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We introduce an approximate phase-space technique to simulate the quantum dynamics of interacting
bosons. With the future goal of treating Bose-Einstein condensate systems, the method is designed for systems
with a natural separation into highly occupied �condensed� modes and lightly occupied modes. The method
self-consistently uses the Wigner representation to treat highly occupied modes and the positive-P representa-
tion for lightly occupied modes. In this method, truncation of higher-derivative terms from the Fokker-Planck
equation is usually necessary. However, at least in the cases investigated here, the resulting systematic error,
over a finite time, vanishes in the limit of large Wigner occupation numbers. We tested the method on a system
of two interacting anharmonic oscillators, with high and low occupations, respectively. The hybrid method
successfully predicted atomic quadratures to a useful simulation time 60 times longer than that of the
positive-P method. The truncated Wigner method also performed well in this test. For the prediction of the
correlation in a quantum nondemolition measurement scheme, for this same system, the hybrid method gave
excellent agreement with the exact result, while the truncated Wigner method showed a large systematic error.
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I. INTRODUCTION

The aim of this paper is to introduce a new, approximate,
stochastic phase-space method and to test it on some simple
problems with interacting Bose fields. A future goal of our
research is to use the method to simulate the dynamics of
interacting Bose-Einstein condensates �BECs�. The method
is, in fact, designed for BEC problems, since it relies on the
ability to make a meaningful separation of a multimode sys-
tem into highly occupied �condensed� modes and lightly oc-
cupied modes. Hence, our two-mode test cases will be con-
structed to have one highly occupied mode �N�1� and one
lightly occupied mode �N�1�.

Previous authors have developed formalisms in which
condensed atoms are treated in a different way to noncon-
densed atoms. Castin and Dum �1� studied the dynamics of
Bose-Einstein condensates at very low temperatures using a
Bogoliubov �2� approach, in which the boson field operator
is written as a sum of condensate-mode terms and
noncondensate-mode terms. Their treatment deals with num-
ber eigenstates rather than coherent states. They obtain re-
sults as an asymptotic expansion in the square root of the
fraction of noncondensed atoms. Gardiner and Zoller �3�, in
the third of their series on quantum kinetic theory, consider a
stationary noncondensate band at a fixed temperature acting
as a reservoir to the dynamic condensate modes. They derive
a master equation for the condensate modes, using a number-
conserving formalism. Dalton �4� calculates quantum corre-
lation functions for boson field operators to use in the inter-
pretation of double-well BEC interferometry experiments.
The approach is a phase-space method for a distribution
functional, in which the Wigner representation is used for the
condensed modes and the positive-P representation for the
noncondensed modes. Our method will be seen to be sub-
stantially different from these three approaches.

Besides in BEC evolution and collision problems, other
typical cases where disparate occupation numbers exist
would be in the quantum Brownian motion of a small num-

ber of massive particles inside a BEC, or in the collision of
weak and strong coherent light pulses in a nonlinear optical
fiber. Hence, we also consider these systems to be candidates
for the hybrid method.

The foundations of this work are the stochastic phase-
space methods developed to simulate the quantum dynamics
of systems with many degrees of freedom. In particular we
consider the Wigner-Moyal �5,6� approach, and the
positive-P method �7,8�. We will see that both methods have
wide applicability, but are ultimately limited in the parameter
regimes on which they can be used. The Wigner-Moyal
method generally requires a truncation to be able to map to a
stochastic process. The resulting approximate theory typi-
cally fails to give correct results when significant numbers of
modes with small mode occupation numbers are present �9�.

The positive-P method is exact, but when applied to large
multimode problems can often be used only for limited simu-
lation times before very large sampling error renders it un-
usable. The longest useful simulation times, for a given in-
teraction strength, are for lightly occupied modes �7�.

The phase-space method to be introduced here is a com-
bination of the Wigner and positive-P methods. In this hy-
brid method, as we will call it, highly occupied modes are
treated with the Wigner representation while lightly occupied
modes use the positive-P representation. A truncation of
higher-order derivative terms is usually needed, but the re-
sulting approximate method is expected to be valid �over
finite times� to within corrections of the order of the recip-
rocal of the large occupation numbers.

The Wigner method is used in the regime where it is
known to perform best and produces most simplification of
the stochastic differential equations. The positive-P method
is used on the modes that introduce the most errors in the
truncated Wigner method. This latter choice is also designed
to lengthen the useful simulation time.

