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GaugeP representations for quantum-dynamical problems: Removal of boundary terms
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P-representation techniques, which have been very successful in quantum optics and in other fields, are also
useful for general bosonic quantum-dynamical many-body calculations such as Bose-Einstein condensation.
We introduce a representation called the gaBgepresentation, which greatly widens the range of tractable
problems. Our treatment results in an infinite set of possible time evolution equations, depending on arbitrary
gauge functions that can be optimized for a given quantum system. In some cases, previous methods can give
erroneous results, due to the usual assumption of vanishing boundary conditions being invalid for those
particular systems. Solutions are given to this boundary-term problem for all the cases where it is known to
occur: two-photon absorption and the single-mode laser. We also provide some brief guidelines on how to
apply the stochastic gauge method to other systems in general, quantify the freedom of choice in the resulting
equations, and make a comparison to related recent developments.
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[. INTRODUCTION methods implicitly assume the absence of boundary-term
corrections. This paper unifies and substantially generalizes

One of the most difficult problems in theoretical physicsall these recent advances. It also shows how the gauge
is also conceptually the simplest. How does one calculate theethod can be used to solve the long-standing problem of
dynamical time evolution or even the ground state of amhoundary-term corrections in the positierepresentation.
interacting many-body quantum system? In essence, this is@omparisons to the other methods are given in an Appendix.
natural part of practically any comparison of quantum theory  Owing to the work of Wilsor{10], and many otherfl1],
with experiment. The difficulty is that the Hilbert space of all we know that large Hilbert-space problems can often be
but the most trivial cases can be enormous. This implies thateated using stochastic or Monte Carlo techniques for the
a finite computer is needed to to solve problems that caground-state, particle masses, and finite-temperature correla-
easily become nearly infinite in dimensionality, if treated us-tions. This is the basis for much work in computational quan-
ing an orthogonal basis expansion. tum statistical mechanics, and in QCD as well. However,

In this paper, we formally introduce and give examples ofwilson’s and other related methods are restricted to static
techniques for treating general bosonic many-body quanturgr “imaginary-time” calculations, rather than quantum-
systems, which we call gauderepresentations. These are an dynamical problems.
extension of the phase-space method called the pos$itive- Methods like these that use orthogonal basis sets have not
representatiofil], and have been recently used in the contexiproven useful for quantum dynamics; owing to the notorious
of interacting Bose gasd®,3]. The advantages of the new phase problem that occurs when trying to sum over families
technique are the following. of paths in real-time Feynman path integrals. For this reason,

the many-body quantum time-evolution problem is often re-

(1) The elimination of certain types of mathematical termsgarded as inherently insoluble due to its exponential com-
known as boundary-term corrections, which have causeglexity. In fact, it was this very problem that motivated the
problems in the positivé representation for over a decade original proposal of Feynmai2] to develop quantum com-
[4-6]. This is the main focus of the present paper. puters. In theséusually conceptualdevices, the mathemati-

(2) Greatly reduced sampling error in computations.cal problem is solved by a physical system consisting of
GaugeP representations have been used recently to reduaevolving “qubits” or two-state physical devices. Fortunately,
the sampling error in Kerr oscillator simulatiof]. this method of doing calculations is not the only one, since

(3) The extension of allowable problems to “imaginary- no large enough quantum computer exists at prefssjt
time” canonical ensemble calculations. These problems will Historically, an alternative route is the use of quasiprob-
be treated elsewhere. ability representations of the quantum state, which either im-

plicitly or explicitly make use of a nonorthogonal basis. The
Related extensions to the positife- representation— term quasiprobability is used because there can bexact
although restricted to the scalar interacting Bose gasnapping of all quantum states to a classical phase space with
problem—have also been introduced recently. Different proa positive distribution14] that also preserves all the mar-
cedures have been introduced by Carusotto, Castin, and Daliinal probabilities. These methods include the Wigfies]
bard [7,8], and by Plimak, Olsen, and Collef®]. These (W), Glauber-Sudarshan(P) [16,17, and Husimi (Q)
[18,19 representations. The classical phase-space represen-
tations can be classified according to the operator ordering
*Electronic address: deuar@physics.ug.edu.au that stochastic moments correspond to: fHiés symmetri-
TElectronic address: drummond@physics.uq.edu.au cally ordered, theQ is antinormally ordered, while th@
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representation is normally ordered. Apart from numerous lasolve the complexity problem inherent in the exponential
ser physics and quantum optics calculations, these methodsowth of the Hilbert-space dimension.
have also been used to some extent in quantum statistical There are, however, some caveats when using these dis-
mechanics: for example, the theory of Bose-Einstein conderifibutions. In particular, the vanishing of boundary terms is
sation(BEC) phase fluctuationg20]. an important fundamental issue with quasiprobability distri-
None of these methods result in a stochastic time evolybutions, and it is this issue that we focus on mostly in this
tion with a positive propagator when there are nonlinearitiesPaper. To get an overall picture, consider that once we have a
To achieve this, a better approach is to use a nonclassicime-evolution problem there are five typical requirements
phase space of higher dimension. A complex higher-that are encountered in d_erlvmg stochastic equations for qua-
dimensional ‘R representation” was proposed in Glauber’s siprobability representations of many-body systems. These

seminal paper on coherent state expansidrii§. The first (r)eqeL:]'r:rgtegr;séﬁccgrr]e'?afl32?;2gigybevglﬂgsqsry:tirgj&'nn
probabilistic method of this type was the positiRerepre- P y 9 ' y q

— P hich h d ble of performi even using a distribution to solve for the canonical ensemble
sentatior{1] (+P), which has proved capable of performing ;| imaginary time. As such, these requirements are generic to

stochastic time-domain quantu_m calculation; in some MaNYhe use of stochastic equations with operator representations.
body quantum system®1]. This uses a basis of coherent
states that are not orthogonal, thus allowing freedom of

choice in the construction of the representation. The positivet-. (1) Positive distributionA well-behaved positive distribu-

P representation of a quantum state is therefore the mosons for all quantum states, including especially the chosen

il tofal f iorobability distrib t.Onsmitial condition, is essential for a general algorithm. For ex-
versatiie out of a farge group ot quasip Nty dIStributi ample, a number state has a highly singiadistribution,
developed to aid quantum-mechanical calculations. It ha

) ; and aW distribution that is negative in some regions of phase
been successfully applied to mesoscopic systems such

; ; @Eace[ZS], making either distribution impossible to interpret
quantum solitong21-23 and the theory of evaporative pronapilistically for these states. Tiedistribution is inher-
cooling [24], which correctly reproduces the formation of a ently complex. Such problems do not occur for @er + P
BEC—as observed in experimen@5—27. representation—these are positive, and well-behaved for all

Quasiprobability distributions of this type are computa-quantum statefl].
tionally Superior to direct density matrix methods, which are (2) Ultraviolet Convergencé\Nh"e norma”y ordered rep-
susceptible to computational complexity blow-up for largeresentations are well behaved at large momentum, non-
Hilbert spaces. Provided certain boundary terms vanish, theormally ordered representations of quantum fields—like the
usual procedure is to generate a Fokker-Planck equatio@ or W representations—typically face the problem of ultra-
(which will vary depending on the distribution chogdrom  violet divergence in the limit of large momentum cutfiZ#].
the master equation, and then to convert this to a set ofhis means that almost any observable quantity will involve
stochastic Langevin equations. For some simple cases, tihe simulation of a(nearly infinitely noisy classical field,
may even be possible to arrive at appealing results directheading to diverging standard deviations in two or more
from the Fokker-Planck equatiofFPE). The resulting sto- space dimensions, even for linear systems. This rules out the
chastic equations can be thought of just as quantum mecha@ and W distributions for quantum field simulations in
ics written in different variables. They have two main advan-higher than one-dimensional environments.
tages over orthogonal basis-state methods, as follows. (3) Second-order derivative®©nly FPEs with second or

