration to get

(N(t)),=N(t,0). (3.14

Thus the mean value will be the solution for the determinis-
_ _ tic equation with the vacuum initial condition. However,
FIG. 2. Schematic representation of the phase space of the d?\](t,n) doeshave a singularityEq. (3.12], and this will hit

termln_lstlc part of the laser equation. Of particular |mportance,a circle of radiug at the pointn=—r, at the time
there is a single trajectory frora that escapes te-, before re-

turning from +< to b. 1

telen

r+a

r+b (3.19

We use the Stratonovich form of the equations since this is
the most natural form in which to implement them in a nu-[at the same time we find the solution for the initial condition

merical algorithm. _ N(t,—r) escapes to infinify Taking into account that the
The deterministic part of Eq3.8) contains the essence of gjnqgylarity is now within the contour, we can evaluate the

the problem. An equation of the form contour integral to get the discontinuous solution

dN ~ ~ ~ ~ 0, t<te
L _iN- - _ = =0)+ 1
gr = §(N-a)(N—b) (3.10 (NO}=NEN=0)F) gy oy (310
has two critical points, one @ and the other ab. Linear- Where
izing about these points will show them to be a simple re- eM(a—b)?
pellor (we shall label this ag) and a simple attractofia- G(t)= = - (3.17)
beledb). Each point has two eigenvalues of equal magnitude (1-e)(aet'—b)

but opposite sigh  é(a—b), respectively with orthogonal
eigenvectors each parallel to a coordinate axis.

The effect of the nonlinearity is to wrap the trajectories
around from the repellor to the attractor; see Fig. 2. There i
a single trajectory froma (the repelloj, which escapes to

—oo, before returning fromt+ o0 to b. Since a crucial assump- tation i : t0 the i dis | i
tion in the derivation of the positiv® representation was representation s correct up to the timeand is incorrec
thereafter. Only one trajectorget of measure zeractually

that the current at infinity was zero, this trajectory plays theesca es 1o infinity and in practice this traiectory NEVer ap-
critical role in the validity of the solutions. P intinity In practi : . y nev P

The solution of Eg. (3.10 with initial condition pears i.n simulation. Omitting spiking t_rajeqtqries from the
~ . simulation results clearly will not help since it is the dynam-
N(t=0)=nis [52] ics that are at fault. We expect problems to appear at the

earliest time a deterministic trajectocan escape. Nearby
(3.11) trajectories to the trajectory that actually escapes will give an
indication of the time the distribution results break down.

In summary, the initial distribution evolves so that at the
time t it passes through a point at infinity. At this time it is
o longer valid to drop the boundary terms. Prior to this time
e boundary terms are necessarily negligible since the dis-
tribution is bounded. Hence the solution of the positRe

(b—aj)(n—a)
(1-eM)+ber—a’

N(t,n)=a+ =

where\ = ¢(b—a). The solution clearly has a singularity as B. Full stochastic case

a function ofn at Consider now a small stochastic influence—this will dis-

e M tort the circle so that we would expect to see a broadening of
n= %_ (3.12  thejumpinthe mean, since in each of the instances averaged
l1-e over, the jumps occur at slightly different times. The more

noise present the more broadened the discontinuity. This will
This singularity starts off at negative infinity and moves have the effect of “washing out” the precise time at which
along the negative real axis reaching the critical pairdt  the solution jumps. We have solved E¢3.8) with trajecto-
t=o. The singularity will not affect the solution given an ries starting from a randomly chosen point along a circle
initial distribution that does not contain any poiaton the  centered at the origin. Although large excursions into “un-
real axis ax<a. physical” regions of phase spa¢spikes were present in the
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FIG. 3. Comparison of analytic treatment for the deterministic ~ FIG. 4. Laser equation with initial ring distributions of different
equation with the simulation of the stochastic equafi@®) for the radii r =|N]|. Plotted is the earliest out of 40 trajectories to satisfy
laser. Curvega), mean photon number with an initial delta distribu- Re(N)= — 20 (dots againstr. These trajectories correlate well with
tion centered at the origin; curv®) (dashed ling analytic curve  the timet, in Eq. (3.16 (dashed ling Simulation parameters:
from Eq. (3.16, and curve(c), mean photon number for 500 tra- At=10"3, e=1, and6=0.25.
jectories from an initial 1000 points distributed on a circle;
At=5x10"3. Curves b) and ) are both for an initial circle of

radius 2. Parameters=1 andQ=0.25. defined by Rell)<—20; as can be seen this closely tracks

the theoretical curve. These numerically obtained times then

. . o rovide a reliable estimate of.
simulations none actually escaped to infinity; rather, the)P L

looped around and back towards the attractor. In Fig. 3 we
compare this full stochastic case with the results of the ana-
lytic treatment of the previous section, and find that the dis- Given the presence of these large excursions into phase
continuity in the average photon number is still present an@pPace it is natural to expect an increase in the variance of the
occurs approxima’[e|y at the t|mg The results for trajecto- distribution. Monitoring the statistical error can be achieved
ries Starting from an initial Gaussian will be reproduced bleth little OUtlay in Computation. An increase in the statisti-
summing over the results for various rings, each with arfal error of the distribution can help indicate the presence of
appropriate weighting. spiking trajectories. Of course, if a distribution develops a
There is then no doubt that the reason for the failure of thower-law tail(next section then an increase in the statisti-
broad Gaussian initial distribution is that there is a significantcal error will be a natural consequence.
component of points on rings larger than the critical radius, Starting from an initial distribution on a ring we moni-

so that boundary terms are no longer negligible after théored the mean photon number and the varig(ifeg. 5 and
time t,. found that the variance indeed does increase dramatically at

the time of the discontinuity in the deterministic equation

2. Increase in the statistical error

C. Numerical signatures (te) -

In this section we demonstrate the presence of numerical
signatures that signal the breakdown of the simulation. We ) ) o .
have found that the presence of spikes, an increase in the !N Order to give a more precise description of what is
variance, and the radial distribution taking on a power-law'@PPening, itis useful to investigate the probability distribu-

form (P~|N|~") herald a breakdown of the positi rep-
resentation. ,

3. Development of a power-law tail

80

. N Variance
1. Presence of spikes 151
460

Starting from an initial ring distribution the stochastic tra-
jectories will occasionally make large excursions into re-
gions of phase space near the unstable manifold, that is 5!
spikes will occur. The definition of a spike is necessarily
qualitative in that the degree to which a trajectory makes a ¢
“large excursion” is an arbitrary amount. Here and in the
rest of the paper we will generally require that a spike be a -0
trajectory that makes an excursion several times larger than
the initial and the steady-state values, and in a direction to-
wards the trajectory that escapes to infinity in the determin- FIG. 5. The variance of the photon number for the ldsleshed
istic equations. line) increases dramatically at the tinig when the mean photon

We have found that thearliestof these spikes correlates number also undergoes a large chatspid line). There were 3000
well with the analytically calculated timg, based purely on trajectories from an initial ring distribution of radius-0.8. Simu-
the deterministic equation. In Fig a “large excursion” was lation parameterat=10"%, e=1, andQ=0.25.