In this paper we will summarize the properties of the two
representations, and discuss their successes and problems,
before actual construction of the hybrid method. As a test
case, we will apply the method to an exactly solvable prob-

PHYSICAL REVIEW A 78, 013622 �2008�

1050-2947/2008/78�1�/013622�12� ©2008 The American Physical Society013622-1

http://dx.doi.org/10.1103/PhysRevA.78.013622


lem: A system of two coupled anharmonic oscillators, one
highly occupied, the other lightly occupied. The interaction
preserves individual particle numbers.

At first we simply calculate the expectation values of
quadratures and compare with the truncated Wigner method,
the positive-P method, and the exact solution. Then we in-
vestigate a higher-order correlation in the same system, one
that would be observed in a quantum nondemolition mea-
surement �QND� scheme.

II. SINGLE AND DOUBLED WIGNER REPRESENTATIONS

We consider a quantum many-body system of bosons. The
relevant creation and annihilation operators are denoted âm

† ,
âm. In the Wigner-Moyal approach, one complex phase-space
variable, �m, is used for each mode, m, of a system, and we
call this a single phase space. In contrast, a doubled phase
space uses two complex variables, �m and �m

+ , for each
mode. We will find that using the Wigner and positive-P
representations for different modes of the same system will
generally require using a doubled phase space, although this
can be avoided in certain cases.

We begin by showing the definition and properties of the
doubled Wigner representation. This is an extension of the
familiar single phase-space Wigner representation to a
doubled phase space, and has been studied and applied by
Plimak et al. �10�. Throughout this paper we will set �=1.

The single phase-space Wigner representation of the den-
sity matrix is given by

�̂ =� d2�W����̂W��� . �2.1�

This is an expansion of the density matrix on a basis of
operators, the standard form we will use to compare all rep-
resentations. Here W��� is the Wigner function on phase
space. Following Moyal �6� and Glauber and Cahill �11�,

�̂W��� =� d2�

	
e��â†−��â�e����−���� �2.2�

is an operator function on phase space, with trace unity. We
also refer to this as the operator basis. We note that Eq. �2.1�
has a unique inverse, defining the Wigner function in terms
of the density matrix,

W��� =� d2�

	2 e�−���+���� Tr��̂e��â†−��â�� . �2.3�

By manipulating Eq. �2.2�, these basis operators can be
written in the normally ordered Gaussian form of Corney and
Drummond �12�,

�̂W��� = 2:e−2�â†−����â−��: , �2.4�

where :f�â , â†�: indicates normal ordering.
Now we may define the doubled Wigner representation

with an expansion of the density matrix of the form

�̂ =� d2�� d2�+W��,�+��̂W��,�+� . �2.5�

Here W�� ,�+� is a Wigner function defined on a doubled
phase space and

�̂W��,�+� = 2:e−2�â†−�+��â−��: �2.6�

are the operator basis elements, also defined on the doubled
phase space. The new variable �+ appears where �� had
been, but in a stochastic simulation may take values different
from the complex conjugate of �.

From Eq. �2.6� we can derive the operator correspon-
dences for the doubled Wigner representation. The action of
a creation or annihilation operator, multiplying the density
matrix to the left-hand or right-hand sides, is equivalent to a
linear differential operator acting on the Wigner function,

â�̂ ↔ �� +
1

2

�

��+�W��,�+� , �2.7�

�̂â ↔ �� −
1

2

�

��+�W��,�+� , �2.8�

â†�̂ ↔ ��+ −
1

2

�

��
�W��,�+� , �2.9�

�̂â† ↔ ��+ +
1

2

�

��
�W��,�+� . �2.10�

We add a cautionary note. The derivation of Eqs.
�2.7�–�2.10� depends on the vanishing of boundary terms in
an integration by parts. This problem is discussed in Sec. IV.

We note that a pure coherent state �with �= �
	

�� can be
represented, in the doubled Wigner representation, with the
stochastic prescription

� = 
 +
1

2
�n1 + in2� , �2.11�

�+ = 
� +
1

2
�n1 − in2� , �2.12�

where n1 and n2 are independent real Gaussian random
noises with unit standard deviations.

In this symmetrically ordered representation, the formula
for estimating symmetrically averaged products of creation
and annihilation operators as stochastic averages over trajec-
tories is


â†mân	sym = 

�+m�n		 . �2.13�

We will use the notation 

¯		 throughout to signify a sto-
chastic average over an ensemble of trajectories.