First, the whole quantum dynamics can be written exactlyinfinite-order derivatives can be translated into stochastic
in terms of a small number of stochastic equations. In aquationg29]. Normally ordered methods such as #and
one-mode case, there is just one complex variabld>fa, +P representations can handle most commonly occurring
andW, and two complex variables for P. Although a simu-  nonlinearities and two-body interactions, with only second-
lation requires us to average over many realizations of therder derivatives. Non-normally ordered representations of
stochastic process, this is often more practical than solvinguantum fields often lead to third- or higher-order partial
the infinite set of deterministic equations required to solvederivatives in the Fokker-Planck equation with no stochastic
directly for all the elements of a density matrix. Such anequivalent. For example, the Wigner representation gives
infinite set may be truncated, but this is only a good approxisuch problems for almost any nonlinear term in the master
mation for a system with few particles, and no more than aquation.
few modes. (4) Positive-definite diffusianA Fokker-Planck equation

Second, for a many-mode problem the Hilbert-space dimust have positive-definite diffusion, to allow simulation
mension isN=nM for the case of particles distributed over with stochastic processg29]. When the master equation has
M modes. This gives exponential growth as a function of thenonlinear terms, this does not occur with any of the classical
number of modes. However, the number of quasiprobabilityrepresentations. However, theP representation is guaran-
dynamical equations grows onlinearly with the number of teed to always produce positive-definite diffusigl], pro-
modes, rather thaaxponentiallyin the case of direct meth- vided no higher derivative terms occur.
ods. Other stochastic methods, known as quantum-trajectory (5) Vanishing boundary termdn the derivation of the
methods, can be used to reduce Mredimensionality of an  Fokker-Planck equations, it is assumed that certain boundary
NXN density-matrix problem to that of thid-dimensional terms arising in partial integration can be neglected. This is
underlying Hilbert space—but this is clearly insufficient to not always the case. Boundary terms due to power-law tails
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TABLE I. Comparison of phase-space representations as applied to stochastic treatments of a one- and
two-boson nonlinear absorber.

Form of uv Order of Non-negative Stochastic Boundary term  Simulated
Method distribution converges derivatives diffusion simulations removal correctly
W Real No 4 Sometimes No
Q Positive No 4 Yes No
R Complex Yes 2 No
P Singular Yes 2 No No
+P Positive Yes 2 Yes Yes No Sometimes
G Positive Yes 2 Yes Yes Yes Yes

can occur when there are moving singularities that can esnany trajectories. Provided boundary terms do not occur, the
cape to infinity in finite time. In the- P method, such tra- averages will approach the correct values—within an accept-
jectories may cause systematic errors in stochastic averagable sampling error—for sufficiently many trajectories. If
[6], especially for nonintegrable dynamical systems. Thesg¢his number should increase rapidly with time, the simulation
problems are exponentially suppressed when linear dampingill only be of use for a limited period2].
rates are increased, but can be large at low damping. The problem of growing sampling error can occur even

) _ ) when there are no boundary terms, and may be regarded as
The +P method is often the representation of choice, bethe ultimate frontier in representation theory, just as similar
cause it satisfies conditiornd)—(4). Gauge representations issyes dominate the theory of classical chaos. This is less of
(G) combined with stochastic methods to be treated in thig fundamental issue, since the sampling error can always be
paper, share these advantages with thé representation. estimated and controlled by increasing the number of trajec-
However, they can also satisfy the fifth requirement—for angries. This is simply a matter of moving to a clustered, par-
appropriate gauge choice—hence allowing all of the mathg|le| computational model, or repeating the calculation many
ematical problems in simulating time evolution to be treatedtimes. Nevertheless, it is of great practical significance. The
For this reason, the present paper will focus on solvingsampling error problem requires careful gauge optimization,
boundary-term issues encountered with th® representa- and remains an open area for investigation. An intelligent
tion for certain nonlinear master equations. The overall piC'Choice of gauge can often Vast|y outweigh a brute force com-

ture is summarized in Table |, as applied to the two-bosorpytational approach, in terms of sampling error.
anonlinear absorber cases treated here in Sec. |V:

We emphasize_that the particular examples treated here Il. GAUGE OPERATOR REPRESENTATIONS
have a small particle number and extremely g zerg
linear damping. As such, they are soluble using other tech- In gauge representations, the density matrix to be com-
niques, which allows us to test the accuracy of gauge techputed is expanded in terms of a coherent state basis. For
niques. Our purpose is to demonstrate the success of taefiniteness, we shall focus on the coherent states of the
stochastic gauge method in simple cases where boundaharmonic oscillator, which are useful in expanding Bose
terms arise within thet+ P representation. In this way, we fields; but other choices are clearly possible. The expansion
can understand more complex situations where no exact réernel is more general than that used in the posiBveep-
sult is known. resentation. In order to define the notation, we start by intro-
We will first derive and describe the stochastic gaugeducing a set of boson annihilation and creation operators

method in Secs. Il and Ill, and subsequently work throughg, , ai*, The operatoﬁi:é?éi is therefore the boson num-
two examples: First, solving the boundary-value problem folher operator for théth mode or site. Boson commutation
the driven one- and two-photon absorber in Sec. IV. Secondyy|atigng of[3,,a1]= 6, hold for the annihilation and cre-
in Sec. V we will consider the one-mode laser at extremely,_ .. ! !

X o ation operators.
low power, which exhibits boundary term errors when very
nonoptimal starting conditions are used. This example will
show that gauge methods can also be used to remove errors
from this system, but some judgment must be employed to If a=(«4, ..., ,ay) is a complexM-dimensional vector
av0|q choosing a pathological initial d|§tr|but|on. In .the AP- with a;=x: +iy;, anda=(ay, . .. ay) is anM-dimensional
pendix, we compare the methods derived here with recenfector of annihilation operators, then the Bargmann coherent
related extensions of the positiRerepresentation by Caru- state||a) is defined by
sotto and co-workerE7,8], Plimaket al.[9], and Deuar and
Drummond[2]. |a)=exq @ a']|0)=exd | a|?/2]| @), (1)

Finally, we point out a sixth requirement of containing the

growth of sampling errarthe averages calculated from the where| ) is the usual normalized coherent state which is a
stochastic Langevin equations correspond to quantumsimultaneous eigenstate of all the annihilation operators. The
mechanical expectation values only in the limit of infinitely inner product of two Bargmann coherent states is

A. Coherent states
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(B |y =exd a- B]. )

It is important to notice here thiikz) is an analytic func-
tion of the complex vectow. The following identities there-

fore follow immediately:

éi”a):aiua)

PHYSICAL REVIEW A66, 033812 (2002

As these do not have a stochastic interpretation, the
positiveP representation was introducédl], which is de-
fined as

“=f P(H(aﬂ'u:fﬁ' d*ad? g ©)

for an M-mode system.

- 9 It is always possible to obtain an explicitly positive-
al@)=——]a). (3 definite distribution of this typ&1], with the definition
1
_ 2
Since||@) is an analytic function, the notatioff d«; is P (a,B) = exp{— ﬁ*‘ <“+ﬁ*|p “+ﬂ*>
interpreted here as an analytic derivative, which can be (47> 2 | 2 | 2
evaluated in either the real or imaginary directions, (10)

P P 9
a_czi||a>:r7_><i||a>:_'a_)/i”a>' (4)

Since the coherent states are an overcomplete basis S%E(
any operator can be expanded in more than one way using
coherent states. For example, the simplest resolution of the

identity operator is

i=$j |@){a|d*™a. (5)

Thus, introducing a seconld-dimensional vectop, we
can expand any operat@ directly as

— | [ lexaiolm s 6 a0

- [ [ otmlays|a™ s, ®)

Here, we have introduced
1 “
O(a,p)= —5(aO[B*). ()

B. P representations

The possibility of expanding any operator in terms of co-

This form always exists, as do an infinite class of equivalent
positive distributions. Even simpler ways to construct the
positive P representation are available in some cases. For
ample, if the Glauber-Sudarshan representation exists and
'positive, then one can simply construct

P(a) 6°M(a— B*). (11

The stochastic time evolution of the positiRedistribution
does not generally preserve the above compact forms, and
may allow less compact positive solutions instead. However,
to obtain a time evolution equation, it is necessary to use
partial integration, with the assumption that boundary terms
at infinity can be neglected. It is these less compact solu-
tions, occurring during time evolution with a nonlinear
Fokker-Planck equation, that lead to power-law tails in the
distribution—and hence boundary-term problems caused by
the violation of the assumption that these terms vanish.

