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GaugeP representations for quantum-dynamical problems: Removal of boundary terms
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P-representation techniques, which have been very successful in quantum optics and in other fields, are also
useful for general bosonic quantum-dynamical many-body calculations such as Bose-Einstein condensation.
We introduce a representation called the gaugeP representation, which greatly widens the range of tractable
problems. Our treatment results in an infinite set of possible time evolution equations, depending on arbitrary
gauge functions that can be optimized for a given quantum system. In some cases, previous methods can give
erroneous results, due to the usual assumption of vanishing boundary conditions being invalid for those
particular systems. Solutions are given to this boundary-term problem for all the cases where it is known to
occur: two-photon absorption and the single-mode laser. We also provide some brief guidelines on how to
apply the stochastic gauge method to other systems in general, quantify the freedom of choice in the resulting
equations, and make a comparison to related recent developments.
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I. INTRODUCTION

One of the most difficult problems in theoretical physi
is also conceptually the simplest. How does one calculate
dynamical time evolution or even the ground state of
interacting many-body quantum system? In essence, this
natural part of practically any comparison of quantum the
with experiment. The difficulty is that the Hilbert space of a
but the most trivial cases can be enormous. This implies
a finite computer is needed to to solve problems that
easily become nearly infinite in dimensionality, if treated u
ing an orthogonal basis expansion.

In this paper, we formally introduce and give examples
techniques for treating general bosonic many-body quan
systems, which we call gaugeP representations. These are
extension of the phase-space method called the positivP
representation@1#, and have been recently used in the cont
of interacting Bose gases@2,3#. The advantages of the ne
technique are the following.

~1! The elimination of certain types of mathematical term
known as boundary-term corrections, which have cau
problems in the positive-P representation for over a decad
@4–6#. This is the main focus of the present paper.

~2! Greatly reduced sampling error in computation
GaugeP representations have been used recently to red
the sampling error in Kerr oscillator simulations@2#.

~3! The extension of allowable problems to ‘‘imaginar
time’’ canonical ensemble calculations. These problems
be treated elsewhere.

Related extensions to the positive-P representation—
although restricted to the scalar interacting Bose
problem—have also been introduced recently. Different p
cedures have been introduced by Carusotto, Castin, and
bard @7,8#, and by Plimak, Olsen, and Collett@9#. These
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methods implicitly assume the absence of boundary-te
corrections. This paper unifies and substantially general
all these recent advances. It also shows how the ga
method can be used to solve the long-standing problem
boundary-term corrections in the positiveP representation.
Comparisons to the other methods are given in an Appen

Owing to the work of Wilson@10#, and many others@11#,
we know that large Hilbert-space problems can often
treated using stochastic or Monte Carlo techniques for
ground-state, particle masses, and finite-temperature cor
tions. This is the basis for much work in computational qua
tum statistical mechanics, and in QCD as well. Howev
Wilson’s and other related methods are restricted to st
or ‘‘imaginary-time’’ calculations, rather than quantum
dynamical problems.

Methods like these that use orthogonal basis sets have
proven useful for quantum dynamics; owing to the notorio
phase problem that occurs when trying to sum over fami
of paths in real-time Feynman path integrals. For this reas
the many-body quantum time-evolution problem is often
garded as inherently insoluble due to its exponential co
plexity. In fact, it was this very problem that motivated th
original proposal of Feynman@12# to develop quantum com
puters. In these~usually conceptual! devices, the mathemati
cal problem is solved by a physical system consisting
evolving ‘‘qubits’’ or two-state physical devices. Fortunate
this method of doing calculations is not the only one, sin
no large enough quantum computer exists at present@13#.

Historically, an alternative route is the use of quasipro
ability representations of the quantum state, which either
plicitly or explicitly make use of a nonorthogonal basis. T
term quasiprobability is used because there can be noexact
mapping of all quantum states to a classical phase space
a positive distribution@14# that also preserves all the ma
ginal probabilities. These methods include the Wigner@15#
(W), Glauber-Sudarshan~P! @16,17#, and Husimi ~Q!
@18,19# representations. The classical phase-space repre
tations can be classified according to the operator orde
that stochastic moments correspond to: theW is symmetri-
cally ordered, theQ is antinormally ordered, while theP
©2002 The American Physical Society12-1
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representation is normally ordered. Apart from numerous
ser physics and quantum optics calculations, these met
have also been used to some extent in quantum statis
mechanics: for example, the theory of Bose-Einstein cond
sation~BEC! phase fluctuations@20#.

None of these methods result in a stochastic time ev
tion with a positive propagator when there are nonlinearit
To achieve this, a better approach is to use a nonclas
phase space of higher dimension. A complex high
dimensional ‘‘R representation’’ was proposed in Glaube
seminal paper on coherent state expansions@16#. The first
probabilistic method of this type was the positive-P repre-
sentation@1# (1P), which has proved capable of performin
stochastic time-domain quantum calculations in some ma
body quantum systems@21#. This uses a basis of cohere
states that are not orthogonal, thus allowing freedom
choice in the construction of the representation. The posit
P representation of a quantum state is therefore the m
versatile out of a large group of quasiprobability distributio
developed to aid quantum-mechanical calculations. It
been successfully applied to mesoscopic systems suc
quantum solitons@21–23# and the theory of evaporativ
cooling @24#, which correctly reproduces the formation of
BEC—as observed in experiments@25–27#.

Quasiprobability distributions of this type are compu
tionally superior to direct density matrix methods, which a
susceptible to computational complexity blow-up for lar
Hilbert spaces. Provided certain boundary terms vanish,
usual procedure is to generate a Fokker-Planck equa
~which will vary depending on the distribution chosen! from
the master equation, and then to convert this to a se
stochastic Langevin equations. For some simple case
may even be possible to arrive at appealing results dire
from the Fokker-Planck equation~FPE!. The resulting sto-
chastic equations can be thought of just as quantum mec
ics written in different variables. They have two main adva
tages over orthogonal basis-state methods, as follows.

First, the whole quantum dynamics can be written exac
in terms of a small number of stochastic equations. In
one-mode case, there is just one complex variable forP, Q,
andW, and two complex variables for1P. Although a simu-
lation requires us to average over many realizations of
stochastic process, this is often more practical than solv
the infinite set of deterministic equations required to so
directly for all the elements of a density matrix. Such
infinite set may be truncated, but this is only a good appro
mation for a system with few particles, and no more tha
few modes.

Second, for a many-mode problem the Hilbert-space
mension isN5nM for the case ofn particles distributed ove
M modes. This gives exponential growth as a function of
number of modes. However, the number of quasiprobab
dynamical equations grows onlylinearly with the number of
modes, rather thanexponentiallyin the case of direct meth
ods. Other stochastic methods, known as quantum-trajec
methods, can be used to reduce theN2 dimensionality of an
N3N density-matrix problem to that of theN-dimensional
underlying Hilbert space—but this is clearly insufficient
03381
-
ds
al

n-

-
s.
al

r-

y-

f
e-
st

s
as

-

e
on

of
it

ly

n-
-

y
a

e
g

e

i-
a

i-

e
y

ry

solve the complexity problem inherent in the exponen
growth of the Hilbert-space dimension.

There are, however, some caveats when using these
tributions. In particular, the vanishing of boundary terms
an important fundamental issue with quasiprobability dis
butions, and it is this issue that we focus on mostly in t
paper. To get an overall picture, consider that once we ha
time-evolution problem there are five typical requireme
that are encountered in deriving stochastic equations for q
siprobability representations of many-body systems. Th
requirements occur in closed~unitary evolution! systems, in
open systems~in general, described by a master equation!, or
even using a distribution to solve for the canonical ensem
in imaginary time. As such, these requirements are gener
the use of stochastic equations with operator representat

~1! Positive distribution. A well-behaved positive distribu-
tions for all quantum states, including especially the cho
initial condition, is essential for a general algorithm. For e
ample, a number state has a highly singularP distribution,
and aW distribution that is negative in some regions of pha
space@28#, making either distribution impossible to interpr
probabilistically for these states. TheR distribution is inher-
ently complex. Such problems do not occur for theQ or 1P
representation—these are positive, and well-behaved fo
quantum states@1#.