{40

120

0 }os 1 15 2
te
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terms, so that the derivation of their Fokker-Planck equation
was not valid in this limit. With the correct initial distribu-
tion, and a reasonable choice of scaling parameter, the prob-
lem is nonexistent. This should not be taken as an argument
that boundary term corrections do not exist. In fact, the ex-
tremely unphysical conditions used by these authors have a
useful role in illustrating potential limitations of positive
simulations. However, any small corrections from this source
will be completely negligible compared to those due to the
standard truncations already introduced, for typical laser pa-
rameters.

IV. THE DRIVEN ONE- AND TWO-PHOTON ABSORBER

The model we consider in this section is a cavity that is

FIG. 6. Locations of trajectories for the laser binned accordingdriven by coherent radiation and damped by one- and two-
to their radii ¢ =|N|) at specific instances in time. Dividing by the photon losses to a zero-temperature bath. It is also possible
total number of trajectories (810°) yields an estimate for the to arrive at the same equations by considering second-
probability. This figure shows the behavior of the tails of the prob-harmonic generation with the harmonic mode adiabatically
ability distribution. A power-law distribution will be a straight line eliminated, as was considered in Ref5]. We will demon-
(indicated by the data at the tintewith a value of about °). The  gtrate that the breakdown of the positiRerepresentation in
time arrowed is the timg, described in the text. Simulation param- this model has the same mechanism as uncovered in the pre-
eters:At=10*, e=1, andQ=0.25. Trajectories started from an yjoys section. Not surprisingly, all the numerical indicators
initial ring distribution of radlusr=_0.8. No_te that the graph has a previously discussed will also be present at low damping,
false bottom™ at the level of a single trajectory. with the addition of a definite power-law signature, indicat-

tions of points being simulated. In particular, the behavior of"d @ radial dependence of the distribution that goes to zero
the tails of the distribution with time can be explored by ONly @s @ power law of the radius. This can be atributed to
binning the trajectories into a set of concentric bins withth® presence of an isolated singular trajectory in the deter-

IN|. Over a sufficient number of trajectories this will give an ministic dynamical equations. ,
estimate of the probability of a trajectory reaching a certain Followmg standard techn_lques, this system can be de-
radius. If the distribution falls off exponentiallfor fastejy scribed by the master equation
with the radius in phase space then there will certainly be no
problems with boundary terms. However, if the distribution
falls off as a power law then boundary terms may present a [?_p:[EaT_ E*a,p]+ «,(2apal—atap—pa'a)
problem unless the power is sufficiently high. ot
Figure 6 suggests that the tail end of the distribution for p
the laser begins to faII' qff as a power law at the same time +72(2a2pa’r2— at?a?p—pat?a?), (4.2
te that the onset of spiking was observed. The value of the
power is aboufN| 3, which is the value expected from an

analysis of the equationisee Sec. IV A for more detajls
4 q A ) wherek, is the rate of one photon loss ard is the rate of

The appearance of a power-law tail at the titpean be h | i I .  thi
expected to invalidate the partial integration required to defWO Photon loss. We now introduce a scaled version of this
equation with time scaled byx, and hence 7= «»t,

rive the Fokker-Planck equation from a master equation=" o , i
From this we can conclude that the solution giadterthe ¥~ 2K1/x2, ande=E/x; (k,70). This helps to clarify the

timet, is not a valid solution to the master equation with thedynamics, and introduces a dimensionless parameter
given initial condition. The power-law tail quickly disap- which describes the degree of nonlinearity involved. The

pears after this time. We surmise that the solution afiés ~ d@mping is entirely nonlinear whep=0 and the proportion
correct for a distributionstarting from the distribution ©f linear damping increases asincreases. Hence we have
achieved after the timg,, but not for the initial distribution ~€h0Sen to emphasize the nonlinearity in the equations
at the timet=0.

Hence the positiv® representation remains valid up until
the time when the boundary terms become significant, and ‘9_1’:
there is ample evidence in the numerical work to identify this ar
time independently of analytical treatment.

We conclude then that Schack and Schenzle used an un- + E(Zazpa‘rz_aT2a2p_paT2a2)' 4.2
reasonably broad initial distribution, by confusing the use of 2
scaled with unscaled variables. In doing so, the dynamics of
the equation was affected by the presence of a trajectory that
could escape to infinity in the deterministic phase space. This Applying the positive P procedure and discarding the
singularity is intimately related to the presence of boundanboundary terms, results in the Fokker-Planck equation

[ea’—e*a,p]+ %(ZapaT— a'ap—pa'a)



ﬂP(a,a+)_ _i Y L
or B Jda € 2a @
J
—(m—+(e*—%a+—a+2a)
1 6,2 2
E a—aza2+(m_+2a+2 ]P(ala+)1 (43)

which in turn is equivalent to the Ito stochastic differential
equations

da=(e— 3 ya—a?a™)dr+ iadW,, (4.49
da*=(e*— yat—a"?a)dr+ iatdW,, (4.4b

wheredW, anddW, are independent Wiener increments.
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FIG. 8. Some transient differences between posiBvsolution
and the master equation for the damped nonlinear absotdger.
v=1.1,(b) y=1.2,(c) y=1.3,(d) y=1.5, and(e) y=1.7. Clearly,
as the amount of linear damping is increased both treatments yield

It is easier to study these equations in the various limitshe same result. Positiv® simulation parametersAt=0.005,
corresponding to the models that have previously appeare@x 10° trajectories with initial condition 0.5.
in the literature, namely, the damped nonlinear absorber and

the driven nonlinear absorbpt3—46,52. We will first focus
on the damped nonlinear absorber, without a driving term.