P(+)(a,ﬂ)=

C. Gauge representations

A technique for constructing an even more general posi-
tive distribution is to introduce a quantum complex ampli-
tude Q, which can be used to absorb the quantum phase
factor. This leads to the result that any Hermitian density

matrix p can be expanded in an overcomplete ba?s(é),
wherea=(Q,a,B), and

~ || a)(B*||
Ala — =0 a- 12
(@)= (ﬁ*ll 2 la)(B*[lexd —a-B].  (12)

herent states leads to the idea that such an expansion can be
used to calculate observable properties of a quantum density/e define the gauge representat(é(u) as a real, positive
matrix p. Historically, this was first proposed by Glauber and function that satisfies the following equation:

Sudarsharj16,17, who suggested a diagonal expansion of

the form

,3=f P(@)|a@)(ald™a . ®

5=f G(a)[A(a)]d*™M* 24

:;f G(a)[A(a)+H.c]d*M+*2qa. (13)

Unlike the direct expansion given above, this has no off-
diagonal elements. Surprisingly, expansions of this type alThe last line above follows from the fact thatis a Hermit-

ways exist, as long as the functi®i{ @) is defined to allow

ian density matrix and—l(a) is real. Here, H.c. is used as an

highly singular generalized functions and nonpositive distri-abbreviation for Hermitian conjugate. The use of a complex

butions[28].

weight in the above gauge representation is similar to related
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methods introduced recently for interacting Bose g@se3, Effects of the annihilation and creation operators on the
except that we multiply the weight by a normalized projectors are obtained using the results for the actions of
(positive-B projector, in order to simplify the resulting alge- operators on the Bargmann states,
bra.

As an existence theorem that shows that this representa- aA(a)=aA(a),
tion always exists, consider the complex solution

a'A(a)=[d,+ BIA(a),

1 -
P \ = — 14 A o ~ S

obtained from Eq(7), with a phase/=arg(Po), and simply  For previty, we usei=(dq ., ;) to symbolize either 4
define —alax;) or (—id’=aldy;) for each of thei=0, ...,2M

G(a)=|Po(a,B)| 52(Q—exdi (e, B)]). (15) complex variableﬁs&. This is possible sincé(&) is an ana-
lytic function of @, and an explicit choice of the derivative
In this type of gauge representatio®(«) is a positive Wil be made later.
distribution over a set of Hermitian density-matrix elements Using the operator identities given above, the operator
A+AT Itis simple to verify that, by construction fquations can be transformed to an integro-differential equa-
ion,
Tr(A)=Q. (16) %

. . —= D LA (a)]d*M 24, 22
For the case of)=1, this representation reduces to the at J Gla)lLah(@)]d “« (22

ositiveP representation, and the kern&(«) is a projec- : o
b P (a) pro) Here the antinormal ordered notatidh indicates an order-

tion operator. Since the positii@-representation is a com- . ¢ all the derivat tors to the riaht. A |
plete representation, it follows that another way to construcftng orall the dervative operators (o the right. As an example,

the gaugeP representation is always available, if one simplyin the Hamiltonian case, if the original Hamiltoniat(a,a")
defines is normally orderedannihilation operators to the righthen

G(a)=P)(a,p)5(Q-1). (17 £A=%[HA<a,0a+ﬂ>—HA(ﬁ,aﬁ+a)]. (23

As a simple example, a thermal ensemble wighbosons

per mode gives a diagonBldistribution that is Gaussian, so If no terms higher than second order occur, this procedure
that gives a differential operator with the following general ex-

pansion:
G a)cexd —|a|?/ng]6®M(a— B*)82(Q—1). (18
tn(@)<exd —[a]*/ng] M (a— B*) 6%( ). (18 LEI=V+ADs+1D55,, (24)
One advantage of the proposed representation is that it o ) L )
allows more general expansions than the posiBveistribu- ~ Where, to simplify notation, the Latin indiceg .k will from

tion, and also includes the case of the complBx NOW on be summed ovér1,...,2M, since no derivatives
representation—which has proved useful in solving for nonWith respect tof) are used as yet. V is a term not involving
equilibrium steady-states in quantum systems. derivative operators with respect to any of the variables.in
The drift termA{*) that is normally found using the positive
D. Operator identities P representation is labeled with the superscripi) (to iden-
tify it.

The utility of these methods arises when they are used to
calculate timeglor imaginary time—for which the positive-
distribution cannot be usg@volution of the density matrix.
This occurs via a Liouville equation of generic form

At this stage, the usual procedure in representation theory
is to integrate by parts, provided boundary terms vanish. This
gives a normally ordered differential operator acting on the

distribution itself, of form

J

LG i - 1 )
P = L), 19 —:G(a)=|V=g,A"+ 53,0,D;|G(a). (25

where the Liouville superoperator typically involves premul- This type of generalized Fokker-Planck equation can be

tiplication and postmultiplication op by annihilation and  t;aateq formally using techniques developed by Graham, in-
creation operators. As an example, the ?quation for purel%wing time-symmetric curved-space path integri].
unitary time evolution under a Hamiltonidt is For computational purposes, we require special choices of
the analytic derivatives to obtain a positive-definite diffusion,
iﬁiﬁz[ﬂ P (20) so that the path integrals have equivalent stochastic equa-
at e tions [29]. We emphasize here that the equations resulting
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are quite different to those obtained from the direct insertiorof the M (2M — 1) independent antisymmetridV2x 2M ma-

of a coherent state identity into a Feynman path integral—trices o'/, One simply introduces

which results in severe convergence problef84]. The -

usual positiveP representation equations are obtained at this _ o2 (i)

stage—provided there is no potential term—and can be U ex;{ |E<, g”(a,t)g ) (27)

transformed to stochastic equations using the techniques de-

scribed in the following section. As an example, for a one-mode case there is one complex
gauge function introduced this way, whichgé=g;,. The

L. GAUGE FUNCTIONS resulting transformation is

_ d _(12)y _ d (12)ciy
In gauge representations, the time evolution of the repre- U=exn(g g )=cogg )+g sin(g"), (28)

sentation is modified from the usual positiPerepresenta-
tion equations, by the introduction of a number of arbitrary ] .
and freely defined functions on the phase space. This fred2auli matrix,

dom of choice is, of course, not present with an orthogonal

basis, and is due to the nonorthogonal nature of a coherent 12—
basis set. Although we do not investigate other cases, it is =
worth noting that a similar gauge freedom is implicitly . . ) . )
present whenever a nonorthogonal expansion is used—evétence, if the noise was diagonal in the canonical form, the
if it involves different states from the choice of coherenttransformedbut equivalentnoise matrix becomes

states made herée.g., the Fock state wave functions in [ N11COXgY)  Agisin(g?)

Refs.[7,8]). _
—Ngpsin(g?)  Nppcogg?)

Now, the 2V-dimensional(compleX orthogonal matrix

We first introduce the diffusion gauges, which were im-family containsM(2M —1) free complex parameters, so
plicitly present in the original positive- representation, but there areM (2M — 1) diffusion gauge functiongij(fx,t) that
were only recognized recently as allowing improvements irone can choose arbitrarily. This represents a large class of
the sampling error. These gauges occur via the nonuniquspecific gauges that can be used directly in simulations, as
decomposition of the complex diffusion matiix which de-  opposed to the conditions on noise correlations usually given
termines the stochastic correlations in the final equationselsewherd9].
Arbitrary functional parameters can therefore be inserted into  As pointed out by Grahaif80], there is a close similarity
the final stochastic equations in the noise coefficients, whiclyetween the theory of curved-space metrics, and path inte-
may lead to further optimization of the simulation. This is grals with a space-varying diffusion matrix. In the present
because the decomposition of the complex diffusion matrixontext, the space is complex, and we have a family of
D=BB, which is needed to define a stochastic processgauges that are generated on taking the matrix square root of
does not specify the resulting noise matE>xompletely. the diffusion matrix. We have not yet used this matrix square

It has been recently shown by Plimak, Olsen, and Collettoot, but this decomposition will be applied to obtain
[9] that for the Kerr oscillator using a decomposition differ- positive-definite equations via the choice of analytic deriva-
ent from the obvious diagonal one leads to impressive imiives made in the following sections.
provements in the signal-to-noise ratio of the simulation The above holds for square noise matrigs but one is
(briefly described in the AppendixThis somewhat surpris- also free to add more noise coefficients in the marBgr
ing result leads us to try to quantify the amount of freedom=[B,,Q]. Then
of choice available from this source.

