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Abstract
The general idea of a stochastic gauge representation is introduced and
compared with more traditional phase-space expansions, like the Wigner
expansion. Stochastic gauges can be used to obtain an infinite class of
positive-definite stochastic time-evolution equations, equivalent to master
equations, for many systems including quantum time evolution. The method
is illustrated with a variety of simple examples ranging from astrophysical
molecular hydrogen production, through to the topical problem of
Bose–Einstein condensation in an optical trap and the resulting quantum
dynamics.
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1. Introduction

The original goal of pioneering physicists like Galileo,
Newton and Einstein was to predict dynamical behaviour in
the universe—from projectiles to planets and even photons.
However, complex systems in nature are not soluble with
analytic or direct computational methods if the space of system
descriptions is too large. Examples are master equations,
widely used in many disciplines, or quantum theory itself,
where the Hilbert space for many-body systems is enormous.
This is one of the central problems of modern theoretical
physics.

The problem of complexity inspired a claim by Feynman
[1] that reads:

‘Can a quantum system be probabilistically simu-
lated by a classical universal computer? . . .’ the an-
swer is certainly, No! (Feynman R P 1982 Simulating
Physics with Computers)

In this paper, we will give a very general overview of
new techniques for probabilistic simulation, called stochastic
gauge representations [2], which allow these ‘impossible’
simulations. Like Wigner’s original representation [3], these
are phase-space representations, but in phase spaces of larger
than classical dimension. The purpose of the paper is to
explain the abstract ideas behind stochastic gauges, which are
essentially an equivalence class of curved-space path-integrals
in a complex phase space. We compare the method with
other phase-space approaches, as well as giving elementary
examples.

Even in Feynman’s day, the introduction of quantum
Monte Carlo (QMC) [4] and related path integral techniques
indicated a possible way to solve problems of large Hilbert
space dimension. While these methods are used to treat
canonical ensembles, they cannot treat real-time dynamics.
Presumably, it was the failure of QMC methods in real
time, due to the highly oscillatory behaviour of the real-time
Feynman path integral, that caused Feynman to neglect these
types of random sampling methods.

In a more recent publication, the time-domain quantum
simulation problem was restated by Ceperley [5], as follows:

‘There are serious problems in calculating the
dynamics of quantum systems’ (Ceperley D M 1999
Microscopic Simulations in Physics).

The problems are due to the astronomical size of many-
body Hilbert spaces. This makes it difficult to treat the
quantum dynamics of Bose–Einstein condensates (BEC),
which typically have 10 000 or more particles, and 1010000

states in Hilbert space. In this paper, we show that stochastic
gauge methods are versatile enough to treat complex quantum
systems including master equations and canonical ensembles,
as well as many-body quantum dynamics in real time.

2. Phase-space representations

Phase-space mappings, which map the discrete states of
quantum theory into a classical-like phase space, were
originally introduced by Wigner in the form of the famous
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Wigner representation [3]. In the stochastic version of
these methods, ensemble averages are mapped into trajectory
averages, which can be numerically simulated. Phase-space
representations have developed in three distinct stages. In
the first stage, the Wigner representation, Husimi [6] Q-
representation and Glauber–Sudarshan [7, 8] P-representation
all use a classical phase space of 2M real dimensions
for quantum systems corresponding to M classical modes.
Typically these methods will not give locally positive
propagators for nonlinear quantum systems. Hence they
cannot have a directly equivalent stochastic process.

In the second stage, higher-dimensional representa-
tions were developed. These include the Glauber R-
representation [7] (which is non-positive), the Poisson repre-
sentation (for incoherent master equations only), and for quan-
tum systems, the positive P-representation [9]. The last two
methods give locally positive propagators, by virtue of using
a non-classical phase space. However, while they work very
well for damped systems, in highly nonlinear simulations they
typically develop unstable trajectories [10, 11] leading to large
sampling errors or even systematic errors in nonlinear quan-
tum simulations. These simulation problems are caused by
the distributions having power-law tails in phase space [12].
When this happens, the distributions are not sufficiently local-
ized to allow integration by parts, which is a crucial step in the
derivation.

In the current stage, gauge representations are used, which
add a further complex gauge amplitude � to the representation
phase space. These provide a way to overcome Feynman’s
complexity dilemma, and are the subject of the present paper.
For appropriate gauge choices these methods are conjectured
to be exact in principle. They have no instabilities, and we
will show that numerical simulations give no systematic errors,
even in cases where previous methods would have boundary
term errors. Numerical implementations are still necessarily
approximate due to the usual limitations of finite computers,
but error levels can be estimated and reduced to any desired
level compatible with the hardware and time available.

To understand the reason for these developments, it
is useful to enumerate the requirements for a phase-space
representation that can be used to map quantum dynamics
into a stochastic differential equation, which can be simulated
numerically. They are as follows:

(1) Non-singular: essential for finite probabilities, although
an initial delta function can be tolerated.