A. The damped nonlinear absorber

This model demonstrates that the positRerepresenta-
tion can yield incorrect results that are not due to the numeri
cal algorithms, but intrinsic in the method its¢#3]. With
€=0 in Eq.(4.4) we arrive at the damped nonlinear absorbe
treated i43-45,52. This model is best treated numerically
using the equations for the photon numblrs ot a. We
choose to use the Stratonovich calculus here for the be

numerical accuracy, and obtain the resulting Stratonoviclf
stochastic equation, where time has been scaled to removebgr

factor of 2, withr=7'/2 and(dW 3 =dr":

dN dr’ +iNdW'. (4.9

1-vy
—N(N——2

Equation(4.5) is known to produce the wrong steady state

for y<1, and the correct steady state but with some transient

differences for X y<2 [43,44,53. In fact, the positiveP

0.6 ————— LA I S AL A
Re) | | @ |
04 ! .
\ZT
0z} ! ]
| 1e(=0)
0.0 t L P | 1

r

representation will initially give accurate results but will at

some time during the simulation depart from the correct an-

swer as in Fig. 7. We have labeled the approximate time of

this departure at. (note that in this sectiok, is a numeri-

cally estimated time, defined as the time the positveo-

lution becomes distinct from the master equation solution
The steady state of the positiie@ solution for N with

y=<1is(N)s=(1—v)/2. It falls linearly, asy goes from 0

to 1, from(N)ss—=0.5 to(N)s=0. For y>1 the steady state

is always zero. The solution of the master equation on the

&ther hand always decays to zero wjth- 0—all the photons

ventually leak out. Withy=0 the initial coherent state can
considered a superposition of even and odd photon num-
states; the even number states decay to zero, the odd
decay to one. The steady state of the master equation for
v=0 is the weighted average between zero and one, of the
original even and odd number states, respectively. In sum-
mary, the difference between the positRend master equa-
tion solutions in the steady state will disappear linearly as
is increased with apparent equality being achieved for
vy=1. There is also a transient difference, but this is small
and also disappears for valuesyohot much larger than one,
see Fig.(8)—this is consistent with the work of Smith and
Gardiner[43], who found that a positivé® representation

b

@y>1 Sm(N) by<1 Im(N)
AN 1 LN
IN N
}; AN 7'; X Re(N) A P Fe)

FIG. 7. Comparing the master equation solution against the

positive P solution for the damped nonlinear absorber wijth 0.
Curve(a) the mean value of R&() using the positiveP represen-

FIG. 9. Behavior of the critical points of the deterministic part
of the stochastic differential equation for the damped nonlinear ab-

tation; curve(b) the master equation solution calculated in a trun- sorber. The position and stability of the fixed points are determined

cated number state basis.

by the parametey: (@) y>1 and(b) y<1.
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1.0

FIG. 10. Damped nonlinear absorber showing a comparison between the time at which the positiation starts to deviate
significantly from the master equation solutigained dot$ and the earliest spike time out of a set of 10 000 spikessses A spike was
defined as the trajectory that reached Re€ — 2. For eachy the initial distribution was a delta distribution centered at-(j1)/2. The error
bars are due to the difficulty in estimating the time at which the two methods began to differ in the datgppoached 1.

gave correct results for stationary and time-dependent solwttractorb. The noise ab vanishes since it is located at the
tions for y=2. origin, so that once the distribution is in the neighborhood of
This behavior, of achieving the wrong steady state depenb the diffusion is suppressed. Increasing the value pluts
dent ony, can be understood by examining the deterministiahe repellor further and further away. Hence provided the
equation alone. The form of the deterministic equation is thenitial distribution is narrow enough that it does not encom-
same as Eq(3.10 treated in the previous section, S0 we pass the unbounded trajectory franthere will be very little
expect that the unbounded trajectory from the repellor willyrohapility of the distribution exploring that region in phase
play an important role. Though here we are simply droppingspace  Hence the positiverepresentation gives increasingly
the noise terms in order to g!lovx{ some analyt|cal_ 'ns.'ghtsbetter results for highey (corresponding to more linear ab-
Qr?t?rzrl]:It):egtglr)?eszztzlyii(gﬁgIflcatlon of E@.5, which is sorption. The boundary term is exponentially suppressed in
. s o . the largey limit, due to the existence of an increasingly large
Clearly, the position and stability of the two critical points potential barrier a. Since the noise term is pure imaginary

in phase space for the model depend on the value. dhe _ . .
position of the critical points in turn affects the likelihood of and can by itself only change the phaseNonot its magni-

the distribution reaching the unbounded trajectory from thé”?‘% then for ar?y;./_>1 there exists a regign including the
repellora. There are two principal situations to consides-  °Mgin such that initial ensembles chosen in that region can

fer also to Fig. 9. never leave it, and hence the results are exact. For example,
(1) >1. In the phase spaca, (the repelloy lies on the  the region|N|<1 is appropriate fory=3. .
negative real axis at (2 y)/2 andb (the attractoris at the (2) y<1. The repellora is now at the origin and the

origin. Again, there is a single deterministic trajectqngf  attractorb lies on the positive real axis at (1y)/2. The
measure zejathat can escape te « from a along the nega- noise atb no longer vanishes, so as the distribution con-
tive real axis. For a trajectory to have a reasonable probabidenses in the neighborhood bfit still experiences some

ity of escape to infinity, either the initial distribution has to diffusion. There is then a significant chance of escaping to
be broad enough to encompass the negative real axis beyonegative infinity by the process of activated escape over a
a, or the noise must broaden the distribution to that extent(low) barrier. Hence it is not surprising that the positire
The deterministic flow of the equations, on the other handsimulation gives an incorrect result, as the tail of the distri-
opposes this motion and condenses the distribution onto theution extending toN= —« is not suppressed in this case.
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d FIG. 12. Locations of trajectories for the damped nonlinear ab-
sorber binned according to their radii<|N|) at specific instances

in time. The data indicate a power-law tail developing after a cer-
tain time of the formr ~3. The time arrowed is when the positive
E and master equation solutions fidrstart to deviate significantly
from each othery=0.4 and 1x 1¢° trajectories were used from an
initial condition of 0.3.

FIG. 11. Standard error in the mean photon number plotte
against time for the damped nonlinear absorber. Parametefs
with an initial delta distribution alN=0.5. The arrowed time is
when the positivé® solution starts to deviate significantly from the
master equation solution. The variances in the real and in the imag
nary parts are shown.

We now analyze this problem according to the numerical

ianatur rlier. velopir)g at the timge. o .
signatures used earlie A distribution with a power-law tail will invalidate the

1. Presence of spikes neglect of the boundary terms, and hence the Fokker-Planck

) ) - ) ) ~__ equation cannot be guaranteed to give the same result as the
The time at which the positive solution deviates signifi-  aster equation.

cantly from the master equation solution is again strongly  Again, in conclusion, the positive representation yields
correlated with the observation of the onset of spiking. Incorect solutions provided that the dynamics do not explore
Fig. 10 we compare the positi solution with the master the region near the unstable deterministic trajectory. This
equation solution. The initial distribution was a delta distri- gjt,ation will occur for values of much greater than 1. We
bution centered on the attractbr For each value ofy we  note that in experimental two-photon absorbers, valueg of
collected 10000 spikeddefined as a trajectory with of order 16— 10° might be regarded as being typical in

Re(N)=<—2]. The first of these spikes to occur in time is ¢yrrent practice, although there appears to be no fundamental
plotted together with the estimated tihe. We estimaté,  reason for this.

graphically from a plot of the positive solutions superim-
posed on the master equation solution. As can be seen the