SinceD=D", it can always be diagonalized by a com- B.B.=D=D-QQ", (31)
plex orthogonal transformation

where the antisymmetric matrix(!? is proportional to a

1
1 of (29

. (30

A. Diffusion gauges

2T R(+)R(H)T and all the MW coefficients in the 1 XW matrix Q are
D=0\"0'=B""/B'", (26)  additional arbitrary complex functions. The freedonBigis
the same as beforg.e., M(2M —1) independent complex
where\ is the diagonal matrix whose square gives the ei-gauge functiong with the proviso thaBg is now given by
Y . ~ ~
genvalues oD. Thus B ?_O)‘ can be considered the ca- oXy where the square df gives the eigenvalues of the
nonical, or “obvious” choice of decomposition, unique apart dified B Th B Id b h d if
from the 2M signs of the diagonal terms. However, for any Mo T' led matrixD. The matrix B, woulc be unchanged |
: ' QQ' were set to zero, although this choice @fdoes not

orthogonalJ, if B is a valid decomposition dD, then so appear to be useful; it just adds extra noise. In general it is

Iosrt:]hoe c:?]":lr%i.l %_gxgegcae’ :lr.g (;:}igz; 'gs.tpgnw_?g.lg not clear whether or not any advantage can be gained by
9 familyb = ! vaid posttion. T introducing the additional off-square gauge functions con-
can be easily quantified using a basis

tained inQ.
(i If Bis given a functional form dependent on the phase-
Ok’ = ik 6j — i Sjk., space variables, it may lead to additional terms in the Stra-
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tonovich form of the equations, which are considered later in  The operato32) was chosen to give this form fd, so
this section. In this situation one must be careful not to in-that the only change in noise is for tifk variable.
troduce additional boundary-term errors arising from an ex-
cessively rapid growth of the noise gauges.

There is a subtlety here which one must take some care . o
with. The complex noise matriB is not the matrix that Itis always possible to transform these second-derivative
usually appears in the theory of stochastic equations. Insteat"ms into a positive semidefinite diffusion operator on a real
this matrix is subsequently transformed into an “equivalent”SPace, which is a necessary requirement for a stochastic
stochastic form, by taking advantage of the analyticity of theéquation. WherD=BB', divide B=B*+iB” into its real
Bargmann states. This means that the effect of the diffusioand imaginary parts. A similar procedure is followed far
gauges on the final equations also makes use of the nonu- Recalling that the original kernel was analytic, thus allow-

C. Positive-definite diffusion

nigueness of the coherent basis set itself. ing for more than one choice of derivatives, the choicesfor
can now be made definite by choosing it so that the resulting
B. Drift gauges drift and diffusion terms are always real,
While the diffusion gauges can control sampling error due Anda— ALT+ ALY, (37)

to the correlations of noise terms, they cannot eliminate

boundary terms due to singular trajectories in the drift equa-
tions. The extra variabl€ allows thed identity to be used

to convert any potential teri to a derivative term, and also H
to introduce a stochastic gauge to stabilize the resulting drifé
equations. This defines an infinite class of formally equiva-

lent Fokker-Planck equations, in a similar way to related

procedures in QED and QCD. To demonstrate this, we
introduce 2V arbitrary complex drift gauge functiong

=[gi(a,t)], to give a new differential operatalc 5 whose
form differs from the originalﬁff) by terms that vanish

identically when applied to the kernal(a),

Dabdadp— BZCBEC(};a;_l— BZCBEC(?ZO”;'F (Xe=y).

ence, the gauge differential operator can now be written
xplicitly as

KGA: [’A/La,u—i_%ﬁ/u)a,uav]! (38)

where the indicesu,v cover the (M +2)-dimensional
phase space of the real and imaginary parts,060 thata

=(x,y), andd,=dlda, . The diffusion matrixD=BB" is

now positive semidefinite, since, by construction™

1
EGAZE(AJr)‘F V+ 599930+gk81k0"1 [Q&Q_ 1]

(32 , (39

The total differential operatof g, has an antinormal Fokker- g that the diffusion matrix is the square of a real matrix—
Planck form. Extending the drift and diffusion matrices to expiicitly,

include the extra variabl€), we can write this—summing

repeated,b,c indices overa=0, ..., M—as _Jo B[ o 0
D= = . 40
Lon=[Aadat 1D asinie]. @3 570 mllEy « gyf} 40
The total complex drift vector isAz(Ao,Al, Ao As Lga is now explicitly real as well as positive definite by
where construction, it can be applied to the Hermitian conjugate
kernel as well, resulting in the final time-evolution equation,
AOZQV
ap - “ -
A=A —g,Bjy. (34) a—’;=J G(a)[ Loah (@) ]d*™M 25, (41)

The new diffusion matrixD with elementsD,y, is not . . . .
diagonal, but it can be faciorized. Explicitly, it is now a  On integrating by partgyrovided boundary terms vanish

square (M +1)X(2M+1) complex matrix, given by at least one solution will satisfy the followingnormally or-
dered positive-definite Fokker-Planck equation—with the

b 0%gg" QgBT 0 Qgi| O 0 BRT differential operators on the left, each acting on all terms to
= |Bg'Q BB'"| [0 B|Qg" BT =" the right,

96 _ I R
Thus, we now have a new stochastic noise matrix with ot =LeNG=| —d,A,+ Ea#ay[)w G. (42)

one added dimension,

Q This implies that we have an equivalent set of Ito stochas-
B= 0 Qg (36) tic differential equations available, withM real Gaussian
= |0 B noisesdW, , which are
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dQ=Q(Vvdt+g,dwW,) terministic trajectories are bounded over any finite time in-
(+) terval[6]. This issue is discussed in greater detail below, and
daj=(A;'—gkBj)dt+BjdW. (43)  in Ref.[33].

] The main criteria for a useful gauge are the elimination of
The noises obeydW,dW;) = 5;;dt, and are uncorrelated be- poyndary terms and the reduction of sampling error. How-
tween time steps. . ever, there is an enlarged space of variables for the Fokker-
~ Numerical simulations are usually done in the Stratonov-pjanck equation here. For this reason, it is possible to stabi-
ich calculus, due to superior convergence propef8&% so  |ize trajectories in the usual positive-phase space, while
thg equ[vglemcomplexStratonowch equation allows us to introducing new gauge-induced boundary terms in fhe
write efficient algorithms, space. When it comes to the formation of boundary terms,
. . _ 1 the phase of) is generally innocuous provided the gauge is
daa=dX, FidYa=[Aa~ 2 (Bpidp) Baddt+Bayd W, perigdic in this vgriable, )t;ut the gaugg distributiongmugt be
(44) strongly bounded al€)|— to prevent new boundary terms
where  Byidp)=(BF,di+BY,dY). The derivative terms from arising.
above are the Stratonovich correction in the drift, corre- We can classify gauges according to their real or imagi-
sponding to related terms obtained in curved-space path ifary nature, and their functional dependence; which can be
tegrals. on just the phase-space variables, just the quantum phase, or
These gauge terms are now utilized to stabilize coherenn both. This gives rise to the nine gauge types, depending
state paths entering into highly nonclassical regions of phasen the following criteria.
space. This allows one to benefit from the overcompleteness @. Gauge complexityGauges are in general complex
of coherent states, in reducing the sampling error and elimifunctions, which leads to the following classification of
nating boundary terms. gauge complexity(1) Real gauge(2) imaginary gauge, and
(3) complex gauge. In general, we find that trajectories can
be stabilized by real, imaginary or complex gauges, provided
) _they have somed, B) phase-space dependence.
~The procedure for calculating observable moments is |t js worthwhile to note that the imaginary and real parts
slightly different for the gauge representation than for thesf the gauges affect the behavior of sampling error differ-
positive P. Any moment can be written in terms of the nor- ently. In the Ito calculus, the evolution of the weightdue
mally ordered operator products"a™, and their expecta- to the gauges is simplgQ = Qg,dW, . Typically, i.e., when