~2! Ultraviolet convergence. While normally ordered rep-
resentations are well behaved at large momentum, n
normally ordered representations of quantum fields—like
Q or W representations—typically face the problem of ultr
violet divergence in the limit of large momentum cutoff@24#.
This means that almost any observable quantity will invo
the simulation of a~nearly! infinitely noisy classical field,
leading to diverging standard deviations in two or mo
space dimensions, even for linear systems. This rules ou
Q and W distributions for quantum field simulations i
higher than one-dimensional environments.

~3! Second-order derivatives. Only FPEs with second o
infinite-order derivatives can be translated into stocha
equations@29#. Normally ordered methods such as theP and
1P representations can handle most commonly occurr
nonlinearities and two-body interactions, with only secon
order derivatives. Non-normally ordered representations
quantum fields often lead to third- or higher-order part
derivatives in the Fokker-Planck equation with no stocha
equivalent. For example, the Wigner representation gi
such problems for almost any nonlinear term in the mas
equation.

~4! Positive-definite diffusion. A Fokker-Planck equation
must have positive-definite diffusion, to allow simulatio
with stochastic processes@29#. When the master equation ha
nonlinear terms, this does not occur with any of the class
representations. However, the1P representation is guaran
teed to always produce positive-definite diffusion@1#, pro-
vided no higher derivative terms occur.

~5! Vanishing boundary terms. In the derivation of the
Fokker-Planck equations, it is assumed that certain bound
terms arising in partial integration can be neglected. This
not always the case. Boundary terms due to power-law t
2-2



ne- and

ed
tly

s

GAUGE P REPRESENTATIONS FOR QUANTUM- . . . PHYSICAL REVIEW A 66, 033812 ~2002!
TABLE I. Comparison of phase-space representations as applied to stochastic treatments of a o
two-boson nonlinear absorber.

Form of UV Order of Non-negative Stochastic Boundary term Simulat
Method distribution converges derivatives diffusion simulations removal correc

W Real No 4 Sometimes No
Q Positive No 4 Yes No
R Complex Yes 2 No
P Singular Yes 2 No No
1P Positive Yes 2 Yes Yes No Sometime
G Positive Yes 2 Yes Yes Yes Yes
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can occur when there are moving singularities that can
cape to infinity in finite time. In the1P method, such tra-
jectories may cause systematic errors in stochastic aver
@6#, especially for nonintegrable dynamical systems. Th
problems are exponentially suppressed when linear dam
rates are increased, but can be large at low damping.

The 1P method is often the representation of choice, b
cause it satisfies conditions~1!–~4!. Gauge representation
~G! combined with stochastic methods to be treated in
paper, share these advantages with the1P representation.
However, they can also satisfy the fifth requirement—for
appropriate gauge choice—hence allowing all of the ma
ematical problems in simulating time evolution to be treat
For this reason, the present paper will focus on solv
boundary-term issues encountered with the1P representa-
tion for certain nonlinear master equations. The overall p
ture is summarized in Table I, as applied to the two-bos
anonlinear absorber cases treated here in Sec. IV:

We emphasize that the particular examples treated
have a small particle number and extremely low~or zero!
linear damping. As such, they are soluble using other te
niques, which allows us to test the accuracy of gauge te
niques. Our purpose is to demonstrate the success o
stochastic gauge method in simple cases where boun
terms arise within the1P representation. In this way, w
can understand more complex situations where no exac
sult is known.

We will first derive and describe the stochastic gau
method in Secs. II and III, and subsequently work throu
two examples: First, solving the boundary-value problem
the driven one- and two-photon absorber in Sec. IV. Seco
in Sec. V we will consider the one-mode laser at extrem
low power, which exhibits boundary term errors when ve
nonoptimal starting conditions are used. This example w
show that gauge methods can also be used to remove e
from this system, but some judgment must be employed
avoid choosing a pathological initial distribution. In the A
pendix, we compare the methods derived here with rec
related extensions of the positive-P representation by Caru
sotto and co-workers@7,8#, Plimaket al. @9#, and Deuar and
Drummond@2#.

Finally, we point out a sixth requirement of containing t
growth of sampling error: the averages calculated from th
stochastic Langevin equations correspond to quant
mechanical expectation values only in the limit of infinite
03381
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many trajectories. Provided boundary terms do not occur,
averages will approach the correct values—within an acc
able sampling error—for sufficiently many trajectories.
this number should increase rapidly with time, the simulat
will only be of use for a limited period@2#.

The problem of growing sampling error can occur ev
when there are no boundary terms, and may be regarde
the ultimate frontier in representation theory, just as sim
issues dominate the theory of classical chaos. This is les
a fundamental issue, since the sampling error can alway
estimated and controlled by increasing the number of tra
tories. This is simply a matter of moving to a clustered, p
allel computational model, or repeating the calculation ma
times. Nevertheless, it is of great practical significance. T
sampling error problem requires careful gauge optimizati
and remains an open area for investigation. An intellig
choice of gauge can often vastly outweigh a brute force co
putational approach, in terms of sampling error.

II. GAUGE OPERATOR REPRESENTATIONS

In gauge representations, the density matrix to be co
puted is expanded in terms of a coherent state basis.
definiteness, we shall focus on the coherent states of
harmonic oscillator, which are useful in expanding Bo
fields; but other choices are clearly possible. The expans
kernel is more general than that used in the positive-P rep-
resentation. In order to define the notation, we start by in
ducing a set of boson annihilation and creation opera
âi , âi

† . The operatorn̂i5âi
†âi is therefore the boson num

ber operator for thei th mode or site. Boson commutatio
relations of@ âi ,â j

†#5d i j hold for the annihilation and cre
ation operators.

A. Coherent states

If a5(a1 , . . . ,aM) is a complexM-dimensional vector
with a i5xi1 iy i , andâ5(â1 , . . . ,âM) is anM-dimensional
vector of annihilation operators, then the Bargmann cohe
stateia& is defined by

ia&5exp@a•â†#u0&5exp@ uau2/2#ua&, ~1!

whereua& is the usual normalized coherent state which i
simultaneous eigenstate of all the annihilation operators.
inner product of two Bargmann coherent states is
2-3
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P. DEUAR AND P. D. DRUMMOND PHYSICAL REVIEW A66, 033812 ~2002!
^b* ia&5exp@a•b#. ~2!

It is important to notice here thatia& is an analytic func-
tion of the complex vectora. The following identities there-
fore follow immediately:

âi ia&5a i ia&

âi
†ia&5

]

]a i
ia&. ~3!

Since ia& is an analytic function, the notation]/]a i is
interpreted here as an analytic derivative, which can
evaluated in either the real or imaginary directions,

]

]a i
ia&5

]

]xi
ia&52 i

]

]yi
ia&. ~4!

Since the coherent states are an overcomplete basis
any operator can be expanded in more than one way u
coherent states. For example, the simplest resolution of
identity operator is

Î 5
1

pME ua&^aud2Ma. ~5!

Thus, introducing a secondM-dimensional vectorb, we
can expand any operatorÔ directly as

Ô5
1

p2ME E ua&^auÔub* &^b* ud2Mad2Mb

5E E O~a,b!ua&^b* ud2Mad2Mb . ~6!

Here, we have introduced

O~a,b!5
1

p2M
^auÔub* &. ~7!

B. P representations

The possibility of expanding any operator in terms of c
herent states leads to the idea that such an expansion c
used to calculate observable properties of a quantum de
matrix r̂. Historically, this was first proposed by Glauber a
Sudarshan@16,17#, who suggested a diagonal expansion
the form

r̂5E P~a!ua&^aud2Ma . ~8!

Unlike the direct expansion given above, this has no o
diagonal elements. Surprisingly, expansions of this type
ways exist, as long as the functionP(a) is defined to allow
highly singular generalized functions and nonpositive dis
butions@28#.
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As these do not have a stochastic interpretation,
positive-P representation was introduced@1#, which is de-
fined as

r̂5E P(1)~a,b!
ua&^b* u

^b* ua&
d2Mad2Mb ~9!

for an M-mode system.
It is always possible to obtain an explicitly positive

definite distribution of this type@1#, with the definition

P(1)~a,b!5
1

~4p2!M
expF2Ua2b*

2 U2G K a1b*

2 Ur̂Ua1b*

2 L .

~10!