(2) Positive distribution: needed to get positive initial
probabilities.

(3) UV convergent: to control sampling error on lattices,
vacuum fluctuations should not diverge at large
momentum cut-off.

(4) Second-order derivatives: the mapping must generate at
most second-order derivatives, to obtain diffusive phase-
space behaviour.

(5) Positive-definite propagator: the short-time propagator
must be positive definite, for an equivalent stochastic
process to exist.

(6) Stable: trajectories in phase space should be stable to
prevent boundary term errors: further restrictions on noise
growth are also needed.

How do the known phase-space representations compare? This
is shown in table 1, for a system of much current interest, the
anharmonic oscillator, see section 5.3.

It can be easily seen that the earlier phase-space techniques
using a classical phase space had other problems as well as not
generating positive propagators. While the positive-P method
removes almost all the problems of earlier techniques, it still
has a disadvantage in that it can generate moving singularities
from unstable phase-space trajectories. This is known to cause
problems with large sampling errors and boundary terms [10–
12] causing systematic errors in simulations of systems with
extremely low damping.

The gauge representation method [2], which unifies
and extends some other closely related approaches [13–
16], removes this last problem by stabilizing phase-space
trajectories. It also points the way to the development
of other phase-space representations in the future, since
the fundamental idea relies on very general properties of
completeness, analyticity, and the existence of operator
mappings into a second-order differential equation.

If we extend our table to other cases, we see that some
phase space representations appear more suited to calculations
other than stochastic simulations. For example the symplectic
tomography scheme of Mancini et al [17], which expresses
the quantum state as a probability distribution of a quadrature
observable depending on a range of laboratory parameters, has
been used to investigate quantum entanglement and failure
of local realism, but has not to our knowledge led to many-
mode quantum simulations, presumably due to the lack of a
positive propagator in nonlinear evolution. The complex P
representation [9] allows one to derive exact results for certain
problems, but does not lead to stochastic equations, since the
distribution is neither real nor positive.

3. Stochastic gauges

The idea of stochastic gauges can be summarized for the
generic case of any linear time-evolution problem which, like
quantum mechanics, can be expressed using a matrix product
over a space of denumerable dimension. We first introduce
a continuous basis Λ0(α) in the underlying Hilbert space of
operators, with unit trace: Tr[Λ0(α)] = 1. This must be
an analytic function of the complex phase-space variables α,
and have a mapping from the time-evolution problem that
generates only second-order phase-space derivatives. The
basic mathematical steps are as follows:

(1) Wish to solve-∂ρ/∂ t = L ρ(t) where L is a matrix and ρ
is a vector of probabilities or amplitudes for the d distinct
occupation numbers (N1, . . . , Nd ), so its elements may be
labelled ρN1,...,Nd .

(2) Introduce a (d + 1)-dimensional complex phase space:
α = (�, α), with a renormalized (gauge) basis of analytic
vector functions Λ(α) = �Λ0(α).

(3) Expand: ρ = ∫
G(α)Λ(α) d2(d+1)α.

(4) Equivalent time evolution using second-order derivatives:

∂

∂t
ρ(t) =

∫
G(α)LA[Λ(α)] d2(d+1)α.

(5) Add arbitrary diffusion gauge vectors f(α) and drift
gauges g(α) to give stability.

(6) Equivalent stochastic equation: ∂α/∂t = A + B : ζ(t).
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Table 1. Table of representation properties required for stochastic quantum dynamics.

Phase-space Non- Positive UV 2nd Positive
representation singular? distribution? convergent? derivatives? definite? Stable?

Wigner Yes No No No No —
Q Yes Yes No Yes No —
P No No Yes Yes No —
R Yes No Yes Yes No —
Positive P Yes Yes Yes Yes Yes Indefinite

Gauge Yes Yes Yes Yes Yes Yes

3.1. Ladder operators

To explain the procedure in more detail, consider a generic
equation, which is typically a type of master equation for a
quantum density matrix defined over a basis of number state
occupation numbers:

∂

∂t
ρ(t) = Lρ(t) (1)

where ρ has elements ρN1,...,Nd , with the labels Ni correspond-
ing to an occupation of Ni in mode i . If the density matrix has
off-diagonal entries, these can be regarded as elements of an
enlarged vector, with d = 2M occupation numbers required
for each entry in the case of M modes. Note that this linear
problem is soluble in principle using diagonalization of L, but
the (typically) large size of the matrix makes this impractical.