D. Moments

tion values are given by there are no significant correlations between the phase of
(or B) and(}, the weight factor appearing in moment calcu-
n_m nom *
(afnam t:<IB a2+ (a"B") " )stoen (45 lations is just approximately REY). As a general rule, sam-
auan (Q+ Q%) s00n ’ pling errors are partially due to stochastic fluctuations in the

phase-space trajectories, and partially due to stochastic fluc-
which differs from the positive? situation whenevef) dif-  tuations in the weight function. Thus there is a trade-off; a
fers from unity. gauge that is strongly stabilizing may reduce phase-space
The average norni()) is always preserved if there is no fluctuations at the expense of increased weight variance, and
potential term ¥=0), since the resulting equation for the vice versa.
weight variable is To understand the different types of gauges in somewhat
greater detail, we consider the evolution of the weight vari-
dQ =g, dW. (46)  ance for real and imaginary gauges, in a simple case where
gauge and weight are decorrelated, will=1 initially. Let

The decorrelation property of Ito equatidi&9] then implies Q=0'+i0" andg,=g,+ig], then

that

(dQ)=(Qgi)(dW)=0. 47 dQ'=(Q' g~ Q"gpdW,

E. Gauge properties dQ"=(Q'gg+Q"gy)dW,. (48)

We turn briefly here to the question of gauge classification ) )
and properties. Just as in QED, the overcomplete nature dfwe consider the e\{olutlon of thg squares of these terms, the
the coherent-state expansion means that many equivalefto rules of stochastic calculus give
stable gauges exist. However, they may not be equivalent in
terms of boundary terms. These are determined by the tails d([Q'1?)=((Q'gr—Q"gp)?)dt,
of the distribution function, which depends intimately on the
gauge chosen for the time evolution. It is essential that the
distribution tails are sufficiently bounded to eliminate bound-
ary terms arising in partial integration. It is sufficient to
bound tails better than any inverse power law, for which it isSuppose for simplicity that thg, and ) are approximately
conjectured to requiréas a necessary conditipthat all de-  uncorrelated, then we have two cases to consider.

d([Q"]5=((Q'gp+Q"gp)?)dt. (49)
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(1) Real gauge A possible caveat with mixed gauges is that they may be
much harder to analyze, as two-way couplings will occur
d([Q']%)=([Q']*dT, (500  between the normal phase-space variahiesB and the
weight.

wheredr=(g,g,)dt. This initially leads to linear growth in
the variance, and hence in the sampling error. The real part
of the gauge will cause noise directly f1’, producing
asymmetric spreading ifd’, which can lead to a few rare,  The nonlinear absorber is an example of a nonlinear mas-
very highly weighted trajectories for times=1. The effect ter equation that can give either correct or incorrect results
of the real gauge may become misleading once the distribuyhen treated with the usual positiverepresentation meth-
tion becomes highly skewed, as the rare trajectories that aigs, if the boundary terms are ignored. Generally, problems
important for moment calculations may be missed if theonly arise when the linear damping has exceptionally small
sample is too small. At long times, {§,g) is constant and values or the number of bosons per mode is sifsae Fig.
uncorrelated with(2, then the growth becomes exponential, 2), so this is not a practical problem in optics. However, for

IV. NONLINEAR ABSORBER CASE

with ([Q']%)=¢". other physical systems such as a BEC this may be signifi-
(2) Imaginary gauge cant. It is a well-studied case, and a detailed treatment can be
found in Ref.[6]. It also has the merit that exact solutions
d([Q']%)=([Q"]*)dT, can be readily found using other means. By analyzing this
example we can ensure that the modifications to the drift
d([Q"]%)=([Q']*)dT, (51)  equations obtained from gauge terms, do eliminate boundary

terms and give correct results.

whered 7=(gigj)dt. This leads initially to quadratic growth  Consider a cavity mode driven by coherent radiation, and
in the variance ofQ)’, and hence a slower growth in the damped by a zero-temperature bath that causes both one and
sampling error. If(g,gy) is constant and remains uncorre- two photon losses. We have scaled time so that the rate of
lated with Q, then the growth is given by[Q’]?)  two-photon loss is unity. Without this nonlinear process,
=coshg), ([Q"]%)=sinh(»). An imaginary gauge will cause nothing unusual happens. The scaled one-photon loss rate is
mutual canceling of trajectories that have weights of ran-y, ande is the scaledcompley driving field amplitude. The
domly positive and negative sign onees7r. This can also master equation is
have deleterious effects for small samples, if the average
sample weight becomes negative—of course, this cannot be ap R R U
true over the entire stochastic population. —=[ea'—¢*a,p]+ = (2apa’—a'ap—pa'a)

The generic behavior is more complex than in the ex- dt 2
amples given above, due to correlations between the gauge 1
and the normalization. + E(Zazpa”— a'?a’p—pa'?a?). (52

Clearly any type of gauge tends to cause growth in the
norm variance. However, there is an exception to this rule: . .
the norm-preserving gauges. This class of gauges is of spe- FoIIowmg the treatment of Sec. I, we arrive at the gauge
cial interest as they generate trajectories having an invariaEPresentation Stratonovich stochastic equations
normalization, so that RdQ]=0. From the equation for
the norm variance, Eq49), it follows that a necessary and
sufficient condition for a norm-preserving gauge is that

da=[e—a(aB+ig+(y—21)/2)]dt+iadW,

O'g=0Q"gp. If Q'=1 initially, this implies that g dB=[e* - B(aB+ig+(y—1)/2)]dt+iBdW,
=iQ*f,=i(1-1Q")f,, wheref, is a real function. Unless
0x=0, norm-preserving gauges are generally functions of dQ=Sth+Q[gdW+§dW]. (53)

both the phase-space variables and the weliyh& prelimi-
nary study of these gauges has shown that these gauges a0
greatly reduce sampling error, although gauge-induce?
Eﬁgir::céa(r))f/f terms are also possillg], depending on the on the particular gauges chosen.

K- . —_ s .

b. Functional dependenc&rom the above analysis, we _ With no gauge §=g=0), the positiveP Stratonovich
see that gauges can functionally depend on any phase-spac@uations are recovered,
variable, as well as the generalized quantum phase variable
or weight ). This leads to three functional type&) Au-
tonomous(depends orf) only), (2) space dependerite- -
pends on phase space onlynd(3) mixed (depends on all dB=[&*— B(aB+{y—1}/2)]dt+iBdW. (54
components oty including ). Autonomous gauges appear
to be the least useful since they do not affecdr g behav- We will concentrate on the various simplifications of this
ior, but gauges of either purely space-dependent or mixechodel, which correspond to existing literature, and simpler
type can be used. analysis.