This form always exists, as do an infinite class of equival
positive distributions. Even simpler ways to construct t
positive P representation are available in some cases.
example, if the Glauber-Sudarshan representation exists
is positive, then one can simply construct

P(1)~a,b!5P~a!d2M~a2b* !. ~11!

The stochastic time evolution of the positiveP distribution
does not generally preserve the above compact forms,
may allow less compact positive solutions instead. Howev
to obtain a time evolution equation, it is necessary to u
partial integration, with the assumption that boundary ter
at infinity can be neglected. It is these less compact so
tions, occurring during time evolution with a nonlinea
Fokker-Planck equation, that lead to power-law tails in t
distribution—and hence boundary-term problems caused
the violation of the assumption that these terms vanish.

C. Gauge representations

A technique for constructing an even more general po
tive distribution is to introduce a quantum complex amp
tude V, which can be used to absorb the quantum ph
factor. This leads to the result that any Hermitian dens
matrix r̂ can be expanded in an overcomplete basisL̂(aW ),
whereaW 5(V,a,b), and

L̂~aW !5V
ia&^b* i

^b* ia&
5Via&^b* iexp@2a•b#. ~12!

We define the gauge representationG(aW ) as a real, positive
function that satisfies the following equation:

r̂5E G~aW !@L̂~aW !#d4M12aW

5
1

2E G~aW !@L̂~aW !1H.c.#d4M12aW . ~13!

The last line above follows from the fact thatr̂ is a Hermit-
ian density matrix andG(aW ) is real. Here, H.c. is used as a
abbreviation for Hermitian conjugate. The use of a comp
weight in the above gauge representation is similar to rela
2-4
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GAUGE P REPRESENTATIONS FOR QUANTUM- . . . PHYSICAL REVIEW A 66, 033812 ~2002!
methods introduced recently for interacting Bose gases@7,8#,
except that we multiply the weight by a normalize
~positive-P! projector, in order to simplify the resulting alge
bra.

As an existence theorem that shows that this represe
tion always exists, consider the complex solution

P0~a,b!5
1

p2M
^aur̂ub* &^b* ua& ~14!

obtained from Eq.~7!, with a phaseu5arg(P0), and simply
define

G~aW !5uP0~a,b!ud2
„V2exp@ iu~a,b!#…. ~15!

In this type of gauge representation,G(aW ) is a positive
distribution over a set of Hermitian density-matrix eleme

L̂1L̂†. It is simple to verify that, by construction

Tr~L̂ !5V. ~16!

For the case ofV51, this representation reduces to t
positive-P representation, and the kernelL̂(aW ) is a projec-
tion operator. Since the positive-P representation is a com
plete representation, it follows that another way to constr
the gaugeP representation is always available, if one simp
defines

G~aW !5P(1)~a,b!d2~V21!. ~17!

As a simple example, a thermal ensemble withn0 bosons
per mode gives a diagonalP distribution that is Gaussian, s
that

Gth~aW !}exp@2uau2/n0#d2M~a2b* !d2~V21!. ~18!

One advantage of the proposed representation is th
allows more general expansions than the positive-P distribu-
tion, and also includes the case of the complexP
representation—which has proved useful in solving for n
equilibrium steady-states in quantum systems.

D. Operator identities

The utility of these methods arises when they are use
calculate time~or imaginary time—for which the positive-P
distribution cannot be used! evolution of the density matrix
This occurs via a Liouville equation of generic form

]

]t
r̂5L̂~ r̂ !, ~19!

where the Liouville superoperator typically involves prem
tiplication and postmultiplication ofr̂ by annihilation and
creation operators. As an example, the equation for pu
unitary time evolution under a HamiltonianĤ is

i\
]

]t
r̂5@Ĥ,r̂ #. ~20!
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Effects of the annihilation and creation operators on
projectors are obtained using the results for the actions
operators on the Bargmann states,

âL̂~aW !5aL̂~aW !,

â†L̂~aW !5@a1b#L̂~aW !,

L̂~aW !5V]VL̂~aW !. ~21!

For brevity, we use]W5(]V ,a ,b) to symbolize either (] i
x

[]/]xi) or (2 i ] i
y[]/]yi) for each of thei 50, . . . ,2M

complex variablesaW . This is possible sinceL̂(aW ) is an ana-
lytic function of aW , and an explicit choice of the derivativ
will be made later.

Using the operator identities given above, the opera
equations can be transformed to an integro-differential eq
tion,

]r̂

]t
5E G~aW !@LAL̂~aW !#d4M12aW . ~22!

Here the antinormal ordered notationLA indicates an order-
ing of all the derivative operators to the right. As an examp
in the Hamiltonian case, if the original HamiltonianĤ(â,â†)
is normally ordered~annihilation operators to the right!, then

LA5
1

i\
@HA~a,a1b!2HA~b,b1a!#. ~23!

If no terms higher than second order occur, this proced
gives a differential operator with the following general e
pansion:

L A
(1)5V1Aj

(1)] j1
1
2 Di j ] i] j , ~24!

where, to simplify notation, the Latin indicesi , j ,k will from
now on be summed overi 51, . . . ,2M , since no derivatives
with respect toV are used as yet. V is a term not involvin
derivative operators with respect to any of the variables inaW .
The drift termAj

(1) that is normally found using the positiv
P representation is labeled with the superscript (1) to iden-
tify it.

At this stage, the usual procedure in representation the
is to integrate by parts, provided boundary terms vanish. T
gives a normally ordered differential operator acting on
distribution itself, of form

]

]t
G~aW !5FV2] jAj

(1)1
1

2
] i] jDi j GG~aW !. ~25!

This type of generalized Fokker-Planck equation can
treated formally using techniques developed by Graham,
volving time-symmetric curved-space path integrals@30#.
For computational purposes, we require special choices
the analytic derivatives to obtain a positive-definite diffusio
so that the path integrals have equivalent stochastic e
tions @29#. We emphasize here that the equations result
2-5
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P. DEUAR AND P. D. DRUMMOND PHYSICAL REVIEW A66, 033812 ~2002!
are quite different to those obtained from the direct insert
of a coherent state identity into a Feynman path integra
which results in severe convergence problems@31#. The
usual positive-P representation equations are obtained at
stage—provided there is no potential term—and can
transformed to stochastic equations using the techniques
scribed in the following section.

III. GAUGE FUNCTIONS

In gauge representations, the time evolution of the rep
sentation is modified from the usual positive-P representa-
tion equations, by the introduction of a number of arbitra
and freely defined functions on the phase space. This f
dom of choice is, of course, not present with an orthogo
basis, and is due to the nonorthogonal nature of a cohe
basis set. Although we do not investigate other cases,
worth noting that a similar gauge freedom is implicit
present whenever a nonorthogonal expansion is used—
if it involves different states from the choice of cohere
states made here~e.g., the Fock state wave functions
Refs.@7,8#!.

A. Diffusion gauges

We first introduce the diffusion gauges, which were im
plicitly present in the original positive-P representation, bu
were only recognized recently as allowing improvements
the sampling error. These gauges occur via the nonun
decomposition of the complex diffusion matrixD, which de-
termines the stochastic correlations in the final equatio
Arbitrary functional parameters can therefore be inserted
the final stochastic equations in the noise coefficients, wh
may lead to further optimization of the simulation. This
because the decomposition of the complex diffusion ma
D5BBT, which is needed to define a stochastic proce
does not specify the resulting noise matrixB completely.

It has been recently shown by Plimak, Olsen, and Col
@9# that for the Kerr oscillator using a decomposition diffe
ent from the obvious diagonal one leads to impressive
provements in the signal-to-noise ratio of the simulat
~briefly described in the Appendix!. This somewhat surpris
ing result leads us to try to quantify the amount of freed
of choice available from this source.

SinceD5DT, it can always be diagonalized by a com
plex orthogonal transformation

D5Ol2OT5B(1)B(1)T, ~26!

wherel is the diagonal matrix whose square gives the
genvalues ofD. ThusB(1)5Ol can be considered the ca
nonical, or ‘‘obvious’’ choice of decomposition, unique apa
from the 2M signs of the diagonal terms. However, for a
orthogonalU, if B(1) is a valid decomposition ofD, then so
is the matrixB5B(1)U. Hence, any matrix in the whole
orthogonal familyB5OlU is a valid decomposition. This
can be easily quantified using a basis

skl
( i j )5d ikd j l 2d i l d jk ,
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of theM (2M21) independent antisymmetric 2M32M ma-
tricess ( i j ). One simply introduces

U5expS (
i , j

gi j ~aW ,t !s ( i j )D . ~27!