Suppose L can be constructed from sums of products of
matrix raising and lowering (‘ladder’) operators. These either
increase (L+

j ) or decrease (L−
j ) the number of particles and

multiply the probability by a function f ±
j (N j ). Thus, for

master equations, one might have:

[L±
j ρ]N1,...,N j ,...,Nd = f ±

j (N j )ρN1,...,N j ∓1,...,Nd . (2)

This general structure occurs in many physical systems,
including Pauli-type master equations for positive probabilities
found in many situations ranging from genetics to kinetic
theory. In quantum problems, ρ is a density matrix in a
number-state representation, while the ladder operators are
bosonic creation and annihilation operators. The density
matrix can be written as an enlarged vector on a basis of
number-state projectors with d = 2M for the case of bosonic
many-body theory on M classical modes. In this case, ρ(t) is
not positively valued, but the time-evolution problem is still
linear.

There are also equations of identical structure found in
‘imaginary time’, which allow the calculation of canonical
ensembles in many-body theory. In these cases, the operator
norm is not preserved, but the equations are still linear. To give
a simple example of the type of basis set that is of interest,
a complete, analytic coherent state basis on the phase space
α = (�, α) = (�, α, β) for the case of a single harmonic
oscillator is given by:

Λ(α) = �|α〉〈β∗|e−αβ, (3)

where |α〉 is a bosonic coherent state.

3.2. Identities

Identities can now be constructed that depend on the nature of
the continuous basis set Λ0(α). We only require that this basis
set is an analytic function of the continuous variables α. While
it is common to use either Glauber coherent state projectors
or Poisson distributions for this purpose, this is certainly not
essential. More general basis sets like SU (N) coherent state
projectors or general Gaussian bases are very likely to give
even better results, as they often more closely approximate the
physical quantum states of interest.

Clearly, both raising and lowering identities are usually
needed; in the following list, we indicate how the identities map
matrices onto differential operators in the phase space. This
is just a generalized version of the well-known equivalence
between Heisenberg’s matrix mechanics and Schroedinger’s
wave equation:

L−
j Λ(α) = L−

j (∂, α)[Λ(α)]

L+
j Λ(α) = L+

j (∂, α)[Λ(α)]

Λ(α) = �∂�[Λ(α)].

(4)

Provided Λ0(α) is analytic in α, one can use ∂ = (∂�, ∂)

to symbolize either [∂x
j ≡ ∂/∂x j ] or −i[∂ y

j ≡ ∂/∂y j ], where
α j = x j +iy j for j = 0, 1, . . . , d, and x j as well as y j are real.
These identities will be used later to specify which form of the
derivative will be used to obtain a positive-definite diffusion
term.

3.3. Diffusion gauge

Using the identities to eliminate ladder operators, we obtain an
evolution equation in integro-differential form:

∂

∂t
ρ(t) =

∫
G(α)LA[Λ(α)] d2(d+1)α. (5)

Here the differential operator acts on the basis set, and
must be of no more than second order:

LA = U + A′
j∂ j + 1

2 Di j∂i∂ j , (6)

where the implicit summation is over i, j = 1, . . . , d. At this
stage, we notice that if we integrate by parts, we would obtain a
possible solution to the time evolution provided that boundary
terms vanish, and that:

∂

∂t
G(α, t) = LN [G(α)]. (7)
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Here the normally ordered differential operator LN is defined
as:

LN = U − ∂ j A′
j + 1

2∂i∂ j Di j . (8)

This type of generalized Fokker–Planck equation is known
to be equivalent to a curved-space path integral [19] on the
complex phase space. This means that we have indeed reduced
the dimensionality of the problem, in the sense that the phase-
space dimensionality is much smaller than the dimensionality
of the original vector. However, path integrals are not
always convenient for numerical calculations, and we wish
to transform the equations further into a stochastic form.

As the first step toward a stochastic reformulation, define
a d ×d ′ complex matrix square root B called the noise matrix,
where:

D = BBT. (9)

Since this is non-unique, one can introduce diffusion
gauges [2, 16] from a set of matrix transformations U [ f (α)]
with UUT = I . Using these, it is clear that given an initial
square root B′, it is always possible to construct another square
root B, corresponding to an alternative ‘diffusion gauge’, with:

B = B′U [f ]. (10)

This is also an equally valid matrix square root, but it will in
general have different stochastic properties.

The matrices U [f ] are just the usual set of complex
orthogonal matrices where U [f ]UT[f ] = 1. These can either
be fixed or variable functions of the phase-space coordinates,
provided they satisfy growth restrictions. If we assume that
they are d ′ ×d ′ square matrices, then they are generated by the
antisymmetric d ′×d ′ matrices, that is, there are d ′×(d ′−1)/2
diffusion gauges. Generally, d ′ � d, since the diffusion matrix
can have zero eigenvalues, although one can define larger noise
matrices.