re Spdt is the appropriate Stratonovich correction term
given by the derivative terms in E@¢44)], which depends

da=[e—a(aB+{y—1}/2)]dt+iadW,
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A. Relevance to many-body problems with dW' = (dW+ dV_\/), r=2t, andfgz (g_,_a)/z_
The nonlinearity seen here can occur directly in the form  Let us examine the behavior of the above equation, when

of a nonlinear collisional damping term in a many-body sys-§=0, i.e., in the standard, ungauged formulation. The deter-
tem, so that it can be referred to generically as “two-bosorministic part of the evolution has a repellorrat0, and an
absorption.” This type of damping is common both to non-attractor an= 3. The noise is finite, and of standard devia-
linear photonic and atomic interactions. tion /dt/2 at the attractor. We can see that the deterministic
It is of nearly the same form as for an “imaginary-time” part of the evolution has a single trajectory of measure zero

thermal equilibrium state calculation for the usual model ofwhich can escape to infinity along the negative real axis,
an alkali-metal Bose gas or BE[34]. There, for example,

the interaction energy between identical bosons of nmass 1
and swave scattering lengthg in D-dimensional space is a=—p= — (58)
given by To— T

where 7o=1/a(0)?= —1/n(0). This moving singularity is
J’ de[pTZ(x) [/,2(X), (55) known to cause the power-law behavior of the Fokker-
Planck solution at largen|, which means that integration by
] ) _ parts is not in fact valid—which leads to incorrect results.
provided thatas is much smaller than other characteristic  |ndeed, it can be easily seen that in the steady-state limit,
lengths of the systerfwhich is usually the cageThe master g trajectories in a simulation will head towart= £, mak-

equation for an imaginary-time calculation is ing lim,_..(n)=%. Quantum mechanics, however, predicts
313e 1. o that if we start from a statp,, the steady state will be
=7 = " tH=uNpef (56) -

im<ﬁ>=§0<1+21|ﬁoll+2j>- (59)

[
t—oo

27hag
m

|:|=

wherep, is the thermal canonical ensemble density matrix,
w is the chemical potential is the number operator for the Eor a coherent-statler,) input, say, this will be
entire system, and=1/kgT is an inverse temperature. Apart
from the fact that it is not trace preserving, this is a nonlin- Iim(ﬁ)z %(1_e*2|ao|2)_ (60)
earity very similar to that occurring in the nonlinear absorber t—o
master equation.

While boundary-term discrepancies only occur with thisThus we can expect that the positiResimulation will give
nonlinearity for low occupations per modsee also Fig. 2 correct results only whegl@l*s> 1.
for a many-mode system at finite temperature one expects a To correct the problem we have to change the phase-space
large number of modes to have just such a low occupatiortopology in some way to prevent the occurrence of moving
Thus, it is important to check that boundary terms are indeedingularities. We have found that a good gauge for a two-
eliminated. Note that the gauge representation simulation iboson absorber nonlinearity in general is
efficient over a wide range of occupation numbers. See, for

example, Fig. 3. More details of applications to both real and g=g=g=i(n—|n|). (61
imaginary time many-body systems with many modes will
be given elsewhere. This replaces the-n? term in Eq.(57) which may become

repulsive from zero, with-n|n| which is always a restoring
B. Two-boson absorber force, and so never leads to superexponential escape.
: With the gaugg61), the Stratonovich equations become

In its simplest form, corresponding o= & =0, only two-

boson absorption takes place. We expect that for a state dn=—n(|n[-1/2)d7+indW", (62
|y == ,cpnn) all even-boson number components will decay )

to vacuum, and all odd-numbered components will decay to dQ=0{[n+(n—|n|)?]d7/2+i(n—|n|)dW'}.

|1), leaving a mixture of vacuum and one-boson states

long times. alghase-space trajectories have changed now, but since it has

The positiveP representation has been found to give er-
roneous result$4,35—-37 due to the existence of moving
singularities 6], which cause power-law tails in the distribu-

all come from the same master equation, it still describes the
same system. Consider the equations for the polar decompo-
sition of n=re'?,

tion leading to boundary-terms. The moment usually concen- dr=—r(r—1/2)dr,
trated on in this system is the number of bosonsa’a,
which corresponds to the statistical averag@efag in the dp=dW". (63
positiveP representation. This has a convenient closed equa-
tion (Stratonovich, This is exact, and shows that now we have an attractor on the
B circle [n|=3%, and a repellor ah=0, with free phase diffu-
dn=-n(n+ig—1/2dr+indw* (57) sion in the tangential direction. Once trajectories reach the
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FIG. 1. Comparison of two-boson damping simulations. Circles,
positiveP simulation; solid line, circular gauge simulation; dashed
line, exact calculationtruncated number-state bgsiSimulation
parameters: 40 000 trajectories; step sizd.005; initial coherent
state. Stratonovich semi-implicit meth¢a2].

FIG. 3. Comparison of simulations for system with both single-
and double-boson damping. Relative strengtk0.1; Circles,
positiveP simulation; Solid line, circular gauge simulation; dashed
line, exact calculatiorftruncated number-state bagsi§auge simu-
lation parameters: PQtrajectories; step size varies from 0.0001 to

) ) .~0.006; initial coherent state0) with <ﬁ>=100 bosons.
attractor, only phase diffusion occurs. Some more compli-

cated evolution is occurring in th@ variable. In any case, C. One- and two-boson absorber

there are now no mpving singularities anywhere in the phase |t we now turn on the one-boson decay as well, but still
space, and simulations correspond exactly to quantum Mg, not have any driving, we expect that all states will decay
chanics. to the vacuum on two time scales 1 andg.1lf y>1, noth-
Figure 1 compares results for a truncated number-staig,q interesting happens, howevenifs 1, we should first see
basis calculation, a positive calculation, and a “circular” 5 yapid decay to a mixture of vacuum and one-boson states
gauge(61) calculation for an initial coherent state @f,  gye to the two-boson process, and then a slow decay of the
=1/\2. Figure 2 compares steady-state values for exachne-boson state to the vacuum on a time scale~o2/y.
positiveP, and gauge calculations for various initial coherent | this case the positive- equations display different be-
states in a vyldg range. It is seen that the gauge calculapon Ifavior depending on whetheris above or below the thresh-
correct to within the small errors due to finite sample size. g y=1. Below threshold, we have an attractorrat (1
—y)/2, and a repellor ab=0, while above threshold, the

attractor is am=0, and the repellor abh=—(y—1)/2. In
. 05p o either case, there is a singular trajectory along the negative
g real axis, which can cause boundary-term errors. It turns out
2 04} that the steady state calculated this way is erroneous while
“§ vy<1, and there are transient boundary term errors while
£ ol <2 [4]. The false steady state below threshold lies at the
§ location of the attractor: (% y)/2.
= 0sl Let us try to fix this problem using the same circular
T ’ gauge(61) as before. The equation foris now
;;/ 0.1} dr=—r(r—[1-y]/2)dr, (64)
Ole ‘ ‘ . ‘ while the ¢ and() evolution is unchanged. So, above thresh-
0.001  0.01 0.1 1 10 100 old we are left with only an attractor a&t=0, while below

{ (r = 0) ) (number of bosons) threshold we have a repellor at=0 surrounded by an at-
R tracting circle ar =(1— vy)/2. This phase space again has no
FIG. 2. Steady-state expectation values of boson nurliber  moving singularities.

obtaingd by gauge simuIatio(ldou.ble.trianglebcompared t.o exact The results of simulations for the paramete0.1 are
analytic results from Eq(60) (solid ling) and positiveP simula-  shown in Fig. 3. The gauge simulation tracks the exact re-
tions (circles for a wide range of initial coherent states. Size of sults. We have chosep<1 so that a system with two widely
uncgrtainty in gauge results.due to finite sample size is indicated b&iffering time scales is tested. The circular gauge avoids the
vertical extent of “double-triangle” symbol. Steady state was 0b- ¢, g0 regyits of the positive simulation. Note also that the

served to have been reached in all simulationsrky7 or earlier - . . . -
(compare with Figs. 1 and)3hence this is the time for which the gauge simulation remains efficient for a wide range of occu

simulation data is plotted. Simulation parameters: 100 000 trajectoPation numbers—jron(ln)wlowl, where the positive is
ries; step size= 0.01. also accurate, tdn)~0.1<1 where it is totally incorrect.
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1

da=(G—aB)adr+Qdy,

7 dB=(G—aB)Bdr+/Qd7* (65)
(o]
§ in appropriate scaled variables, with the complex Gaussian
° noisedz obeying(d»d#*)=2dr. In terms of physical pa-
f-é rameters, we have
=
= ~
= a= a/\/./T/,
B
B=BIN, (66)
% 5 10 15 20 25 wherer is the scaled time, and/ >1 is a scaling parameter
¢ (scaled time units) that equals the number of gain atoms in a simple photonic

i =
FIG. 4. Driven two-boson absorber with=0.05. Circles, laser madel. Bott, the gain parameter, an@=G/A, the

positiveP simulation (1000 trajectorig¢ssolid line, circular gauge noise parameter, are real and positive.
simulation (16 trajectorie$; dashed line, exact calculatidtrun- Since this time we are again interested in (sealed

cated number-state basisStep sizeAt=0.025. Initial vacuum P0SOn numbefn)=(a)=(n)/\ its evolution can be writ-
state. ten as a closed equation