. . . . - B. Driven nonlinear absorber (y=0
earliest spike provides accurate warning of the existence of (v=0)

boundary terms, making the positifemethod invalid in this Another limit in which Eqs(4.4) have been presented as
case. a failure of the positive® representation is when the damp-
ing in entirely nonlinear and a coherent driving term is also

2. Increase in the statistical error included[46]; this can be seen in Fig. 13. That this model

d should fail is of no surprise since with no driving it is merely
Fig. 11. The timet, has been indicated on the plot. The the same model discussed in the previous section with the
11 R .

trajectories that took large excursions in the simulation™OSt extreme parameter choice=0. The effect of the

clearly left their mark in the statistical error of the ensemble.dr'vIng will th.e” enhance the tendency of trajectories to ex-
plore the region of phase space near the unbounded deter-

3. Development of a power-law tail ministic trajectory, leading to a worse situation.

] ) ] o Taking y=0 ande+#0 in Egs.(4.4) leads to(in the Stra-
Since the previous two signatures are present it is prudefgnovich form

to directly explore the nature of the tails of the distribution.
Simply by binning trajectories into concentric rings, we can da=(e+  a—a?a®)dr+iadW,, (4.79
explore for a power-law tail. From Reff43] we expect that

since in the inverse variables,=1/N, the distribution in
phase space at the origin is a smoothly varying function, then
space at the origin is a smoothly varying function, then, with
r=|N[,

Monitoring the statistical error in a simulation produce

da*=(e*+ tat—a"?a)dr+iatdW,. (4.7
dw; anddW, are independent Wiener processes.

1. Presence of spikes

1
— ~ 3
P(r)= FP(”)|dv/dN|_1/r . (4.6 Again, the conjecture that the earliest spike observed is a

good measure of when the positifPesolution begins to fail
Figure 12 indeed demonstrates such a power-law tail deis borne out by simulation—see Fig. 14.
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FIG. 13. Comparison between the master equation solution and
the positiveP representation solution for the driven nonlinear ab-  FIG. 15. A sudden increase in the standard error of the mean
sorber.(a) The positiveP simulation with 10 000 trajectories with Photon number occurs at the same time at which the posRive
the origin as initial condition an¢b) direct simulation of the master solution departs from the master equation solutiamowed. Pa-

equation in a truncated number state basis. Parameted:05. rameter:e=0.05. The variance in the real and in the imaginary
parts is shown.

2. Increase in the statistical error ) ] ] ] )
In this case, as in the previous section, the posifve

~In Fig. 15 the standard error in the mean values shows g esentation gives accurate results initially but breaks
significant jump following the time the positivé solution  qown after a well-defined time, which can be determined

begins to depart from the master equatiome t.). numerically. As previously, the boundary term problem ap-
pears restricted to cases of very small linear damping and
3. Development of a power-law tail low photon numbers.

Examining the shape of the tails of the distribution in the

variable R= \|a|?+|a"|? again reveals that a power law V. THE ANHARMONIC OSCILLATOR

develops at the time, ; see Fig. 16. The damped anharmonic oscillator has received some at-

tention in the past, either as a model of molecular vibrations,
or as a theory of a driven nonlinear Fabryr®enterferom-

By allowing some linear damping>0 we can regain a eter [53]. In this section, we only deal with the exactly
more physical model. Here we start to explore the full set ofsoluble case of a damped anharmonic oscillator without ex-
equationg4.4). It is easy to show that the difference betweenternal driving. Although this is a trivial example, it is the
the positiveP representation solution and the master equasimplest possible physical problem with nonlinearity and
tion solution rapidly vanishes ag increases as depicted in damping present. We find that the positiRerepresentation

4. Increasing the linear damping

Fig. 17. gives reliable results for this model. Numerically though,
8
e 7L 100
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ol b 192
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a4t
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€
FIG. 14. Comparison of the time at which the positResimu- FIG. 16. In the driven nonlinear absorber the radial position of a

lation (of the photon numbeérsignificantly departs from the master trajectory was accumulated at various times over 200 000 runs. The
equation solution with the time of the earliest detected spike in thdogarithm orR is plotted against the logarithm &%, the probability
driven nonlinear absorber. The joined dots are when the two methef arriving at a certain radius. A straight line indicates a power law.
ods deviate by more than 0.01 ugiit photon number the crosses  After the timet, the tails have a power-law structure, in the range
are the earliest times a trajectory reachesNje{—2 out of an R 5-R~®. Note that, sinceR=r?, this is similar to the earlier
ensemble of 10 000. cases. The initial condition was the origin aag 0.05.
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0.4 et wheredW, are real Gaussian stochastic processes satisfying
— [ . <dVV|dVVJ>=d’T§|’J
2 i . From Eqgs.(5.5) we can write a single stochastic differen-
& 03p . 5 tial equation in the variabl&l=a" «,
\I/ L]
§ ol . 1 dN=— yNdr+N(v/=idW, + \idW,). (5.6)
g [ . ] As all stochastic variables in an Ito stochastic differential

0.1+ . b equation are uncorrelated with the noise terms at the same

i . ] time, the stochastic mean value Mfmust follow the equa-
ool o e Y] tion
0.0 0.2 0.4 0.6 0.8 1.0
¥ d{N)=—y(N)dr. (5.7

FIG. 17. Maximum difference between positif simulation Hence, the exact master equation solution is clearly recov-

and the master equation solution of the photon nunfieethe near- ered for the photon number.

est 0.0] plotted against. This plot shows that as the linear damp- _An interesting Observati.on i,s th_at while E(5.6) has
ing is increased in the driven nonlinear absorber the poskive Noise terms and hence diffusion in the phase space, the

solution and master equation solution converge. forl.1 there ~ €quivalent equatior5.7) does not. This can lead to prob-
was no detectable difference. lems, since at some stage the diffusive spreading of the dis-
tribution may be great enough to cause the statistical errors
there are practical difficulties to be surmounted and caré0 become significant in a simulation. S
must be taken in interpreting the numerical signatures. In order to treat this, consider the new stochastic variable
In the interaction picture and under the Markov-Born ap-M =|N[%. This has no corresponding physical observalile
proximations we start from the following master equation foris not an analytic function dR), but (M) gives a measure
the reduced density operator: of the mean distribution radius iN space. Following the
usual Ito rules for products of stochastic variabkgd,) sat-

d isfies the equation

a—f =k,(2apa’—a'ap—pata)— IExz[a”az,p]. (5.2)
d{(M)=2(1—y)(M)dr. (5.9
Again, scale time byx, and so introducer= kt,
v=2k1/k, (k,#0) to get We see here an indication of difficulties that can occur in
stochastic simulations, even when there is a complete theo-
retical equivalence of the Fokker-Planck and master equa-
tions. If y<1, then the mean distribution radius grows in
time. This has no effect on ensemble averages for infinite
This equation is easily solved for photon number with theensembles, but clearly can give rise to increased sampling
result errors at long times, for the finite samples used in numerical
simulations. In fact, it is easy to show that all moments of the
d(a'a) + + distribution in N remain finite if initially finite. Thus, the
g, ~ Ha'api=-y@'a). (53 gistribution is at least exponentially bounded, and hence has
no boundary terms. This is compatible with the fact that the

The usual assumption of vanishing boundary terms in thétochastic equations give exactly identical results to the mas-
positive P representation time evolution yields the Fokker-ter equation, as expected.

ap vy i
EZE(ZapaT—aTap—paTa)—E[aTZaZ,p]. (5.2

Planck equation However, each radial moment has a critical damping, be-
low which it exhibits steady growth in time. This is an indi-

JP d Y ., d Y o qation of increased sampling error at low .damping and long

97 | gal T 297 la a”|— gat | 2% tlaa times, even though the mean values remain correct, as shown
in Fig. 18.