3.4. Drift gauge

A drift gauge Fokker–Planck equation is obtained as follows.
Introduce d ′ arbitrary complex functions g = (g j (α, t)), to
give a new differential operator:

LG = LA + [U + 1
2g · g �∂� + gk B jk∂ j ][�∂� − 1]. (11)

Here, LG is equivalent to LA , from the last identity in
equation (4). Summing indices over i, j = 0, . . . , d (where
i = 0 labels the variable �), this can be rewritten in the form:

LG = [A j∂ j + 1
2 Di j∂i∂ j ]. (12)

This removes the non-stochastic term U , and, with the correct
choice of gauge, stabilizes the drift equations.

4. Stochastic gauge equations

Since the initial drift vector was A′, the total complex drift
vector, including gauge corrections is A = (U�, A), where:

A = A′ − Bg. (13)

The total complex diffusion matrix D is a (d + 1) × (d + 1)

matrix, with a new (d + 1) × d ′ square root B:

D =
[

�2g · g, �gTBT

Bg�, BBT

]

=
[

�gT

B

]

[�g, BT] = B BT.

(14)

4.1. Dimension-doubling

We now introduce the technique used to produce positive-
definite diffusion, which depends on the analyticity of the
basis and the associated differential identities. This technique
is identical to that used for the positive-P representation [9],
but is now extended to include the gauge amplitude variable
as well. Define a 2(d + 1)-dimensional real phase space
(x0, . . . , xd , y0, . . . , yd), with derivatives ∂µ, where µ labels
all the 2(d + 1) real variables xµ.

Let: B = Bx + iB y and A = Ax + iAy with all the x
and y forms real. Choose the alternative analytic forms of the
differential operator so that:

Ai∂i → Ax
i ∂

x
i + Ay

i ∂
y
i , (15)

D
i j
∂i∂ j → Bx

ik
Bx

jk
∂x

i ∂x
j + B y

ik
Bx

jk
∂

y
i ∂x

j + (x ↔ y). (16)

With this identification of real derivatives, the original gauge
differential operator is written:

LG = [Aµ∂µ + 1
2Dµν∂µ∂ν]. (17)

Next, on partial integration of the integral equation of
motion, at least one valid solution for G must satisfy:

∂

∂t
G =

[

−∂µAµ +
1

2
∂µ∂νDµν

]

G. (18)

By construction, the real diffusion matrix is a square of
form:

D =
[

Bx

B y

]

[(Bx )T, (B y)T] (19)

= B BT. (20)

Clearly, D is positive definite. Hence, from the theory
of stochastic equations [20], provided some restrictions on
growth are satisfied, one obtains the Ito stochastic differential
equations:

d

dt
xµ = Aµ + Bµjζ j (t), (21)

where the real, Gaussian noise terms ζ j (t) (for j = 1, . . . , d ′)
are delta-correlated:

〈ζi(t)ζ j (t
′)〉 = δ(t − t ′)δi j . (22)

4.2. Central result of stochastic gauge theory

Another, clearer way to write this result is to return to a complex
vector notation. Ito stochastic equations for the complex
trajectory and gauge amplitude � are therefore obtained as
follows:

d�

dt
= �[U + g · ζ(t)]

dα

dt
= A′ + B : [ζ(t) − g].

(23)

Here, the arbitrary gauge terms g can be used to eliminate
moving singularities that might be already present with the
analytic drift A′; the actual simulated drift is A = A′ −B : g.
Gauges can be chosen freely to optimize simulations, in either
real or imaginary time.

It is essential to recognize that only the basis set, not
the gauges, must be analytic functions on the phase space.
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Thus, while the original drift is usually analytic, the gauge
modified drift is best chosen not to be analytic. This is
because the analytic continuation of systems of (generically)
non-integrable nonlinear equations typically has moving
singularities, which are trajectories that can deterministically
reach infinity in a finite time. This is related to the Painleve
conjecture of mathematical physics [18]. To remove the
singularities, with their resulting boundary terms, a non-
analytic gauge is therefore needed. Provided there are no
boundary terms, all gauges are the same physically, but in
practice, they give rise to different sampling errors, and
therefore must be optimized carefully.

Although removal of moving singularities appears
necessary, this is not sufficient either to minimize sampling
error or to guarantee the absence of boundary terms. In general,
gauges must still be checked on a case by case basis. We
have found that diffusion gauges that have no radial growth
in the extended phase space, and drift gauges where all phase-
space trajectories are directed toward the origin at large enough
radius, appear to eliminate boundary terms in most physically
sensible examples. Clearly, a more rigorous investigation into
these issues is still needed, since there may be anomalies even
with these restrictions.

4.3. Observables

We typically wish to calculate physically observable quantities
or moments of ρ in the form of a trace, where for this purpose
the quantum density operator should be regarded as a matrix:

〈O〉 = Tr[Oρ]

Tr[ρ]

=
∫

G(α)Tr[OΛ(α)] d2(d+1)α
∫

G(α)� d2(d+1)α
.