As an example, for a one-mode case there is one com
gauge function introduced this way, which isgd5g12. The
resulting transformation is

U5exp~gds (12)!5cos~gd!1s (12)sin~gd!, ~28!

where the antisymmetric matrixs= (12) is proportional to a

Pauli matrix,

s (12)5F 0 1

21 0G . ~29!

Hence, if the noise was diagonal in the canonical form,
transformed~but equivalent! noise matrix becomes

B5F l11cos~gd! l11sin~gd!

2l22sin~gd! l22cos~gd!
G . ~30!

Now, the 2M -dimensional~complex! orthogonal matrix
family contains M (2M21) free complex parameters, s
there areM (2M21) diffusion gauge functionsgi j (aW ,t) that
one can choose arbitrarily. This represents a large clas
specific gauges that can be used directly in simulations
opposed to the conditions on noise correlations usually gi
elsewhere@9#.

As pointed out by Graham@30#, there is a close similarity
between the theory of curved-space metrics, and path i
grals with a space-varying diffusion matrix. In the prese
context, the space is complex, and we have a family
gauges that are generated on taking the matrix square ro
the diffusion matrix. We have not yet used this matrix squ
root, but this decomposition will be applied to obta
positive-definite equations via the choice of analytic deriv
tives made in the following sections.

The above holds for square noise matricesBs , but one is
also free to add more noise coefficients in the mannerBQ
5@Bs ,Q#. Then

BsBs
T5D̃5D2QQT, ~31!

and all the 2MW coefficients in the 2M3W matrix Q are
additional arbitrary complex functions. The freedom inBs is
the same as before@i.e., M (2M21) independent complex
gauge functions#, with the proviso thatBs is now given by
Ol̃U where the square ofl̃ gives the eigenvalues of th
modified matrixD̃. The matrixBs would be unchanged if
QQT were set to zero, although this choice ofQ does not
appear to be useful; it just adds extra noise. In general
not clear whether or not any advantage can be gained
introducing the additional off-square gauge functions co
tained inQ.

If B is given a functional form dependent on the pha
space variables, it may lead to additional terms in the S
2-6
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GAUGE P REPRESENTATIONS FOR QUANTUM- . . . PHYSICAL REVIEW A 66, 033812 ~2002!
tonovich form of the equations, which are considered late
this section. In this situation one must be careful not to
troduce additional boundary-term errors arising from an
cessively rapid growth of the noise gauges.

There is a subtlety here which one must take some c
with. The complex noise matrixB is not the matrix that
usually appears in the theory of stochastic equations. Inst
this matrix is subsequently transformed into an ‘‘equivale
stochastic form, by taking advantage of the analyticity of
Bargmann states. This means that the effect of the diffus
gauges on the final equations also makes use of the n
niqueness of the coherent basis set itself.

B. Drift gauges

While the diffusion gauges can control sampling error d
to the correlations of noise terms, they cannot elimin
boundary terms due to singular trajectories in the drift eq
tions. The extra variableV allows the]V identity to be used
to convert any potential termV to a derivative term, and als
to introduce a stochastic gauge to stabilize the resulting d
equations. This defines an infinite class of formally equi
lent Fokker-Planck equations, in a similar way to relat
procedures in QED and QCD. To demonstrate this,
introduce 2M arbitrary complex drift gauge functionsg
5@gi(aW ,t)#, to give a new differential operatorLGA whose
form differs from the originalL A

(1) by terms that vanish

identically when applied to the kernelL̂(aW ),

LGA5L A
(1)1FV1

1

2
g•gV]V1gkBjk] j G@V]V21#.

~32!

The total differential operatorLGA has an antinormal Fokker
Planck form. Extending the drift and diffusion matrices
include the extra variableV, we can write this—summing
repeateda,b,c indices overa50, . . . ,2M—as

LGA5@Aa]a1 1
2 Dab]a]b#. ~33!

The total complex drift vector isAW 5(A0 ,A1 , . . . ,A2M);
where

A05VV

Aj5Aj
(1)2gkBjk . ~34!

The new diffusion matrixD with elementsDab is not
diagonal, but it can be factorized. Explicitly, it is now
square (2M11)3(2M11) complex matrix, given by

D5FV2ggT VgBT

BgTV BBT G5F0 Vg

0 B GF 0 0

VgT BTG5BBT.

~35!

Thus, we now have a new stochastic noise matrix w
one added dimension,

B5F0 Vg

0 B G . ~36!
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The operator~32! was chosen to give this form forB, so
that the only change in noise is for theV variable.

C. Positive-definite diffusion

It is always possible to transform these second-deriva
terms into a positive semidefinite diffusion operator on a r
space, which is a necessary requirement for a stocha
equation. WhenD5BBT, divide B5Bx1 i By into its real
and imaginary parts. A similar procedure is followed forAW .

Recalling that the original kernel was analytic, thus allo
ing for more than one choice of derivatives, the choice for]a
can now be made definite by choosing it so that the resul
drift and diffusion terms are always real,

Aa]a→Aa
x]a

x1Aa
y]a

y , ~37!

Dab]a]b→Bac
x Bbc

x ]a
x]b

x1Bac
y Bbc

x ]a
y]b

x1~x↔y!.

Hence, the gauge differential operator can now be writ
explicitly as

LGA5@Ãm]m1 1
2 D̃mn]m]n#, ~38!

where the indicesm,n cover the (4M12)-dimensional
phase space of the real and imaginary parts ofaW , so thatã
5(xW ,yW ), and]m5]/]ãm . The diffusion matrixD̃5B̃B̃T is
now positive semidefinite, since, by construction

B̃5F0 Bx

0 ByG , ~39!

so that the diffusion matrix is the square of a real matrix
explicitly,

D̃5F0 Bx

0 ByGF 0 0

~Bx!T ~By!TG . ~40!

As LGA is now explicitly real as well as positive definite b
construction, it can be applied to the Hermitian conjug
kernel as well, resulting in the final time-evolution equatio

]r̂

]t
5E G~ ã !@LGAL̂~ ã !#d4M12ã. ~41!

On integrating by parts,provided boundary terms vanish,
at least one solution will satisfy the following~normally or-
dered! positive-definite Fokker-Planck equation—with th
differential operators on the left, each acting on all terms
the right,

]G

]t
5LGNG[F2]mÃm1

1

2
]m]nD̃mnGG. ~42!

This implies that we have an equivalent set of Ito stoch
tic differential equations available, with 2M real Gaussian
noisesdWi , which are
2-7
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P. DEUAR AND P. D. DRUMMOND PHYSICAL REVIEW A66, 033812 ~2002!
dV5V~Vdt1gkdWk!

da j5~Aj
(1)2gkBjk!dt1BjkdWk . ~43!

The noises obeŷdWidWj&5d i j dt, and are uncorrelated be
tween time steps.

Numerical simulations are usually done in the Straton
ich calculus, due to superior convergence properties@32#, so
the equivalentcomplexStratonovich equation allows us t
write efficient algorithms,

daa5dxa1 idya5@Aa2 1
2 ~Bbk]b!Bak#dt1BakdWk ,

~44!

where (Bbk]b)[(Bbk
x ]b

x1Bbk
y ]b

y). The derivative terms
above are the Stratonovich correction in the drift, cor
sponding to related terms obtained in curved-space path
tegrals.

These gauge terms are now utilized to stabilize coher
state paths entering into highly nonclassical regions of ph
space. This allows one to benefit from the overcompleten
of coherent states, in reducing the sampling error and el
nating boundary terms.

D. Moments

The procedure for calculating observable moments
slightly different for the gauge representation than for
positiveP. Any moment can be written in terms of the no
mally ordered operator productsâ†nâm, and their expecta-
tion values are given by

^â†nâm&quant5
^bnamV1~anbmV!* &stoch

^V1V* &stoch

, ~45!

which differs from the positive-P situation wheneverV dif-
fers from unity.