2 2
2 P42
T3|aa2 e Gprz(ia™) ]P' ®49 A. Numerical signatures

This Fokker-Planck equation is then equivalent to the Itot.orllzsvenethnoclfggetﬂirrg Zaearr]lgl bs:r;??% tr?rmizrl'rc]aflhs?siaetqfet
stochastic differential equations 1ons, we inciu ys| umert 'gnatu

that can indicate boundary terms, as a cautionary tale. As we
see, it is possible for the simplest numerical signatures to
dr+ \/—_iadwl, (5.59 apparently indicate boundary terms, even when they do not
exist. A careful quantitative treatment shows that, as ex-
pected, boundary terms are not present. Despite this, the
growth of sampling error with timéfor small or zero linear
damping can mimic the effect of boundary terms.

daZ( —%af—iazoz+

dr+\iatdW,, (5.5H

da+=(—%a++ia+2a
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FIG. 18. Anharmonic oscillator: the result of a simulation of
Egs. (5.6 with 50 000 trajectories with a coherent state having one,
photon initially in the cavity(solid line). The numerical parameters
are At=0.01 andy=0.4. Analytic solution given by Eq(5.7)
(dashed ling

FIG. 20. Examining the radial distribution of 1 800 000 trajec-
ories at various times for the anharmonic oscillator. This reveals a
dropoff with radiusr =|N| faster than a power laa power law
would be indicated by a straight lineThe times arga) t=0.8
through to(b) t=4. The numerical parameters atd¢=0.01 and
1. Presence of spikes y=04.

For this model a “spike” was arbitrarily defined as a recovered. However, it becomes increasingly difficult to nu-
trajectory that explored the phase space outside the radiygerically explore the nature of the tails at larger and larger
|N|>50 Trajectories of this sort were observed early in thq :|N|_because trajectories reaching |a|rgbecome rarer.
simulation—with no apparent lower bound on the firstNevertheless, there is reuddenappearance of a power-law
“spike” time, for large samples. We emphasize that these daajl. A careful examination reveals that the distribution al-

not originate from the presence of a deterministic unstablgays falls off faster than a power law at large radius, as in
trajectory. Instead, they are simply due to the dynamics ofg. 20.

the multiplicative stochastic process involved here. How-
ever, in this case the large radius trajectories belong to a 4. Increasing the linear damping

distribution that is sufficiently well bounded to give rise to . ) L
exact results, without boundary terms. Finally as the amount of linear damping is increased, the

numerically difficult quantum features in the simulation
2. Increase in the statistical error gradually disappear. That is, “spiking” is no longer ob-

o ~ ) served, the statistical error stays small, and the distribution
As can be seen in Fig. 19, the quantifil|*) increases in tails are reduced.

keeping with the predictions from the analytic equations. In conclusion, the positivé® representation is useful in

There is no threshold time for this to take place, since it iShis nonlinear example, although the efficierfay terms of
due to a diffusive process. computing time to obtain the required sampling errisr
greatest at levels of reasonable linear damping. This can be
checked by the absence of the numerical signatures dis-
Because of the diffusive spreading, fomy given distance cussed, even though there is no question of boundary terms
scale there is a characteristic time after which the tails of thén this case. It is useful to compare this situation with the
radial distribution can take on the character of a power lawmore traditional representations. None of these has stochastic
On larger distance scales, exponentially bounded tails arequations. Thé® and Q representations have non-positive-
definite Fokker-Planck equations, while the Wigner equation
50 is of third order, which automatically prevents any stochastic
interpretation of the propagator. By comparison, an exact
stochastic simulation is numerically possible, without
boundary-term corrections, using the positRerepresenta-
tion. While this example is a somewhat trivial one, the same
principles apply to problems that are less tractable—
including the original calculations of nonclassical features in
nonlinear interferometers and quantum solitons, in which the
same effects are present.

3. Development of a power-law tail

<INI2,

100}

50+

VI. THEORETICAL FRAMEWORK OF THE PROBLEM

The aim of the positiveP representation is to generate
FIG. 19. Mean value ofN|? (solid line) for 50 000 trajectories ~C-number stochastic equations whose variables correspond to
together with the solution to Eq5.8) (dashed ling The numerical quantum variables. In the derivation of the stochastic differ-
parameters ardt=0.01 andy=0.4. ential equations from the master equation there are at some
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point, assumptions made about the validity of particularwe need to establish conditions on a giveta,a™) that
mathematical steps. It is to these assumptions that we muehsure the existence gfb(N,A*).

turn in order to locate the source of the problems with the Questions of convergence are now reduced to the study of
representation. The numerical work of the previous sectionghe integral(6.4). Notice that the Glauber-SudarshBrrep-
indicated two features correlated with the failure of the positesentation would contain the exponential term
tive P representation that require explanation—the appearexpgAa* —\*a}, which has unit modulus, whereas in Eq.
ance of power-law tails and the correlation with the earliest6.4), the corresponding exponential can have an argument
spike time. In this section we will outline two distinct pro- with arbitrarily large positive part. The definition of the order
cedures for deriving the stochastic differential equations andf integration can therefore be significant, since the mere fact

outline the likely causes of the numerical signatures. that P(a,a™) can be normalized inot sufficient to guaran-
tee the existence ofp(N\,A*). In Ref.[50] a condition for
A. Power-law tails the existence ofp(\,\*) for a given positive normalizable

IR .
The appearance of a power-law tail in the averaged radiaﬁ)(a’a ) is given. Namely, one writes

distribution of theP function almost certainly means that the
boundary terms are significant and cannot be simply ne-
glected. To see this we need to examine the convergence . . . i |
properties of the integral defining the positiPerepresenta- an_d carries OUE the,9" integrations first as these clearly
tion. The original definitior] 7] was purely formal in nature; exist f_o_r anyr.r z_;md)\. . :

namely, one defines nondiagonal projectors Writing a Fourler series expansion

_|a’><a *| ©.) P(r,r',6,0")= z 2 Cnm(r'r/)eineeimt‘)'. (6.7)