We note that we will be exploiting the nonuniqueness of
this representation and that of the positive-P representation:
An infinity of different functions W�� ,�+� can give the same
density matrix according to Eq. �2.5�. This feature of repre-
sentations on doubled phase spaces will allow us, in the case
of the hybrid representation, to construct quasiprobabilities
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that are everywhere real and non-negative, obeying Fokker-
Planck equations that allow mapping to a stochastic simula-
tion.

III. PROBLEMS WITH THE TRUNCATED WIGNER
METHOD

The �single phase space� Wigner representation has been
widely used to study diverse physical problems, with great
success �13–15�. But a truncation of terms is necessary in
most applications to allow a stochastic simulation. The trun-
cated Wigner method is then not exact. Although the method
gives good results in many cases, because the truncation of
terms can be well justified if mode occupation numbers are
large and simulation times are limited, the systematic errors
can be significant if those conditions are not met. In addition,
the estimation of a higher-order moment �the expectation of
a product of more than one field operator� will generally
contain a larger systematic error than the estimation of the
expectation value of a single field operator �16�.

Even when no truncation is necessary, there is the prob-
lem of large sampling error in a truncated Wigner simulation.
While an initial coherent state can be represented by a
positive-P distribution of zero width �see Eq. �4.10��, the
same state will have a Wigner distribution with a finite width
�Eqs. �2.11� and �2.12��. For short times, the growing
positive-P noise will not overtake the relatively constant
Wigner noise. The result is greater sampling error in the
Wigner simulation, requiring the calculation of far more tra-
jectories to achieve the same precision.

The investigation of Deuar and Drummond �9� into BEC
scattering showed how the truncation problem produces se-
rious systematic errors in the simulation of a large number of
interacting modes with many lightly occupied modes. We
will discuss these problems later in this section.

Here we outline the reasons for truncation and the region
of validity of the approximation.

From Eq. �2.3� it may be seen that the Wigner function is
always real, but it may take negative values for some density
matrices. This would prevent us from mapping our quantum
mechanics problem to a stochastic simulation, since the latter
would require a positive semidefinite quasiprobability distri-
bution.

However, when we find the equation of motion for the
Wigner function, the opportunity for an approximation pro-
cedure becomes apparent. This equation follows from the
operator correspondences of the single Wigner representation
�which can be obtained from Eqs. �2.7�–�2.10� with the re-
placement �+→��� and the evolution equation for the den-
sity matrix

� �̂

�t
= − i�Ĥ, �̂� . �3.1�

We are going to restrict our attention to Hamiltonians, in-
cluding multimode Hamiltonians, that include products of
creation and annihilation operators only up to quartic terms.
This restriction will include the model of BECs with two-
body s-wave scattering �17�. The equation for the evolution

of a Wigner function under such a Hamiltonian will always
take the general form

�W

�t
= −

�

��
�A���W���� −

�

���
�A����W���� + T3.

�3.2�

Here T3 is a term with three derivative operators, each either
�

�� or �

��� . The key point to note is that for undamped �uni-
tary� time evolution, there are never any second-order �dif-
fusion� terms, which is a consequence of the fact that the
Wigner representation is symmetrically ordered. Also,
fourth-order terms always cancel. These general results for
quartic Hamiltonians, for the Wigner representation and for
the positive-P representation, are summarized in Table I.

It is found that the third-order terms, including for more
general multimode problems, may be truncated and produce
a systematic error in �W

�t that is relatively small compared to
the other terms, in the limit that the occupation numbers of
the modes remain very much greater than unity.

The motivation for this truncation is clear: Equation �3.2�
then reduces to Liouville form, a special case of the Fokker-
Planck equation in which only drift terms influence the evo-
lution of the quasiprobability. If the initial density matrix for
the problem is such that the Wigner function is everywhere
non-negative �and this is a common situation� then the func-
tion will remain non-negative for all times. A further map-
ping to a stochastic simulation becomes possible. The only
noise in the simulation will come from the initial condition,
since no second-order terms are present to cause diffusion.