The average norm̂V& is always preserved if there is n
potential term (V50), since the resulting equation for th
weight variable is

dV5VgkdWk . ~46!

The decorrelation property of Ito equations@29# then implies
that

^dV&5^Vgk&^dWk&50. ~47!

E. Gauge properties

We turn briefly here to the question of gauge classificat
and properties. Just as in QED, the overcomplete natur
the coherent-state expansion means that many equiva
stable gauges exist. However, they may not be equivalen
terms of boundary terms. These are determined by the
of the distribution function, which depends intimately on t
gauge chosen for the time evolution. It is essential that
distribution tails are sufficiently bounded to eliminate boun
ary terms arising in partial integration. It is sufficient
bound tails better than any inverse power law, for which i
conjectured to require~as a necessary condition! that all de-
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terministic trajectories are bounded over any finite time
terval @6#. This issue is discussed in greater detail below, a
in Ref. @33#.

The main criteria for a useful gauge are the elimination
boundary terms and the reduction of sampling error. Ho
ever, there is an enlarged space of variables for the Fok
Planck equation here. For this reason, it is possible to st
lize trajectories in the usual positive-P phase space, while
introducing new gauge-induced boundary terms in theV
space. When it comes to the formation of boundary ter
the phase ofV is generally innocuous provided the gauge
periodic in this variable, but the gauge distribution must
strongly bounded asuVu→` to prevent new boundary term
from arising.

We can classify gauges according to their real or ima
nary nature, and their functional dependence; which can
on just the phase-space variables, just the quantum phas
on both. This gives rise to the nine gauge types, depend
on the following criteria.

a. Gauge complexity. Gauges are in general comple
functions, which leads to the following classification
gauge complexity:~1! Real gauge,~2! imaginary gauge, and
~3! complex gauge. In general, we find that trajectories c
be stabilized by real, imaginary or complex gauges, provid
they have some (a,b) phase-space dependence.

It is worthwhile to note that the imaginary and real pa
of the gauges affect the behavior of sampling error diff
ently. In the Ito calculus, the evolution of the weightV due
to the gauges is simplydV5VgkdWk . Typically, i.e., when
there are no significant correlations between the phasea
~or b) andV, the weight factor appearing in moment calc
lations is just approximately Re(V). As a general rule, sam
pling errors are partially due to stochastic fluctuations in
phase-space trajectories, and partially due to stochastic
tuations in the weight function. Thus there is a trade-off
gauge that is strongly stabilizing may reduce phase-sp
fluctuations at the expense of increased weight variance,
vice versa.

To understand the different types of gauges in somew
greater detail, we consider the evolution of the weight va
ance for real and imaginary gauges, in a simple case wh
gauge and weight are decorrelated, withV51 initially. Let
V5V81 iV9 andgk5gk81 igk9 , then

dV85~V8gk82V9gk9!dWk ,

dV95~V8gk91V9gk8!dWk . ~48!

If we consider the evolution of the squares of these terms,
Ito rules of stochastic calculus give

d^@V8#2&5^~V8gk82V9gk9!2&dt,

d^@V9#2&5^~V8gk91V9gk8!2&dt. ~49!

Suppose for simplicity that thegk andV are approximately
uncorrelated, then we have two cases to consider.
2-8
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GAUGE P REPRESENTATIONS FOR QUANTUM- . . . PHYSICAL REVIEW A 66, 033812 ~2002!
~1! Real gauge

d^@V8#2&5^@V8#2&dt, ~50!

wheredt5^gkgk&dt. This initially leads to linear growth in
the variance, and hence in the sampling error. The real
of the gauge will cause noise directly inV8, producing
asymmetric spreading inV8, which can lead to a few rare
very highly weighted trajectories for timest*1. The effect
of the real gauge may become misleading once the distr
tion becomes highly skewed, as the rare trajectories that
important for moment calculations may be missed if t
sample is too small. At long times, if^gkgk& is constant and
uncorrelated withV, then the growth becomes exponenti
with ^@V8#2&5et.

~2! Imaginary gauge

d^@V8#2&5^@V9#2&dt,

d^@V9#2&5^@V8#2&dt, ~51!

wheredt5^gk9gk9&dt. This leads initially to quadratic growth
in the variance ofV8, and hence a slower growth in th
sampling error. If^gkgk& is constant and remains uncorr
lated with V, then the growth is given bŷ @V8#2&
5cosh(t), ^@V9#2&5sinh(t). An imaginary gauge will cause
mutual canceling of trajectories that have weights of r
domly positive and negative sign oncet*p. This can also
have deleterious effects for small samples, if the aver
sample weight becomes negative—of course, this canno
true over the entire stochastic population.

The generic behavior is more complex than in the
amples given above, due to correlations between the ga
and the normalization.

Clearly any type of gauge tends to cause growth in
norm variance. However, there is an exception to this ru
the norm-preserving gauges. This class of gauges is of
cial interest as they generate trajectories having an invar
normalization, so that Re@dV#[0. From the equation for
the norm variance, Eq.~49!, it follows that a necessary an
sufficient condition for a norm-preserving gauge is th
V8gk85V9gk9 . If V851 initially, this implies that gk

5 iV* f k5 i (12 iV9) f k , wheref k is a real function. Unless
gk50, norm-preserving gauges are generally functions
both the phase-space variables and the weightV. A prelimi-
nary study of these gauges has shown that these gauge
greatly reduce sampling error, although gauge-indu
boundary terms are also possible@2#, depending on the
choice of f k .

b. Functional dependence. From the above analysis, w
see that gauges can functionally depend on any phase-s
variable, as well as the generalized quantum phase vari
or weight V. This leads to three functional types:~1! Au-
tonomous~depends onV only!, ~2! space dependent~de-
pends on phase space only!, and ~3! mixed ~depends on all
components ofaW including V). Autonomous gauges appe
to be the least useful since they do not affecta or b behav-
ior, but gauges of either purely space-dependent or mi
type can be used.
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A possible caveat with mixed gauges is that they may
much harder to analyze, as two-way couplings will occ
between the normal phase-space variablesa, b and the
weight.

IV. NONLINEAR ABSORBER CASE

The nonlinear absorber is an example of a nonlinear m
ter equation that can give either correct or incorrect res
when treated with the usual positive-P representation meth
ods, if the boundary terms are ignored. Generally, proble
only arise when the linear damping has exceptionally sm
values or the number of bosons per mode is small~see Fig.
2!, so this is not a practical problem in optics. However, f
other physical systems such as a BEC this may be sig
cant. It is a well-studied case, and a detailed treatment ca
found in Ref.@6#. It also has the merit that exact solution
can be readily found using other means. By analyzing t
example we can ensure that the modifications to the d
equations obtained from gauge terms, do eliminate bound
terms and give correct results.

Consider a cavity mode driven by coherent radiation, a
damped by a zero-temperature bath that causes both one
two photon losses. We have scaled time so that the rat
two-photon loss is unity. Without this nonlinear proces
nothing unusual happens. The scaled one-photon loss ra
g, and« is the scaled~complex! driving field amplitude. The
master equation is

]r̂

]t
5@«â†2«* â,r̂ #1

g

2
~2âr̂â†2â†âr̂2 r̂â†â!

1
1

2
~2â2r̂â†22â†2â2r̂2 r̂â†2â2!. ~52!

Following the treatment of Sec. II, we arrive at the gau
representation Stratonovich stochastic equations

da5@«2a~ab1 ig1~g21!/2!#dt1 iadW,

db5@«* 2b~ab1 i ḡ1~g21!/2!#dt1 ibdW̄,

dV5SVdt1V@gdW1ḡdW̄#. ~53!

Here SVdt is the appropriate Stratonovich correction ter
@given by the derivative terms in Eq.~44!#, which depends
on the particular gauges chosen.

With no gauge (g5ḡ50), the positive-P Stratonovich
equations are recovered,

da5@«2a~ab1$g21%/2!#dt1 iadW,

db5@«* 2b~ab1$g21%/2!#dt1 ibdW̄. ~54!

We will concentrate on the various simplifications of th
model, which correspond to existing literature, and simp
analysis.
2-9
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P. DEUAR AND P. D. DRUMMOND PHYSICAL REVIEW A66, 033812 ~2002!
A. Relevance to many-body problems

The nonlinearity seen here can occur directly in the fo
of a nonlinear collisional damping term in a many-body s
tem, so that it can be referred to generically as ‘‘two-bos
absorption.’’ This type of damping is common both to no
linear photonic and atomic interactions.