D. Driven two-boson absorber dh=—2(-a)(h—b)dr+ 2\/adW, 67)
The other type of situation to consider is when we have a
driving field as well as two-boson damping. In these considwhere now thereal Gaussian noise obeydWdW =dr,
erations we have set the one-boson damping rate to zero (@nd the deterministic stationary points in the Stratonovich
=0), since this process never causes any of the simulatiogalculus are
problems anyway, but leaving it out simplifies analysis. Fail-

ure of the positive® representation method has been found a=3(G+G*+2Q),

in this limit as well[5], and is evident in Fig. 4. The equation

for n is no longer stand-alone in this case, and we must b=1(G—G?+2Q). (68)
simulate all three complex variables as in E§3), the ()

equation being the same as in the undriven ¢agg We find that the stationary point atis an attractor, and dt

A treatment of the singular trajectory problem with the we have a repellor. Defining:b_ﬁ, we get
same circular gaugé6l) leads again to correct results, as

seen in Fig. 4. dA=2A(A+\G?+2Q) +noise, (69)
V. THE SINGLE-MODE LASER which shows that we again have a singular trajectory escap-

] ing to infinity in finite time along the negative real axis for
Let us now consider the second quantum system for

which systematic errors have been seen with the podRive- n<b.

representation. We will see that the problem here is some- N -

what different than in the previous case. The difference is B. Initial conditions

that for two-boson damping, boundary-term errors occur | et uys consider the usual case of vacuum initial condi-
even when we choose an optinfae., compadtinitial dis-  tjons. A vacuum can be represented by

tribution to represent our starting state, whereas here system-

atic errors occur only for unreasonably broad initial distribu- PH) (@, B)=8(a)8(B), (70)
tions. Nevertheless, since normally it is assumed that the

initial condition can be of arbitrary breadth it is instructive to pyt also by Gaussian distributions of any varianeg,
investigate how this problem can be tackled with stochastic,;qnd the above,

gauge methods.

We have found that stochastic gauges can be used to in- 1 2|2+ B2
crease the allowable breadth to include all reasonable starting P (a,B)= — ) (72)
conditions, but once one tries to increase the initial spread 477203 203

too much, it becomes unlikely that any gauge will remove
systematic errors, without introducing too much samplingNote: the distribution oh is non-Gaussian, but has a stan-

(i.e. random error instead. dard deviation ofoz~ 203 in both the real and imaginary
directions.
A. The laser model It has been found by Schack and Scherglethat for the

Ito stochastic differential equations for a simple photonicsingle-mode laser model, a positifResimulation of pumping
or atomic laser model that can be derived from the positivefrom a vacuum will give correct answers if the usual
P distribution ar€g5,6] S-function initial condition(70) is used, but will have sys-
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by ' ' ' ' da=a(G-n)dr—\Q(g+ig)dr+Qdz,
Tz e ] o B _
£ e dB=B(G-n)d7r—\Q(g—ig)dr+Qdn*,
= 4l e
§ 0sl o _ dQ=0[(g—ig)dyp+(g+ig)dy*1/2 . (73)
o] z -
% 0.6r ; It is convenient to define a transformed gauge function
= which is also arbitrary, such that
2 045 .
oz / - _(a+B)g
¥ | | | | 2JQ
% 0.5 1( 15 2) 2.5 3 o
7 (scaled time units _ (a-
_ @B 7
FIG. 5. One-mode lasge=1, Q=0.25. Dashed lingicorrec} 2i \/6

positiveP simulation with §-function initial conditions(70) og ~

=0 and 10 trajectories. Dotted-dashed line, erroneous posfive- Changing ton and ® =In(Q)) variables we obtain the Stra-
simulation with Gaussian initial condition§1) a§=0.1 initially, tonovich equation

and 10 trajectories. Dotted line, positive- simulation with aé

=1, and 108 trajectories. Solid line, gauge calculation for% dn= zﬁ(G_ﬁ_g)dﬁL Qdr+ 2+ /Q~r1dW,
=0.1 withA =4, which corrects the systematic error of the positive
P. Only 4000 trajectories, so as not to obscure other data. Step size T2 =
in all cases is 0.005. =
dO®@=— ——=d7+Sgd7+g \ﬁdW, (75
2Q © Q

tematic errors if the initial condition used has a sufficiently . ) . )
large variancésee Fig. 5 We emphasize here that this is not With Sedt being the appropriate Stratonovich correction
a real problem in practical cases, as the variance required t§iven by the derivative terms in E¢44)] for a particular
cause systematic errors is typically extremely large, once thgauge functiorg.
scaling needed to obtain the us@approximate laser model
is taken into account. D. Correcting for the moving singularities

This can be understood because if we have a sufficiently ) L . ~
broad initial distribution, the region of phase space that in- Consider the deterministic evolution of the real pat,
cludes the singular trajectory will be explored by the distri-of n=n,+iny,
bution. Even if initially o5<|b|, the regionn<b may be ~ ~ ~ o~ —~ o~ ~
subsequently explored due to the presence of the noise termsdnx= —2nx+2Gn+Q+2ny—2n,Re g]+2ny Im[g].

Apart from the obviouss-function initial condition, one (76)
might want to try the canonical distribution of EL0), . ) o ~5 )
which is a standard positive- representation construction 1he moving singularity is due to the 2n; leading term for
[1]. It will not cause problems as its variancedéz 1IN, negative values afi, . We now consider criteria for choosing
which for any realistic case will be very smalie., o5,  the drift gauges as follows.
<|b|). Schack and Schenzle discovered anomalous results (1) It is desirable to keep the gauge terms to a minimum
when they choser2=1, due to an erroneous procedure of because whenever they act the weights of trajectories be-
scaling the equations—while not scaling the canonical initia€OmMe more randomized—see Sec. Il E 1. Thus, let us restrict
condition in a. Nevertheless, since any, is supposed to ourselves to functiong that are only nonzero fan,<0.
represent the same state, insight into what can be achieved (2) This immediately leads to another restrictiongmnTo
using gauge methods is gained if we analyze the systematise able to use the efficient numerical algorithms in the Stra-

errors for such a relatively largey. tonovich calculus, we must be able to calculate the correc-
. tion termSg , Which depends on derivatives 9f/n/Q. This
C. Gauge corrections immediately suggests tha must always be continuous,
The Fokker-Planck equation corresponding to &%) is  hence, in particular, Iir;\wﬁo(é):O. For ease of analysis, let
P p 2 us start with a simple form for the gauge=c—\n,
—={—=[n-GJa+ =[n-G]B+2Q —=—=1P. +\,ny. This restriction immediately impliex=\,=0,
P aa[ ] aﬁ[ 18 i Ty y imp y
(72
. . . - n] i ni<
We now introduce gauges using the same method as in Sec. az ARen] it Re[Nn] 0 (77
[I. This leads to the Ito stochastic equations 0 if Re[n]=0,
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and Se=\(Re¢n]+n+|n|)/2, when REN]<0, zero other- VI. CONCLUSIONS
wise.