- <a+*|a> n=—ow m=—x

a=re'?, at=r'e?, \=pe? (6.6)

A(a,a’)

and then a positivé® function corresponding to a density |t can be shown that a sufficient condition for the existence

operatorp is one that satisfies of xp(\,\*) is that
pZJ' d?a d?a"A(a,a”)P(a,a’). (6.2 |C*nv*m(r'r’)|rn+2+é(r’)m+2+e 6.9
) ) ~ should be bounded for some nonzetcand allr,r’.
How the convergence of the integid.2) is to be speci- This condition, Eq(6.8), which is rather strong, is already

fied was not made clear in Rdi7]. Since such issues are \yeaker than the condition for all moments Bfa,at) to
important, a more precise and rigorous definition is requiredeyist which would require alt, ,, to vanish faster than any
this was given by Gardinef50] in terms of the quantum power ofr andr'. ’
characteristic function, which is defined as A P(a,a™) that falls off as a Gaussian will not cause any
bk problems and hence the simulations will be reliable. On the
X(NN*)= Tr{pe* e "2} (6.3 other hand, aP(e,a*) that falls off a power law comes
L i i _dangerously close to conditiof6.8). The degree of the
The quantum characteristic function characterizes the density, o, necessary so theb(\,\*) fails to exist is a problem
operator completelyS0]. It 1S clear that using Eq6.2) we  yhat depends heavily on the particular situation under study.
can formally computey(A,\*) and c+>bta|n a corresponding  certainly the simulations we have conducted suggest that for
xp(A,\*) defined in terms oP(a,a”): the averaged radial distribution in the variable
R=r?+r'?, a small power will inevitably lead to prob-

XP()\,)\*):f d2a d?ate®® N OP(a,a*). (6.4 lems.

This is the most convenient way of rigorouslgfiningthe B. The earliest “spike” time

positive P representation. Thus, we define a positf/éunc- An alternative way of proceeding to derive the stochastic
tion P(a,a™) by saying that ifyp(\,\*) as defined by Eq. differential equations can be given in which no integration
(6.4) is such thatyp(\,\*)=x(\,\*), thenP(a,a™) isa by parts is necessary, as follows. From the definit@8) an
positive P function corresponding to the density opera-equation of motion for the quantum characteristic function

tor p. x(\,\*,t) can be directly written using the correspondences
Using the quantum characteristic function it was proved
right at the beginnind7] that a positiveP representation at g 6.93
exists for any density operator, with PN ’
N 1 —la—a*|?\ | atat| |at+at P

However, since th® representation is not unique, this is not

! . . . a
necessarily the onl¥ function for a given density operator. pa—

g
7\—(?)\—* , (6.99
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d
_)\*_|__

.
apr— N

(6.990  ber. However, in both cases there will be some conditions
under which the correspondendés9) and(6.10 are valid.
and no integration by parts is necessary, though it is neces—+What can now be done is to take the solutian§),
sary to take derivatives with respectoand\* inside the «a (1), of the stochastic differential equation and define
trace operation, which does require justification. B + .
Similarly, we can write equivalences xp=(exgra’ () =\ a(t)]). (6.12

From this stochastic differential equation we find that
(6.108  xp(\,\*,t) obeys the same equation of motion as found for

) no longer purely imaginary, but may be any complex num-

aP(a,at)——

2% x(\,\*,t) from the master equation.
The actual conditions for the validity of the correspon-
a"P(a,at)— i’ (6.10p  dences(6.9) are dependent on the particular master equation
2 being considered. Let us therefore illustrate with an example

d similarly the derivati f th ires that derivat (consider the nonlinear absorber master equation treated in
and similarly the derivation of these requires that derivativesg . IV with y=0 ande=0).

with respect tox and\* be taken inside the integral in the

definition (6.4). This also requires justification. ap
The nature of the justification needed in the two cases is it

very different. In the first case, the quantum characteristic

function can be written in the form Using Eq.(6.9) we find that the quantum characteristic func-
tion equation of motion is

1
;exp(|>\|2)f d?a expAa* —\* a)(a|p|a). (6.11) oy 1 , 2 , PR
== | | N =2\ — | =5+ | N 2N — | == |x-
. . . .ot 2 IN | IN ONT | N
The conditions under which the derivative may be taken in- (6.14
side the integral here are quite straightforward, since the in-
tegral is a two-dimensional Fourier transform of a positiveThe P-function characteristic function can be written directly
normalizable function. in terms of the solution&(t), @™ (t) as Eq.(6.12 and if we
In the second case the integrand in E6.4) is not a assume thata(t), o™ (t) obey Ito stochastic differential

Fourier transform, since the argument of the exponential igquations, we can expand to second order to get

1
= E(Zazpa”—aTZaZp—paTzaz). (6.13

%=<exma+(t)—>\*a(t)] N dat(t)+ ;)\zdcﬁ(t)z —\*da(t)+ %)\*Zda(t)z—)\*)\ da+(t)da(t)] >

(6.19

It is easy to see that the Ito stochastic differential equationg=2, this is a condition on the finiteness of the mean energy,

[Egs. (4.4) with y=€=0] and higher values off are related to limits on possible en-
ergy fluctuations. Thus, if the derivatives required for Eq.
da=—a’a*dt+ iadWi(t), (6.168  (6.14 fail to exist it is because something physically unusual
is actually happening.
de®=—a*?adt+ ia"dWs(t) (6.16b In contrast the derivation of Eq6.15 can fail for other

reasons. In order for the ensemble averages in(&45 to
will give exactly the same differential equation for pe valid requires thaall the solutions of the differential
xp(N, A1) as Eq.(6.14. equationgfor all possible realizations of the noigésm the

The manipulations involved in these two derivations arejnitial time up to and including the final time.

all formal, and take no account of the conditions required for
their validity. The derivation of Eq(6.14) is relatively easy 1. General conditions
to justify. A representation for the creation and destruction
operators must be chosen, and in fact the easiest is to define
all operators in terms of their action on the characteristic dX=f(t,X)dt+G(t,X)dW(t), (6.1
function itself, so that Eq(6.14) is true by definition pro-
vided y(\,\*,t) is itself always differentiable as many whereX, F(t,X), dW(t) are vectors an&(t,X) is a matrix,
times as are required in the differential equation. It is cleapossesses solutions for all times in some finite interval and
that the condition for the existence of derivatives of orderall initial conditions provided two conditions are satisfied.
q for all \ including A =0 is that|a|% a|p(t)|a) be a nor- (i) Generalized Lipshitz conditior~or everyN>0, and
malizable function. This is a condition with an easily under-all times in the desired interval, and ad,y such that
standable physical interpretation—for example, if we sefx|,|y|<N there is a constar such that