It is of nearly the same form as for an ‘‘imaginary-time
thermal equilibrium state calculation for the usual model
an alkali-metal Bose gas or BEC@34#. There, for example,
the interaction energy between identical bosons of masm
and s-wave scattering lengthas in D-dimensional space is
given by

Ĥ5
2p\2as

m E dDxĉ†2~x!ĉ2~x!, ~55!

provided thatas is much smaller than other characteris
lengths of the system~which is usually the case!. The master
equation for an imaginary-time calculation is

]r̂e

]t
52

1

2
$Ĥ2mN̂,r̂e%1 , ~56!

where r̂e is the thermal canonical ensemble density mat
m is the chemical potential,N is the number operator for th
entire system, andt51/kBT is an inverse temperature. Apa
from the fact that it is not trace preserving, this is a nonl
earity very similar to that occurring in the nonlinear absorb
master equation.

While boundary-term discrepancies only occur with th
nonlinearity for low occupations per mode~see also Fig. 2!,
for a many-mode system at finite temperature one expec
large number of modes to have just such a low occupat
Thus, it is important to check that boundary terms are ind
eliminated. Note that the gauge representation simulatio
efficient over a wide range of occupation numbers. See,
example, Fig. 3. More details of applications to both real a
imaginary time many-body systems with many modes w
be given elsewhere.

B. Two-boson absorber

In its simplest form, corresponding tog5«50, only two-
boson absorption takes place. We expect that for a s
uc&5(ncnun& all even-boson number components will dec
to vacuum, and all odd-numbered components will decay
u1&, leaving a mixture of vacuum and one-boson states
long times.

The positive-P representation has been found to give
roneous results@4,35–37# due to the existence of movin
singularities@6#, which cause power-law tails in the distribu
tion leading to boundary-terms. The moment usually conc
trated on in this system is the number of bosonsn̂5â†â,
which corresponds to the statistical average ofn5ab in the
positive-P representation. This has a convenient closed eq
tion ~Stratonovich!,

dn52n~n1 i g̃21/2!dt1 indW1 ~57!
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with dW15(dW1dW̄), t52t, andg̃5(g1ḡ)/2.
Let us examine the behavior of the above equation, w

g̃50, i.e., in the standard, ungauged formulation. The de
ministic part of the evolution has a repellor atn50, and an
attractor atn5 1

2 . The noise is finite, and of standard devi
tion Adt/2 at the attractor. We can see that the determini
part of the evolution has a single trajectory of measure z
which can escape to infinity along the negative real axis,

a52b5
1

At02t
, ~58!

where t051/a(0)2521/n(0). This moving singularity is
known to cause the power-law behavior of the Fokk
Planck solution at largeunu, which means that integration b
parts is not in fact valid—which leads to incorrect results

Indeed, it can be easily seen that in the steady-state li
all trajectories in a simulation will head towardn5 1

2 , mak-
ing limt→`^n̂&5 1

2 . Quantum mechanics, however, predic
that if we start from a stater̂0, the steady state will be

lim
t→`

^n̂&5(
j 50

`

^112 j ur̂0u112 j &. ~59!

For a coherent-stateua0& input, say, this will be

lim
t→`

^n̂&5 1
2 ~12e22ua0u2!. ~60!

Thus we can expect that the positive-P simulation will give
correct results only wheneua0u2@1.

To correct the problem we have to change the phase-s
topology in some way to prevent the occurrence of mov
singularities. We have found that a good gauge for a tw
boson absorber nonlinearity in general is

g5ḡ5g̃5 i ~n2unu!. ~61!

This replaces the2n2 term in Eq.~57! which may become
repulsive from zero, with2nunu which is always a restoring
force, and so never leads to superexponential escape.

With the gauge~61!, the Stratonovich equations becom

dn52n~ unu21/2!dt1 indW1, ~62!

dV5V$@n1~n2unu!2#dt/21 i ~n2unu!dW1%.

Phase-space trajectories have changed now, but since i
all come from the same master equation, it still describes
same system. Consider the equations for the polar decom
sition of n5reif,

dr52r ~r 21/2!dt,

df5dW1. ~63!

This is exact, and shows that now we have an attractor on
circle unu5 1

2 , and a repellor atn50, with free phase diffu-
sion in the tangential direction. Once trajectories reach
2-10
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GAUGE P REPRESENTATIONS FOR QUANTUM- . . . PHYSICAL REVIEW A 66, 033812 ~2002!
attractor, only phase diffusion occurs. Some more com
cated evolution is occurring in theV variable. In any case
there are now no moving singularities anywhere in the ph
space, and simulations correspond exactly to quantum
chanics.

Figure 1 compares results for a truncated number-s
basis calculation, a positiveP calculation, and a ‘‘circular’’
gauge ~61! calculation for an initial coherent state ofa0

51/A2. Figure 2 compares steady-state values for ex
positiveP, and gauge calculations for various initial cohere
states in a wide range. It is seen that the gauge calculatio
correct to within the small errors due to finite sample siz

FIG. 1. Comparison of two-boson damping simulations. Circl
positive-P simulation; solid line, circular gauge simulation; dash
line, exact calculation~truncated number-state basis!. Simulation
parameters: 40 000 trajectories; step size5 0.005; initial coherent
state. Stratonovich semi-implicit method@32#.

FIG. 2. Steady-state expectation values of boson number^n̂&
obtained by gauge simulations~double triangles! compared to exac
analytic results from Eq.~60! ~solid line! and positive-P simula-
tions ~circles! for a wide range of initial coherent states. Size
uncertainty in gauge results due to finite sample size is indicate
vertical extent of ‘‘double-triangle’’ symbol. Steady state was o
served to have been reached in all simulations byt57 or earlier
~compare with Figs. 1 and 3!, hence this is the time for which th
simulation data is plotted. Simulation parameters: 100 000 traje
ries; step size5 0.01.
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C. One- and two-boson absorber

If we now turn on the one-boson decay as well, but s
do not have any driving, we expect that all states will dec
to the vacuum on two time scales 1 and 1/g. If g@1, noth-
ing interesting happens, however ifg&1, we should first see
a rapid decay to a mixture of vacuum and one-boson st
due to the two-boson process, and then a slow decay of
one-boson state to the vacuum on a time scale oft'2/g.

In this case the positive-P equations display different be
havior depending on whetherg is above or below the thresh
old g51. Below threshold, we have an attractor atn5(1
2g)/2, and a repellor atn50, while above threshold, the
attractor is atn50, and the repellor atn52(g21)/2. In
either case, there is a singular trajectory along the nega
real axis, which can cause boundary-term errors. It turns
that the steady state calculated this way is erroneous w
g,1, and there are transient boundary term errors whileg
,2 @4#. The false steady state below threshold lies at
location of the attractor: (12g)/2.

Let us try to fix this problem using the same circul
gauge~61! as before. The equation forr is now

dr52r ~r 2@12g#/2!dt, ~64!

while thef andV evolution is unchanged. So, above thres
old we are left with only an attractor atn50, while below
threshold we have a repellor atn50 surrounded by an at
tracting circle atr 5(12g)/2. This phase space again has
moving singularities.

The results of simulations for the parameterg50.1 are
shown in Fig. 3. The gauge simulation tracks the exact
sults. We have choseng!1 so that a system with two widely
differing time scales is tested. The circular gauge avoids
false results of the positiveP simulation. Note also that the
gauge simulation remains efficient for a wide range of oc
pation numbers—from̂n̂&'100@1, where the positiveP is
also accurate, tôn̂&'0.1!1 where it is totally incorrect.

,

by
-

o-

FIG. 3. Comparison of simulations for system with both sing
and double-boson damping. Relative strengthg50.1; Circles,
positive-P simulation; Solid line, circular gauge simulation; dash
line, exact calculation~truncated number-state basis!. Gauge simu-
lation parameters: 105 trajectories; step size varies from 0.0001

'0.006; initial coherent stateu10& with ^n̂&5100 bosons.
2-11
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D. Driven two-boson absorber

The other type of situation to consider is when we hav
driving field as well as two-boson damping. In these cons
erations we have set the one-boson damping rate to zerg
50), since this process never causes any of the simula
problems anyway, but leaving it out simplifies analysis. Fa
ure of the positive-P representation method has been fou
in this limit as well@5#, and is evident in Fig. 4. The equatio
for n is no longer stand-alone in this case, and we m
simulate all three complex variables as in Eq.~53!, the V
equation being the same as in the undriven case~62!.