» . . The positiveP representation is well suited to complex
(3) The next necessary condition, to remove moving sin

‘guantum-mechanical problems, such as many-body systems,

gularities, is that the- 2n term is canceled, hence but has been known for about a decade to have systematic
errors in some cases of its use—due to nonvanishing bound-
A1, (79 ary terms. The gauge representation, a variant on the usual

positiveP representation, can be used to eliminate boundary
(4) Now, if A=1 there are no systematic errors, but theterms and consequently all the systematic errors that were

. ' : encountered previously. It can also reduce sampling error in
sampling error very quickly obscures everything becayse X . . ) X !

i ’ ~ ’ a simulation, and allows imaginary time calculations of ther-
still heads to—< exponentially due to the@n, term. This 5] equilibrium states. The fact that correct results are im-
takes it into regions of everincreasirig|, and weights mediately obtained in every case where systematic errors
quickly become randomized. For slightly larger parametersvere found with the positivé® method, is strong evidence
\, then, evolution takes trajectories to a point lying far into that these previous problems were indeed due to boundary
the negativen, region where the two leading terms balance.terms caused by moving singularities in the analytically con-
Here the trajectories sit, and quickly accumulate weightinued deterministic equations. Of course, boundary terms
noise. It is clear that for an optimum simulation all stationarycan occur for other reasortfor example, if the noise term
points ofn, in the nonzero gauge region must be removed9roOWS too rapidly with radids so caution is still needed in

In this system this condition is the gauge choice. _
The technique appears to be broadly applicable, and only
2 requires the recognition of what instabilities in the stochastic
A>T+ —. (79 ~ €quations could lead to problems. It does not require detailed
2Q knowledge of what the boundary terms are, provided insta-

bilities are removed. However, we remark here that the gen-

An example has been plotted in Fig. 5 where we haveeral specification of necessary and sufficient conditions to
parameter&G=1, Q=0.25 (leading toa~1.1124 ancb~ eliminate boundary terms remains an open problem, and
—0.1124). We are considering an initial condition of clearly requires growth restrictions on the gauge terms, both

=0.1, which is already much larger than the canonical varii" Phase space and quantum-amplitude space. Care is also

ance for physically likely parameters. Tvpical valuesTof required with the choice of the gauge and initial distribution.
phy Y yp - 1YP However, using unsuitable gauges or initial conditions may

g}'gaalgg\g'ﬂage:; o_rrdheer l‘g‘e c?f. %ﬁi ggﬂ%gﬁ;?gsﬂggihe@Iy lead to Iarge_sampling errors, not systematic errors, pro-
correct results ' ylded the gauge is chos_en to eliminate boundary corrections
' in the first place. Sampling error then allows for a confident
assessment of the magnitude of inaccuracies in a simulation,
E. Nonoptimal initial conditions which can be supplemented by numerical analysis of the

As we increase the spread of the initial distribution be'dIsflrkt)euﬁhoaﬂntilcl)sﬁclusion We come to is that this method does
yond o;~|b|, it becomes increasingly difficult to find a . '

P . . in the cases studied, provide a complete solution to the prob-
gauge that' will give reaspnable snmulauorﬁEor' examplt_a,_ lem of simulation of apmany—body anntum system in pﬁase
we have tried a wide variety of what seemed like promising

gauges fora§=0.3, with the above values of paramet@s space, under conditions where previous direct simulation

andG, and none have come close to sucieBse problem is techniques were not practicable. All known technical re-
e i P uirements on the path to obtaining a stochastically equiva-
that while we can remove systematic errors, large rando

. ; nt description to quantum mechanics, which is applicable
noise appears and obscures whatever we are trying to calc;[b— both large and small particle numbers, have been satisfied
late. ~ by this method. For this reason, we believe that gauge simu-
Trajectories that start off at a valueofying significantly  |ations can be used to simulate many quantum systems with-
beyondb require a lot of modification to their subsequent gyt systematic errors when carrying out more difficult calcu-
evolution to (1) stop them from escaping te- and (2)  |ations, where no exact result is known.
move them out of the gauged region of phase space so that These conclusions must be supplemented by the detailed
they do not accumulate excessive weight noise. If th_ere argtudy of relevant gauges for particular quantum systems. We
many of these, the trade-off between the gauge size angote, however, that the mathematical techniques employed
length of time spent in the gauged region does not give mucRere for generating stochastic gauges, may well be useful for

benefit anymore. Nevertheless, one may be sure that if this isther representations as well as the gaBgeepresentation
the case, results will at worst be noisy and unusable, rathefescribed here.

than being systematically incorrect.

_ We stress again that thls whole matter of_nono_pnma! ini- ACKNOWLEDGMENTS

tial conditions is not a major hurdle to dynamical simulations

because a compact starting distribution is generally found Numerical calculations were carried out using open soft-
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suggesting the name stochastic gauges. For example, for the above Hamiltonian, one finds that
the diffusion matrix(in «,B) variables is

APPENDIX: OTHER EXTENSIONS OF THE POSITIVE- P

REPRESENTATION D=ix =BB. (A4)

2
1. The work of Carusotto, Castin, and Dalibard 0 B
Recently, Carusotto, Castin, and Dalibdd8] (CCD)
have made related extensions to the posiBveepresenta- Following the procedure in Eq(30), an equivalent but
tion. These were derived for the particular case of an interbroader choice of noise matrB& can be any of
acting scalar Bose gas, and led to a number of conditions for
an Ito stochastic evolution to be equivalent to a master-
equation evolution. -
It can be shown quite simply that the equatid48) gen- B=\ix
erated by the gaugP representation for this Hamiltonian
satisfy the CCD conditions. We conjecture that these provide
the most general possible solution to the stochastic problefith the usual diagonal decomposition given dps: 0.
posed by these authors. In particuladb=TIT[g,dW However, in Ref[9] it was found that for a positive
—N(¢,dB} + ¢35 dB,)], using the above paper’s formalism. simulation, different decompositions with nonzero constant
Our methods can also treat a much larger class of Hamiltogave the lowest sampling error for coherent-state initial
nians and master equations than considered in the CCD treajonditions. In their notation, they introduce/A+1
ment. =—./2 cos@), and consider the case of reaA=1 (i.e.,
In Ref.[7] systematic errors due to boundary terms werémaginaryg) only.
not considered. However, evolutions satisfying “exactness”
conditions derived using the same procedure can contain
such errors. 3. Stochastic gauges for the Kerr oscillator
As an example, following the CCD procedurg] for a
one-mode two-boson absorber master equation, as in Eg;
(52) with y=¢=0, one arrives at the conditions

(A5)

i cogQ) iasin(g)}
—psin(g) Bcogg) |’

In Ref. [2], the sampling error in a Kerr oscillator
mulation—equivalent to a one-mode BEC model, apart
from linear terms—was reduced substantially by using a rep-
dB,dB% =0 resentation similar to the gaude representation formally

' introduced here. The basic differences were the following.

dB3?=—¢2, (1) Instead of a complex gaud®, a phase factoe'? with
a real § variable, was used.
Fidt=—dbdB,/II, (A1) (2) The normalization with respect to the behavior tf
was carried out explicitly inside the kernel, rather than
Fodt=—db*dB,/II*, postsimulation in the moments as in Eg5).
f=II(N¢13)?, (A2)

_ S This type of representation is a norm-preserving gaage
where(referring back to the notation in this present paper representation, as discussed earlier. A parametrized family of
gauges led to stable trajectori@s opposed to the large sam-

dqﬁl:da/\/ﬁ:FldeBl, pling error present with a positive-simulatior). However,
some systematic errors were seen due to boundary terms.
d,=dB* I\ N=F,dt+dB,, These boundary terms occurred because of the stochastic
growth of the gauge term if)l space, wherg approached
dH=d[Qe*¢1¢’§ﬁ]=fdt+db. (A3) + /2. With the gaugeP representation introduced in this

paper, a wide range of gauges do not lead to any systematic

It can be seen that the positiequationg54) satisfy these ~ €rrors[33], provided gauge growth is controlled.
conditions, while producing the erroneous evolution seen in \We note here that the norm-preserving gauges have the
Fig. 1. In summary, the methods of the CCD paper do noProperty that, in the present notatiogy=i[1—-iQ"]fy.

obviate the need to choose gauges that eliminate boundakjowever, while the growth of)’ is stabilized, there is
terms. growth in the variance of)”. This means that the function

f, must behave as a decreasing function()f in order to
ensure that the distribution is bounded sufficiently in the
weight-function space to avoid finite boundary terms. The

In Ref.[9], Plimak, Olsen, and Collett have found that for detailed requirements and conditions for this type of gauge
some systeméhe Kerr oscillatoH = wpa'a+ «a'?a?/2, in  will be treated elsewhere.

2. Noise optimization by Plimak, Olsen, and Collett
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