If the problem involves Bose operators, with a coherent
state basis, then the Hermitian observables can be written in
a normally ordered form, Ô = ON (a, a†). The equivalent
c-number expression for ensemble averaging is:

O(α) = �ON (α, β), (24)

so the quantum ensemble average 〈Ô〉 has an immediate
expression as:

〈Ô〉 =
∫

G(α)

N
O(α) d4M+2α = 〈O(α)〉S

N
. (25)

Here N = 〈�〉S , to preserve the trace of the normalized
density matrix, and 〈O〉S represents a stochastic average on
the phase space of all trajectories α, including the weighting
factor � at each point in the trajectory.

5. Examples

The focus of this section is to give examples in simple cases
that are exactly soluble, yet with statistics that are far from
Poissonian. The reason for this is to illustrate how the
stochastic gauge technique is successful in treating cases that
would not be soluble using any previous simulation method,
since the statistics are quite different to those of the underlying
basis set. As examples, we will start with a simple chemical

reaction master equation in which there are no quantum
coherences, then move to a canonical ensemble example, and
finally a quantum dynamics problem.

None of the examples presents any real difficulties, since
they are exactly soluble. However, our purpose here is to show
that the stochastic gauge method gives correct results in cases
where the solutions are already known. This, of course, is
an essential first step toward treating more complex systems
where the results are not known a priori. It is also interesting
to see how these techniques have rather general applicability in
physics and related scientific fields. This allows the possibility,
for example, of combining imaginary time propagation for the
initialization of the quantum system in a thermal ensemble,
followed by real-time propagation to simulate the response to
a change in the Hamiltonian. Such experiments are common
in many-body physics.

5.1. Master equations

The first example will be a type of Pauli master equation, in
which there are only diagonal terms in the density matrix, so
there are only simple probabilities in the original equations.
These types of equation commonly occur in chemical [21]
and biological [22] applications. A typical example is
the astrophysically important problem of the formation of
molecular hydrogen on interstellar grain surfaces [23]. A
simplified reaction model is then:

H(I N) :→r H

2H →k H2

H →γ H∗.

This describes adsorption of hydrogen atoms via a rate
(r ) from an input flux H(I N), together with desorption at a
rate γ . In addition molecule formation occurs at a rate of k.
The corresponding master equation can be transformed to
Fokker–Planck form using the Poisson representation, giving
an analytic steady-state solution for the mth moment of n (the
number of H atoms), in terms of Bessel functions:

〈nm〉 = C
∫ (0+)

−∞
µ(2−m−γ /k)erµ/k+2/µdµ

=
(

r

2k

)m/2

Iγ /k+m−1(4
√

r/2k)/Iγ /k−1(4
√

r/2k). (26)

This gives the H2 production rate via RH2 = k〈n2〉.

5.1.1. Stochastic equations. Here we use an exact expansion
of the distribution vector ρ using ‘prototype’ solutions, namely
the complex Poisson distribution Λ0(α):

[Λ0(α)]N1,...,Nd =
d∏

j=1

e−α j (α j )
N j /N j ! (27)

By comparison, the original Poisson representation [21] of
Gardiner expands the distribution vector with a positive
distribution of Poissonians, f (α), defined over a complex
d-dimensional phase space of variables α, just as we do here,
but without the extra weight factor �. Including the weight
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Figure 1. Sampled moments of 〈n〉 (upper curve) and 〈n2〉 (lower
curve) for astrophysical hydrogen molecule production in the
Poisson representation, parameters as in text. Adjacent lines give
upper and lower error bars caused by sampling error. The numerical
values used here were k = 0.5, γ = 0.1, r = 0.1.

factor, we can take advantage of the more general stochastic
gauge procedure summarized in equation (23). Together with
the corresponding Poisson identities, one finds the following
Ito stochastic equations for molecule production including the
gauge terms, where 〈ζ(τ)ζ(τ ′)〉 = δ(τ − τ ′):

d�

dτ
= �gζ

dn

dτ
= [r − γ n − 2kn2] + i

√
2kn[ζ − g].

(28)

If there is no gauge, the result of figure 1 is obtained,
corresponding to the original Poisson representation method.

This result is clearly extremely inaccurate. It has a large
sampling error in 〈n2〉 and we will see that it also has a
systematic error in 〈n〉. The reason for this is that the original
ungauged equations have an instability as n → −∞, leading
to a moving singularity. This causes power-law tails and
systematic boundary term errors in the resulting phase-space
distribution, when there are small γ /k ratios.

Fortunately, it is simple to stabilize these equations by
adding non-analytic corrections to the drift. The simplest case
is the ‘circular’ gauge, which replaces the analytic variable n
by its modulus |n|:

gc = i
√

2k(n − |n|).