A treatment of the singular trajectory problem with th
same circular gauge~61! leads again to correct results, a
seen in Fig. 4.

V. THE SINGLE-MODE LASER

Let us now consider the second quantum system
which systematic errors have been seen with the positivP
representation. We will see that the problem here is so
what different than in the previous case. The difference
that for two-boson damping, boundary-term errors oc
even when we choose an optimal~i.e., compact! initial dis-
tribution to represent our starting state, whereas here sys
atic errors occur only for unreasonably broad initial distrib
tions. Nevertheless, since normally it is assumed that
initial condition can be of arbitrary breadth it is instructive
investigate how this problem can be tackled with stocha
gauge methods.

We have found that stochastic gauges can be used to
crease the allowable breadth to include all reasonable sta
conditions, but once one tries to increase the initial spr
too much, it becomes unlikely that any gauge will remo
systematic errors, without introducing too much sampl
~i.e. random! error instead.

A. The laser model

Ito stochastic differential equations for a simple photo
or atomic laser model that can be derived from the positi
P distribution are@5,6#

FIG. 4. Driven two-boson absorber with«50.05. Circles,
positive-P simulation (1000 trajectories!; solid line, circular gauge
simulation (105 trajectories!; dashed line, exact calculation~trun-
cated number-state basis!. Step sizeDt50.025. Initial vacuum
state.
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dã5~G2ãb̃ !ãdt1AQdh,

db̃5~G2ãb̃ !b̃dt1AQdh* ~65!

in appropriate scaled variables, with the complex Gauss
noisedh obeying^dhdh* &52dt. In terms of physical pa-
rameters, we have

ã5a/AN,

b̃5b/AN, ~66!

wheret is the scaled time, andN @1 is a scaling paramete
that equals the number of gain atoms in a simple photo
laser model. BothG, the gain parameter, andQ>G/N, the
noise parameter, are real and positive.

Since this time we are again interested in the~scaled!
boson number̂ñ&5^ãb̃&5^n̂&/N, its evolution can be writ-
ten as a closed equation

dñ522~ ñ2a!~ ñ2b!dt12AQñdW, ~67!

where now thereal Gaussian noise obeyŝdWdW&5dt,
and the deterministic stationary points in the Stratonov
calculus are

a5 1
2 ~G1AG212Q!,

b5 1
2 ~G2AG212Q!. ~68!

We find that the stationary point ata is an attractor, and atb
we have a repellor. DefiningD5b2ñ, we get

dD52D~D1AG212Q!1noise, ~69!

which shows that we again have a singular trajectory esc
ing to infinity in finite time along the negative real axis fo
ñ,b.

B. Initial conditions

Let us consider the usual case of vacuum initial con
tions. A vacuum can be represented by

P(1)~ ã,b̃ !5d~ã !d~b̃ !, ~70!

but also by Gaussian distributions of any variances0
2,

around the above,

P(1)~ ã,b̃ !5
1

4p2s0
4

expH 2
uãu21ub̃u2

2s0
2 J . ~71!

Note: the distribution ofñ is non-Gaussian, but has a sta
dard deviation ofs ñ'A2s0

2 in both the real and imaginary
directions.

It has been found by Schack and Schenzle@5# that for the
single-mode laser model, a positive-P simulation of pumping
from a vacuum will give correct answers if the usu
d-function initial condition~70! is used, but will have sys-
2-12
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tematic errors if the initial condition used has a sufficien
large variance~see Fig. 5!. We emphasize here that this is n
a real problem in practical cases, as the variance require
cause systematic errors is typically extremely large, once
scaling needed to obtain the usual~approximate! laser model
is taken into account.

This can be understood because if we have a sufficie
broad initial distribution, the region of phase space that
cludes the singular trajectory will be explored by the dis
bution. Even if initially s ñ!ubu, the regionñ,b may be
subsequently explored due to the presence of the noise te

Apart from the obviousd-function initial condition, one
might want to try the canonical distribution of Eq.~10!,
which is a standard positive-P representation constructio
@1#. It will not cause problems as its variance iss0

251/N,
which for any realistic case will be very small~i.e., s ñ
!ubu). Schack and Schenzle discovered anomalous res
when they choses0

251, due to an erroneous procedure
scaling the equations—while not scaling the canonical ini
condition in a. Nevertheless, since anys0 is supposed to
represent the same state, insight into what can be achi
using gauge methods is gained if we analyze the system
errors for such a relatively larges0.

C. Gauge corrections

The Fokker-Planck equation corresponding to Eq.~65! is

]P

]t
5H ]

]ã
@ ñ2G#ã1

]

]b̃
@ ñ2G#b̃12Q

]2

]ã]b̃
J P.

~72!

We now introduce gauges using the same method as in
II. This leads to the Ito stochastic equations

FIG. 5. One-mode laserG51, Q50.25. Dashed line,~correct!
positive-P simulation with d-function initial conditions~70! s0

2

50 and 105 trajectories. Dotted-dashed line, erroneous positiveP
simulation with Gaussian initial conditions~71! s0

250.1 initially,
and 105 trajectories. Dotted line, positive-P simulation with s0

2

51, and 104 trajectories. Solid line, gauge calculation fors0
2

50.1 withl54, which corrects the systematic error of the positi
P. Only 4000 trajectories, so as not to obscure other data. Step
in all cases is 0.005.
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dã5ã~G2ñ!dt2AQ~g1 i ḡ !dt1AQdh,

db̃5b̃~G2ñ!dt2AQ~g2 i ḡ !dt1AQdh* ,

dV5V@~g2 i ḡ !dh1~g1 i ḡ !dh* #/2 . ~73!

It is convenient to define a transformed gauge functiong̃,
which is also arbitrary, such that

g5
~ ã1b̃ !g̃

2AQ
,

ḡ5
~ ã2b̃ !g̃

2iAQ
. ~74!

Changing toñ andQ5 ln(V) variables we obtain the Stra
tonovich equation

dñ52ñ~G2ñ2g̃!dt1Qdt12AQñdW,

dQ52
ñg̃2

2Q
dt1SQdt1g̃A ñ

Q
dW, ~75!

with SQdt being the appropriate Stratonovich correcti
@given by the derivative terms in Eq.~44!# for a particular
gauge functiong̃.

D. Correcting for the moving singularities

Consider the deterministic evolution of the real part,ñx ,
of ñ5ñx1 i ñy,

dñx522ñx
212Gñx1Q12ñy

222ñx Re@ g̃#12ñy Im@ g̃#.

~76!

The moving singularity is due to the22ñx
2 leading term for

negative values ofñx . We now consider criteria for choosin
the drift gauges as follows.

~1! It is desirable to keep the gauge terms to a minim
because whenever they act the weights of trajectories
come more randomized—see Sec. III E 1. Thus, let us res
ourselves to functionsg̃ that are only nonzero forñx,0.

~2! This immediately leads to another restriction ong̃: To
be able to use the efficient numerical algorithms in the S
tonovich calculus, we must be able to calculate the corr

tion termSQ , which depends on derivatives ofg̃Añ/Q. This
immediately suggests thatg̃ must always be continuous
hence, in particular, limnx→0(g̃)50. For ease of analysis, le

us start with a simple form for the gauge,g̃5c2lñx

1lyñy . This restriction immediately impliesc5ly50,
hence

g̃5H 2l Re@ ñ# if Re@ ñ#,0

0 if Re@ ñ#>0,
~77!

ize
2-13
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and SQ5l(Re@ ñ#1ñ1uñu)/2, when Re@ ñ#,0, zero other-
wise.

~3! The next necessary condition, to remove moving s
gularities, is that the22ñx

2 term is canceled, hence

l>1. ~78!