A set of stochastic differential equations
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[f(x,t)—f(y,t)|+|G(t,x) — G(t,y)|<Kpn|x—y|. (6.18 same initial condition and hence foxt, we can conclude
that yp=yx. This will mean that fort<t, a positive
(i) Restriction on growth There exists & such that for  P-function simulation would give correct results. We cannot
all t in the desired interval and afl conclude that fot=t, the results will be wrong, but we have
given ample evidence in the previous sections that this is
very often the case. At=t, the P function becomes unnor-
. L . . malizable, so that at that time the arguments that we can
ety e el I Sochastle el sdUala0L0 MEGat by st get -uncton Fokder.Plank equs
genere pshi . “tion, and again to get the stochastic differential equations,
the growth condition. The typical behavior of such stochastic ' :
. . X also become invalid.
differential equations appears to be exactly that normally ob-
served in positivd® simulations: For a given initial condition

the solution exists until aandomtime 7, at which stage it

[f(x,1)]2+|G(x,1)|2<K(1+]x|?). (6.19

3. Topological barriers

“explodes to infinity.” However, the random time need There is currently just one known way to remove prob-
have no lower bound. For example, the stochastic differentidf™$ due to an unstable deterministic trajectory. This is for
equation the distribution to always have a zero probability in the
neighborhood of the trajectory. However, even when this is
dy=y3dt—y?dW(t) (6.20  not exactly the case, the relevant probability may be an as-

ymptotically vanishing quantity—allowing the boundary
satisfies the generalized Lipshitz condition but not theterms to become negligible in some limit. As was demon-
growth condition, and has the explicit solutidfound by  strated in the preceding examples, the relevant asymptotic
substitutingy = 1/x) limit is typically that of small dimensionless nonlinearity.
This limit turns out to have a great deal of significance, cor-
T ) (6.20) responding to the most common cases of physical interest.
X(0) ™"+ W(t) —W(0) The limit of small nonlinearity is the relevant limit as we
have already seen in this paper, and we can express this in
terms of a dimensionless coupling constgntvhich is pro-
portional to the ratio of nonlinearity to linearitgthis the
inverse of the quantityy defined in Secs. I, IV, and M In
order for a true asymptotic limit to occur, it is essential that
the probability for the dynamical system be in a neighbor-
The largea, o™ behavior of the solutions of the stochas- hood of an unstable deterministic trajectory, and approach
tic differential equationg6.16 is dominated by the deter- zero faster than any power gf asg approaches zero. If this
ministic term, whose solutions are easy to find explicitly —is the case, then the size of the boundary term can scale in a
it is sufficient to note that a solution fer* «, when the noise  nonanalytic way ag— 0. An example of this would be if the

X(t)=

Since W(t) —W(0) is Gaussian with variancg for any
choice ofx(0) the denominator in Eq6.21) can vanish at
anyt>0.

2. The deterministic equation

terms are omitted is probability was proportional te~ /9!,
1 However, this is a common feature in equations of the
ata= ——, (6.22 Fokker-Planck type. In fact, it is the generic behavior for the
At2t diffusive penetration of a barrier, provided the diffusi@nr

. _ . noise term scales proportional tg. Thus, if the singular
where 1A is the initial value ofa”a. In the positiveP trajectories becomeptogologicallygisolated behind agbarrier,
repres_entaﬂon this may be_ an arb|tra_ry comp!ex number, anﬁi]e corresponding boundary corrections will be exponen-
in particular may be negative. But 4 is negative the solu- oy sunpressed in the limit of small coupling constant. We
tion will cease to exist whet= — A/2. This kind of behavior ¢\ nhagj76 here that the noise terms responsible for the com-
is in general still present in the full equations including the y oy yrajectories are indeed proportional to the dimensionless
noise termsTthat |s,.|f we s_tart with an initial er_lsemble Ofcoupling constang of the nonlinear physical process. This
points (a;, ;") contained within a bounded region of the 4yides an explanation for the numerically observed behav-
phase space, then this kind of equation does not satisfy thg, noted in the Introduction—in which largg values lead
conditions[51] necessary for the existence of a solution with, boundary terms, which are dramatically reduced at small
a given initial condition in every finite intervdl0,T] after  §imensionless couplings.

t=0. . Lo In summary, the main mechanism for the elimination of
Thus with any initial ensemble we may expect that thereynwanted power-law tails and resulting boundary terms is a

will be realizations ofW, (t) andW,(t) that are such that the topological one. It is necessary for there to be a deterministic
solution of the stochastic differential equatid@s1e with a  parrier between the initial values of the trajectories and the
particular initial condition chosen from the ensemble reachegions of singular initial conditions. The barrier is a region
infinity in a finite time. Suppose that there is a lower boundthat divides the analytically continued complex phase space
te to all such times, and suppose the initial ensemble is suclto (at least two parts, with deterministic trajectories only
that fd2ad?a*|a|9a*|9P(a,a",0) exists for allgq,q’.  traveling away from the unstable region. In these cases, no
Then we conjecture that for<t., (1) the characteristic trajectory can cross from the initial region to the unstable
function yp exists,(2) all A ,\* differentiations can be car- region, without a stochastic driving force. Of course, transi-
ried out under the integral signs, a8 hencey and yp  tions in the reverse direction must be deterministically al-
obey the same partial differential equatioh14) with the lowed. If the noise vanishes on the barrier, the phase space is
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dynamically separable, with the result that boundary terms

e SRR . 0.15 :
can be exactly eliminated. If the noise is finite on the barrier, '
the boundary terms can still vanish asymptotically, as the §
dimensionless coupling parameter approaches zero. This lat- S 010
ter case leads to a nonanalytic boundary term correction, & = [ ]
which vanishes at small couplings. -
3
VIIl. CONCLUSIONS = 005 ]
The conclusion that we reach is that for sufficiently non-
linear problems that involve small photon numbers the posi- 0.00L = . r
tive P simulation is only valid up to the earliest time at 0 i * 2 . 3

which a solution of the stochastic differential equations with
initial values chosen from the given initial ensemble can g5 22 plot of the standard deviation of the mean, real, and

reach infinity. At that time theP function becomes unnor- imaginary parts, for an ensemble of 30 000 trajectories. All trajec-

malizable, and all arguments based on integration by partgyries began aN=—0.5 andx=—0.5. The result demonstrates a
and discarding surface terms at infinity also become quesgramatic increase at the tintg.