In this gauge, the Ito equations are:

d�

dτ
= i�(n − |n|)√2kζ

dn

dτ
= r − n[γ + 2k|n|] + in

√
2kζ.

(29)

The corresponding results are shown in figure 2, indicating
a dramatically improved sampling error, and no systematic
errors.

For the circular gauge and for the Poisson expansion, the
observed moment and its sampling error is given in table 2,
which tabulates the final near-equilibrium simulation results
at t = 40, and compares them to the equilibrium analytic
result for t = ∞. For the stable circular gauge, the results are
within one standard deviation of the analytic calculation in all

Figure 2. Sampled moments of 〈n〉 (upper curve) and 〈n2〉 (lower
curve) for astrophysical hydrogen molecule production in the
‘circular’ gauge, parameters as in text. Adjacent lines give upper
and lower error bars caused by sampling error, which is invisible on
this scale.

Table 2. Table of observed moments, comparing analytic results
with those for the Poisson representation and for the ‘circular’
stochastic gauge. The moment 〈n2〉 is critical for molecule
production. Sampling error in brackets.

Moment Analytic Poisson Circular gauge

〈�〉 1.0 1.0 0.994(10)
〈n〉 0.407 . . . 0.457(4) 0.402(5)

〈n2〉 0.059 . . . 0.094(8) 0.061(2)

cases. Other gauges are also possible; in fact, almost any gauge
which suppresses the moving singularities will give acceptable
results, as long as no new boundary terms are introduced by
the gauge itself.

By comparison, the unstable ungauged Poisson method
clearly gives enormous sampling errors, with incorrect
averages in 〈n〉, due to systematic boundary term errors. While
this problem is relatively simple (for purposes of illustration),
the stochastic techniques given here are easily extended to
more complex problems where the original master equations
cannot be solved directly. More details of this will be given
elsewhere [24].

5.2. Canonical ensemble

For computational purposes, we can reduce the Bose gas
Hamiltonian to a lattice Hamiltonian which contains all the
essential features. This includes nonlinear interactions at
each of M sites or modes, together with linear interactions
that couple different sites together. Such problems are
important for quantum gases trapped in optical lattices, or in
low-dimensional environments, where evidence for quantum
coherence and particle antibunching has been inferred in recent
experiments.

The simplest case that can represent a BEC in a one-mode
trap has M = 1, so:

Ĥ = h̄ω : n̂ : +h̄χ : n̂2 : . (30)

In this normally ordered Hamiltonian, the operator n̂ =
â†â is the boson number operator. The above Hamiltonian can
be easily generalized to many important interacting Bose gas
models. The canonical ensemble in thermal equilibrium for
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the one-mode case is an exactly soluble problem, which can
be used to illustrate the gauge method. Applications in less
trivial cases will appear elsewhere. It is an interesting historical
note that the quantum correction to a classical canonical
ensemble calculation was the first application [3] of the Wigner
distribution, and Wigner regarded the effect of Bose or Fermi
statistics to be a serious issue to be addressed in future.

The un-normalized grand canonical quantum density
matrix is defined for our purposes as a slight modification to
the usual form in statistical mechanics. We let:

ρ̂ = exp[−τ K̂ − εN̂ ], (31)

where τ = h̄/kB T , and K̂ (µ, â, â†) = Ĥ/h̄ − µN̂ . We
choose ε � 1 to give a high-temperature initial state at τ = 0,

with an initial occupation of n0 = 1/[exp(ε) − 1] ≈ 1/ε at
each site. Thus, the effective chemical potential is actually
µeff = µ − ε/τ . Since [K̂ , N̂ ] = 0, direct differentiation
of equation (31) shows that the density matrix satisfies the
equation:

∂

∂τ
ρ̂(τ) = −1

2
[K̂ , ρ̂]+. (32)

Solving this equation with the initial conditions at τ = 0 gives
the solution for ρ̂(τ) at lower temperatures, where quantum
effects like Bose condensation will occur.

Let us expand the density matrix ρ̂ on an off-diagonal
coherent state basis set in the manner of the positive-P
distribution. This is given in (3). The initial G distribution
is Gaussian:

G0(α) ∝ exp[−|α|2/n0]δ2(α − β∗)δ2(� − 1). (33)

To determine the effects of the ‘Kamiltonian’ K̂ on G(α),
it is first necessary to calculate the effect of the annihilation and
creation operators on the projectors Λ(α). This is obtained as
follows:

âΛ(α) = α Λ(α)

â†Λ(α) = [∂α + β]Λ(α)

Λ(α) = �∂�Λ(α)

(34)

together with the corresponding identities for the reversed
orderings. Using these operator identities, the operator
equation (32) can be transformed to a differential equation.
The (ungauged) differential operator acting on the basis Λ(α)

is

LA = − 1
2 [K (µ, α, ∂α + β) + K (µ, ∂β + α, β)] (35)

= −K (µ, α, β) +
2∑

j=1

[A′
j∂ j + 1

2 D j∂
2
j ]. (36)

To simplify notation, define n = αβ , α1 = α, and α2 = β .
Then A′

j = (µ − 2χn − ω)α j/2, and D j = −χα2
j .