~4! Now, if l51 there are no systematic errors, but t
sampling error very quickly obscures everything becausenx

still heads to2` exponentially due to the 2Gñx term. This
takes it into regions of everincreasingug̃u, and weights
quickly become randomized. For slightly larger paramet
l, the ñx evolution takes trajectories to a point lying far in
the negativenx region where the two leading terms balanc
Here the trajectories sit, and quickly accumulate wei
noise. It is clear that for an optimum simulation all stationa
points of ñx in the nonzero gauge region must be remov
In this system this condition is

l.11
G2

2Q
. ~79!

An example has been plotted in Fig. 5 where we ha
parametersG51, Q50.25 ~leading toa'1.1124 andb'
20.1124). We are considering an initial condition ofs0

2

50.1, which is already much larger than the canonical v
ance for physically likely parameters. Typical values ofñ
initially will be of order s ñ'0.14*ubu here. A good choice
of gauge hasl54. The use of this gauge clearly restores t
correct results.

E. Nonoptimal initial conditions

As we increase the spread of the initial distribution b
yond s ñ'ubu, it becomes increasingly difficult to find
gauge that will give reasonable simulations.~For example,
we have tried a wide variety of what seemed like promis
gauges fors0

250.3, with the above values of parametersQ
andG, and none have come close to success!. The problem is
that while we can remove systematic errors, large rand
noise appears and obscures whatever we are trying to c
late.

Trajectories that start off at a value ofñ lying significantly
beyondb require a lot of modification to their subseque
evolution to ~1! stop them from escaping to2` and ~2!
move them out of the gauged region of phase space so
they do not accumulate excessive weight noise. If there
many of these, the trade-off between the gauge size
length of time spent in the gauged region does not give m
benefit anymore. Nevertheless, one may be sure that if th
the case, results will at worst be noisy and unusable, ra
than being systematically incorrect.

We stress again that this whole matter of nonoptimal
tial conditions is not a major hurdle to dynamical simulatio
because a compact starting distribution is generally fo
very easily.
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VI. CONCLUSIONS

The positive-P representation is well suited to comple
quantum-mechanical problems, such as many-body syst
but has been known for about a decade to have system
errors in some cases of its use—due to nonvanishing bou
ary terms. The gaugeP representation, a variant on the usu
positive-P representation, can be used to eliminate bound
terms and consequently all the systematic errors that w
encountered previously. It can also reduce sampling erro
a simulation, and allows imaginary time calculations of th
mal equilibrium states. The fact that correct results are
mediately obtained in every case where systematic er
were found with the positive-P method, is strong evidenc
that these previous problems were indeed due to boun
terms caused by moving singularities in the analytically co
tinued deterministic equations. Of course, boundary te
can occur for other reasons~for example, if the noise term
grows too rapidly with radius!, so caution is still needed in
the gauge choice.

The technique appears to be broadly applicable, and o
requires the recognition of what instabilities in the stochas
equations could lead to problems. It does not require deta
knowledge of what the boundary terms are, provided ins
bilities are removed. However, we remark here that the g
eral specification of necessary and sufficient conditions
eliminate boundary terms remains an open problem,
clearly requires growth restrictions on the gauge terms, b
in phase space and quantum-amplitude space. Care is
required with the choice of the gauge and initial distributio
However, using unsuitable gauges or initial conditions m
only lead to large sampling errors, not systematic errors, p
vided the gauge is chosen to eliminate boundary correct
in the first place. Sampling error then allows for a confide
assessment of the magnitude of inaccuracies in a simula
which can be supplemented by numerical analysis of
distribution tails.

The main conclusion we come to is that this method do
in the cases studied, provide a complete solution to the p
lem of simulation of a many-body quantum system in pha
space, under conditions where previous direct simulat
techniques were not practicable. All known technical
quirements on the path to obtaining a stochastically equ
lent description to quantum mechanics, which is applica
to both large and small particle numbers, have been satis
by this method. For this reason, we believe that gauge si
lations can be used to simulate many quantum systems w
out systematic errors when carrying out more difficult calc
lations, where no exact result is known.

These conclusions must be supplemented by the deta
study of relevant gauges for particular quantum systems.
note, however, that the mathematical techniques emplo
here for generating stochastic gauges, may well be usefu
other representations as well as the gaugeP representation
described here.
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APPENDIX: OTHER EXTENSIONS OF THE POSITIVE- P
REPRESENTATION

1. The work of Carusotto, Castin, and Dalibard

Recently, Carusotto, Castin, and Dalibard@7,8# ~CCD!
have made related extensions to the positive-P representa-
tion. These were derived for the particular case of an in
acting scalar Bose gas, and led to a number of conditions
an Ito stochastic evolution to be equivalent to a mas
equation evolution.

It can be shown quite simply that the equations~43! gen-
erated by the gaugeP representation for this Hamiltonia
satisfy the CCD conditions. We conjecture that these prov
the most general possible solution to the stochastic prob
posed by these authors. In particular,db5P@gkdWk

2N̄(f1dB2* 1f2* dB1)#, using the above paper’s formalism
Our methods can also treat a much larger class of Ham
nians and master equations than considered in the CCD t
ment.

In Ref. @7# systematic errors due to boundary terms w
not considered. However, evolutions satisfying ‘‘exactne
conditions derived using the same procedure can con
such errors.

As an example, following the CCD procedure@7# for a
one-mode two-boson absorber master equation, as in
~52! with g5«50, one arrives at the conditions

dB1dB2* 50,

dBa*
252fa

2 ,

F1dt52dbdB1 /P, ~A1!

F2dt52db* dB2 /P* ,

f 5P~N̄f1f2* !2, ~A2!

where~referring back to the notation in this present pape!,

df15da/AN̄5F1dt1dB1 ,

df25db* /AN̄5F2dt1dB2 ,

dP5d@Ve2f1f2* N̄#5 f dt1db. ~A3!

It can be seen that the positive-P equations~54! satisfy these
conditions, while producing the erroneous evolution seen
Fig. 1. In summary, the methods of the CCD paper do
obviate the need to choose gauges that eliminate boun
terms.

2. Noise optimization by Plimak, Olsen, and Collett

In Ref. @9#, Plimak, Olsen, and Collett have found that f
some systems~the Kerr oscillatorĤ5v0â†â1kâ†2â2/2, in
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particular!, the most obvious~diagonal! choice of noise ma-
trix B may not be the optimal one.

For example, for the above Hamiltonian, one finds th
the diffusion matrix~in a,b) variables is

D5 ikF2a2 0

0 b2G5BBT. ~A4!

Following the procedure in Eq.~30!, an equivalent but
broader choice of noise matrixB can be any of

B5Aik F ia cos~g! ia sin~g!

2b sin~g! b cos~g!
G , ~A5!

with the usual diagonal decomposition given byg50.
However, in Ref.@9# it was found that for a positive-P

simulation, different decompositions with nonzero constang
gave the lowest sampling error for coherent-state ini
conditions. In their notation, they introduceAA11
52A2 cos(g), and consider the case of realA>1 ~i.e.,
imaginaryg) only.

3. Stochastic gauges for the Kerr oscillator

In Ref. @2#, the sampling error in a Kerr oscillato
simulation—equivalent to a one-mode BEC model, ap
from linear terms—was reduced substantially by using a r
resentation similar to the gaugeP representation formally
introduced here. The basic differences were the following

~1! Instead of a complex gaugeV, a phase factoreiu with
a realu variable, was used.

~2! The normalization with respect to the behavior ofu
was carried out explicitly inside the kernel, rather th
postsimulation in the moments as in Eq.~45!.

This type of representation is a norm-preserving gaugP
representation, as discussed earlier. A parametrized fami
gauges led to stable trajectories~as opposed to the large sam
pling error present with a positive-P simulation!. However,
some systematic errors were seen due to boundary te
These boundary terms occurred because of the stoch
growth of the gauge term inV space, whenu approached
6p/2. With the gaugeP representation introduced in thi
paper, a wide range of gauges do not lead to any system
errors@33#, provided gauge growth is controlled.

We note here that the norm-preserving gauges have
property that, in the present notation,gk5 i @12 iV9# f k .
However, while the growth ofV8 is stabilized, there is
growth in the variance ofV9. This means that the function
f k must behave as a decreasing function ofV9 in order to
ensure that the distribution is bounded sufficiently in t
weight-function space to avoid finite boundary terms. T
detailed requirements and conditions for this type of gau
will be treated elsewhere.
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