tionable. However, the range of dynamical systems where

the positiveP representation has been demonstrated to fail imegligible boundary conditions.(1) The presence of
quite limited, and in any case these problems are better dealtpikes,” typically large excursions into regions of phase
with by other methods. We have found that directly simulat-space with Re{)<0, that are associated with singular de-
ing the master equation yields results far more easily than theerministic trajectories. If spikes are seen, the solutions may
positive P representation in these extreme parameter renot be reliable for all times after the earliest appearance of
gimes. Furthermore, and more importantly, when the posisuch spikes. It is not correct to simply discard such trajecto-
tive P simulations break down they do so in a predictable ries.(2) An increase in the statistical error of the distribution.
and in an easily verifiable way. This in essence corroborates the first signat{8eThe prob-

We have shown, in summary, that this technique is fre-ability distribution develops power-law tails. This is the most
quently only asymptotically rather than exactly valid. Of quantitative indicator, but requires more numerical work to
course, the use of mathematical techniques that haveest.(4) The inclusion of more linear damping leads to the
asymptotic validity at small couplings is rather common inabsence of the above indicators.
physics. For example, this is precisely the behavior of the Provided sufficient care is taken to search for the numeri-
Feynman diagram method in quantum field theory. Indeedcal indicators above the positiie representation can be a
the Feynman diagram method and positRecalculations useful and reliable tool.
can be competing methods—for instance, the optical para-

metric oscillator near threshold has seen calculations both ACKNOWLEDGMENTS
involving the Feynman diagram methfgh,55 and positive . .
P calculationg9,56—5§. This project was supported by the New Zealand Founda-

We can give the following suggestions for the correct usdion for Research, Science and Technology, under Contract
of the positiveP representation, noting that all problems No. UOW-306.
(apart from computational probleparise from the fact that
the neglected boundary terms at infinity may not be negli- APPENDIX A: ANALYTIC EXAMPLE
g:)(iih-ghiﬂz,cgﬂzpe t?ﬁ e)??fgtglf i nrzp;?zgirltg[ E)(TQ ng;agggiiﬁ_ This section will aim to illustrate that the behavior of the

cally, the presence of the following signatures indicate nor]_stochastlc differential equations can flag a significant prob-
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FIG. 23. Following the standard procedure presented elsewhere
in the paper, 300 000 trajectories were binned according to their

FIG. 21. Earliest occurring spike[trajectory reaching radii in phase space. Results show a power-law tail at the time
Re(N)=<—40] out of 1000 spikes; the dots, plotted against thet., using the parametek=—0.5 and the trajectories began at
theoretical timet, (dashed ling are from Eq.(A4). N=-0.5.
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ability current at infinity that is, boundary term problems. Itis easy to see tha(r,t|»°,0) is strictly bounded within
The equations given do not correspond to a master equatiog, radiusr <|»,(t)| ~! and that this will become infinite at a
rather it is a modification of the noise term in E4.5 for  timet, given by Eq.(A4).

the damped nonlinear absorber that allows an analytic solu- If this were an example derived from an actual master

tion to the resulting stochastic differential equations. equation there would be no doubt as to the validity of ne-
We modify Eq.(4.5 to glecting the boundary terms before the time After the

. time t, we cannot have such confidence, since there is obvi-

dN= — N(N+ x)dt+iN2dW, (A1) el w ve su ! ! 15 ObYI

ously a nonzero current at infinity.

where the factor in front of the stochastic noise was again
multiplied by N. 2. Numerical signatures

Given this example is analytically tractable, it serves to
1. Analytical solution test the numerical signatures. That is, we should be able to
predict the time, based on purely numerical work. With this
one, we can have confidence in predicting a similar time at
which the positiveP representation is expected to fail for
dv, = (ky,+1)dt, (A2a) examples that are not so easily analyzed.

Equation(Al) can be converted to the inverse variables
v=1/N; then splitting into real and imaginary parts we get

dv;=kv;dt—dW. (A2b) a. Presence of spikes

The easiest indicator to monitor is the presence of spikes
in the simulation. Often these will show their presence in the
1 1 averages obtained, though we recommend actively searching
O+ F) ext— K (A3)  for them by identifying trajectories that make an excursion

beyond some suitable boundary.
so thatw, (t)=0 when As depicted in Fig. 21, we collected 1000 spikdsfined
as trajectories reaching Ré(< —40]. The earliest of these

The real part has the solution

v(t)=

1 0 spikes to occur forms a good indicator of the titecalcu-
te=— (kv +1). (A4)  Jlated in Eq.(A4).
The imaginary part of Eqs(A2) is equivalent to the b. Increase in the statistical error
Fokker-Planck equation As is clearly demonstrated in Fig. 22 the onset of spiking
P 1 2 is accompanied by a large increase in the statistical error of
IP(wi) == i(KV_)JF - a_z P(v) (A5) the distribution. The initial condition is unphysical, but this
ot v, Y2 gy v is a test case with no physical significance; the initial condi-

o ) tion was chosen to give a reasonable valug.0fThe pur-
which is an Ornstein-Uhlenbeck process and has the foIIowpose is to predict the time at which the boundary terms will

ing solution[59], providedt>0 andP(»;,t|0,0)= &(;): become a problem.
P(v)=[mh(t)] %" b, (A6a) c. Development of a power-law tail
b(t)=(e2'—1)/x. (A6b) Finally, as seen in Fig. 23, the tail of the distribution

begins to fall off as a power law at the tinhg, giving clear
Now, combining the real and imaginary parts we have evidence of boundary term problems. It is clear then that the
numerical signatures can reliably predict the time at which
P(v, v, ,t|v?,0,0)=[1-rb(t)]*1’26(vr—vr(t))e*”iz’b“), boundary terms will cause problentthat is, the timet,). .
(A73) The presence of these signatures casts doubt on the validity
of the solution from the time of their occurrence onward.
v(t) =W+ k Het— kL (A7Db)
APPENDIX B: THE LASER EQUATIONS
Then, transfornP back to the original variables but in polar NEAR THRESHOLD

coordinatedN=re'’: .
Equations(3.6) for the laser can be further scaled by set-

o S(COB— v, (D) o2 tingdr=d7'/e anda= Jea' giving the Ito stochastic equa-
P(r,0,t|v;,0,0 = N e ., (A8) tions
w

d""’r: ~r_=r+7r2 dr’ + / / ZdW,, B1
and finally, integrate out thé variable: a'=(a’—a’"a")dr Qe (B13

2A[1-12(1)r?] , da't=(a't—a'*?a’)dr' + VQ/e?dW' "  (Blb)
= 7 e [A-v(r)rob(t)]
© (A9) and an initial variance ofg\V) “2=C/ny(C— 1), which near

r3Jmb(t) ’ _
threshold becomes very large. However, the noise parameter
whereA=1 if a=0, and 0 ifa<O0. is now

P(r,t[»°,00=
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[kn+G 2(1+d)/2y]C)| Y2

Kno(C_l)z '

=\ 1/2
g
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which also becomes very large near threshold, and this effect

was not taken into account by Schack and Schenzle.
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