Following the main procedure summarized in equa-
tion (23), a gauge correction is utilized to stabilize coherent
state paths in highly non-classical regions in phase space. This
allows one to benefit greatly from the over-completeness of co-
herent states, in reducing the sampling error and eliminating
boundary terms. To stabilize large modulus trajectories which
otherwise can lead to boundary term errors and large sampling

uncertainties, we choose drift gauges g j = i
√

χ(n − |n|), giv-
ing:

dα j

dτ
= [(µ − ω)/2 − χ |n|]α j + iα j

√
χζ j

d�

dτ
=

[

−K (µ,α) +
2∑

j=1

g jζ j

]

�.

(37)

There is an intuitive physical interpretation. Since β = α∗
in the initial thermal state, each amplitude initially obeys a
Gross–Pitaevskii equation in imaginary time, with quantum
phase noise due to the interactions. This causes non-classical
statistics with α �= β∗ to emerge at low temperatures. Along
each path an additional ensemble weight � is accumulated,
which is logarithmically proportional to the Kamiltonian
K (α). The zero-temperature steady-state is the usual Gross–
Pitaevskii approximation, together with quantum corrections.

To illustrate the method, first consider the non-interacting
case with χ = 0, where we can set the gauge to zero, and define
α = β∗, giving a diagonal Glauber P distribution. Then:

dn

dτ
= (µ − ω)n

d�

dτ
= �(µ − ω)n.

(38)

The power of the normal-ordered coherent state expansion
is shown by the fact that these equations are deterministic, even
though they include all quantum fluctuations. By contrast, the
corresponding path-integral equations have large vacuum noise
terms. These equations can be integrated immediately to give
a Bose–Einstein thermal ensemble with Gaussian fluctuations:

〈n̂〉τ = 〈n(τ)�(τ)]〉S

〈�(τ)〉S
= 1

exp([ω − µeff ]τ) − 1
. (39)

Next, consider the exactly soluble interacting case,
involving a single Bose mode with:

Ĥ (a, a†) = h̄χ : n̂2 : . (40)

A numerical simulation is of most interest here, as it can be
generalized to other Bose gas systems of greater complexity. It
is straightforward to obtain agreement with the exact solution
for large boson number, as quantum-noise corrections are small
in this limit. Instead, we focus on the case furthest from
coherent statistics with µ = χ = 0.5, giving just one boson
in the zero-temperature limit, and choose ε = 0.1. This case
is shown in figure 3, as well as a comparison with the exact
results.

The results can be seen to agree well with the exact analytic
ones, and the agreement is easily improved by increasing the
number of stochastic trajectories. This excellent agreement
also occurs with much larger numbers of bosons. The physical
behaviour of strong particle antibunching is in agreement with
evidence deduced from recent experiments in optical lattices.

5.3. Anharmonic oscillator

The quantum dynamics of the anharmonic oscillator is the
subject of much current interest. One can combine the previous
canonical technique with a real-time evolution, in order to
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Figure 3. Simulation (solid curve) versus exact results (dotted
curve) for the boson number n = 〈n̂〉 and correlation function
g2 = 〈: n̂2 :〉/n2 of the exactly soluble anharmonic oscillator case
with parameters χ = µ = 0.5, ε = 0.1.

model a transient experiment in which a BEC is first cooled,
then allowed to evolve after a change in the Hamiltonian. We
consider the Hamiltonian to be equation (30), the same as
previously.

This type of problem has been studied previously as part
of more extended multi-mode studies on quantum solitons,
leading to the prediction and observation of quantum squeezing
in solitons [25, 26]. Other applications include first-principles
studies of evaporative cooling [27], and a treatment of phase
diffusion [28] using an approximate Wigner technique, starting
from a coherent state. The present technique is exact rather
than approximate, though it predicts, as expected, the same
behaviour of phase diffusion and amplitude decay from an
initial coherent state. However, we shall just consider the one-
mode case here.

We find the following salient points:

• Diffusion gauges work better than drift gauges at
controlling sampling error.

• Sampling error grows with time.
• Diffusion gauges work by trading off (increasing) phase

noise against intensity noise.
• Even better results occur if drift and diffusion gauges are

combined.
• It is possible to simulate past the time of amplitude decay.

As previously, we use the stochastic gauge procedure of
equation (23). The resulting Ito equations in an arbitrary drift
gauge are as follows, where α, β are the two variables that
correspond to â, â† in a coherent state (positive-P) expansion.
We define τ = χ t , ω = 0, and n = αβ , corresponding to
n̂ = â†â:

dα

dτ
= −2inα + (1 − i)α(ζ1 − g1)

dβ

dτ
= 2inβ + (1 + i)β(ζ2 − g2)

d�

dτ
=

2∑

j=1

g jζ j�.

(41)

Here 〈ζi(τ)ζ j (τ
′)〉 = δi jδ(τ − τ ′).

Figure 4. Graph of mean sampling error in expectation values of
quadrature moments versus time, using several different types of
gauge. The combined diffusion and drift gauges give the best result,
with an order of magnitude longer time duration before the sampling
error becomes substantially large. Coherent state initial conditions
with amplitude α(0) = 3. Constant diffusion gauge A = 1.4, 105

trajectories.

These equations correspond to a diagonal noise matrix of
form:

B′ =
[

(1 − i)α, 0
0, (1 + i)β

]

. (42)

It is convenient to use an equivalent diffusion gauge with a
noise matrix B = B′U defined in terms of a parameter A,
using an orthogonal transform U so that:

U =
[

cosh A, −i sinh A
i sinh A, cosh A

]

. (43)

We also introduce new variables θ, φ where:

n = eθ

α/β = eiφ.
(44)

These variables are interpreted as the logarithmic
amplitude and phase respectively. Their equations including
gauge terms are:

dφ

dτ
= i − 4in + eA(1 − i)[(ζ1 − g1) − i(ζ2 − g2)]

dθ

dτ
= e−A(1 − i)[(ζ1 − g1) + i(ζ2 − g2)]

d�

dτ
=

2∑

j=1

g jζ j�.

(45)

Without any drift gauge, these equations have the problem
that the logarithmic ratio of amplitudes (imaginary phase)
|Re[φ]| can grow rapidly whenever the quantum noise causes
n to have an imaginary part, resulting in a large sampling error.
This can be controlled to some extent with the diffusion gauge
technique [16], which allows us to make A large and positive,
thereby reducing the quantum noise in n. This, however, is at
the expense of an increase in quantum noise in the phase, and
can only delay the onset of the rapid growth in Re[φ].
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Even better results are obtained by combining diffusion
and drift gauges. We choose the gauge g1 = (1+i)Im[n]e−A =
−ig2. This has the property that only noise drives the ratio of
amplitudes

dRe[φ]

dτ
= eA(ζ1 − ζ2) (46)

as opposed to the un-gauged equation of:

dRe[φ]

dτ
= 4Im[n] + eA(ζ1 − ζ2). (47)

Typical results are shown in figure 4, which gives the
time-dependence of the sampling error with different gauges.
This indicates substantial increases in useful simulation times
compared to any previous phase space technique [14, 16]. We
note that the sampling error still increases with time. This
appears to be inevitable with current stochastic gauge methods,
which stabilize trajectories but introduce an increasing
uncertainty in the relevant quantum amplitude.

6. Summary

Complexity is a major, even central problem in modern
theoretical physics. Our fundamental description of nature,
quantum field theory, is incredibly complex in terms
of the Hilbert space dimension, far more so than any
classical description. Mappings to phase spaces of reduced
dimensionality therefore provide an attractive route to
overcoming this complexity problem. For best results,
however, one wishes to have a stochastic mapping, where the
dynamics in phase space obey a local stochastic description.
In these cases the mapping permits a way to sample the
complex dynamics over a finite set of samples, thus providing
a controllable approximation to the exact dynamics.

The Wigner representation is the pioneering method in
phase space that maps quantum mechanics into a classical
phase space. However, it has some drawbacks. It gives
large vacuum fluctuations in quantum field simulations, and
is essentially non-stochastic, as it is not a positive-definite
representation. All the other techniques that have been
introduced for classical phase spaces, like the Glauber P
representation, have similar problems. This includes even the
Q representation, which is always positive, but has no local
positive propagator when the Hamiltonian is nonlinear. More
modern techniques like the positive-P representation, solve
most of the technical problems due to lack of positivity, but
can give boundary term errors due to moving singularities in
the drift equations.

Gauge techniques solve these known mathematical
problems by stabilizing the drift equations. However, in
specific cases, one still needs to find the optimum method
or gauge field. Several examples of workable gauges in
different cases and bases have been given here, and their utility
demonstrated by comparison with exact results. In the long
run, such techniques can allow one to make progress toward
calculations that involve interacting many-body systems. We
note that the gauge approach is rather general, since in any
particular case one can optimize the basis set, the gauge, and
even the algorithm for sampling the weighted trajectories.

From the larger theoretical perspective these are important
issues, as we treat more challenging complex systems,

including possible tests of quantum mechanics in new regions
of macroscopic and entangled quantum systems.
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