A small error in �W
�t will produce a large error in W after a

sufficiently long time, so this approximation procedure can
only be valid for a finite time. Over the relevant time scales,
the truncation is justified by a scaling argument. If the sto-
chastic variable � is seen from the truncated equations of
motion to remain of very large magnitude ������N0�1�,
then we define a scaled variable z=� /�N0 and find that the
third-order terms take the form

T3 �
1

N0
� ����W� , �3.3�

where � is either �
�z or �

�z� and � is either z or z�.
Deuar and Drummond �9� applied the truncated Wigner

method to the large multimode problem of scattering BECs
and found an ultraviolet divergence problem: Systematic er-
rors that grow with the momentum cutoff imposed on the
lattice. They were able to simulate a BEC collision with
150 000 bosons, using the positive-P representation for times
long enough to obtain useful results, and thereby had an
exact result to compare with the truncated Wigner method.

TABLE I. Terms in the Fokker-Planck equation for a quartic
Hamiltonian, using the Wigner and positive-P representations.

Drift terms Diffusion terms Third-order terms

Wigner Yes No Yes

Positive-P Yes Yes No
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The latter method produced a “false halo” of particles in
momentum space, depletion leading to unphysical negative
densities beyond the halo, and accumulation of particles at
low momenta—all in disagreement with the exact positive-P
results. The Wigner method requires that initially empty
modes of the system be represented by nonzero distributions,
as if one-half of a virtual particle occupied each mode. Evi-
dently the truncated Wigner method treats these virtual par-
ticles as if they were real, in that a scattering event involving
them can produce real populations of product modes.

This is an ultraviolet divergence problem in that it be-
comes worse as the momentum cutoff is increased. To obtain
the most physically relevant results from a simulation, one
must extrapolate to the continuum limit. It is in this limit, as
the momentum cutoff approaches infinity, that the truncation
errors are divergent. Clearly a full Wigner-Moyal treatment
without truncation would not have these errors, but such a
full theory with third-order derivatives also involves negative
probabilities, which have no stochastic equivalent.

We mention the projection method used with the trun-
cated Wigner approach �18,19�, which amounts to another
way to implement a cutoff, but does not solve this ultraviolet
divergence problem.

We mention here the projection methods as other tech-
niques �not exact� for dealing with this problem.

This discussion of problems with the truncated Wigner
method is given as motivation for a hybrid treatment. In
future applications to multimode systems, we will investigate
whether the hybrid method avoids these problems. The large
number of initial vacuum modes in a collision, for example,
would be treated in the hybrid method with the positive-P
representation as phase-space variables set identically to
zero. However, this requires a detailed future investigation.
The problem is absent in the pure positive-P method, al-
though at long times very large sampling errors are found
instead �9�.

IV. POSITIVE-P METHOD

The positive-P method involves an extension of the
Glauber-Sudarshan P representation �20,21� from a single
phase space to a doubled phase space, the same procedure
that gives the doubled Wigner representation from the single.
The defining equation �for a single-mode problem� gives a
representation of the density matrix in terms of a c-number
function, P, and nondiagonal projection operators, �P, both
defined on a doubled phase space,

�̂ =� d2�� d2�+P��,�+��̂P��,�+� , �4.1�

with

�̂P��,�+� =
��	
�+��

��+���	

. �4.2�

Here ��	 indicates a coherent state: A normalized eigenstate
of the annihilation operator â. The effect of left-hand and
right-hand multiplication of the density matrix by a and a†

on P�� ,�+� can be deduced from Eqs. �4.1� and �4.2�. The

proof involves an integration by parts in which boundary
terms are assumed to vanish. The realm of validity of this
assumption and the resulting effects on stochastic simula-
tions are discussed at length by Gilchrist et al. �7�. When the
boundary terms vanish, the operator correspondences are

â�̂ ↔ �P��,�+� , �4.3�

�̂â ↔ �� −
�

��+�P��,�+� , �4.4�

â†�̂ ↔ ��+ −
�

��
�P��,�+� , �4.5�

�̂â† ↔ �+P��,�+� . �4.6�

As we have noted in Table I, all quartic Hamiltonian prob-
lems, in the positive-P representation, give a true Fokker-
Planck equation, with at most drift and diffusion terms,

�P

�t
= − ���A���,�+�P� +

1

2
���
�D�
��,�+�P� , �4.7�

with

�1 =
�

��
, �2 =

�

��+ , �4.8�

and summation over � ,
 implied. Thus, for the many-boson
Hamiltonian with two-body s-wave scattering terms �17�, no
truncation of the positive-P equations is needed.

The positive-P method solves two problems that occur
with single phase-space representations. First, if the distribu-
tion function is not guaranteed to remain real and non-
negative, we cannot map the dynamics onto a stochastic
simulation using standard methods. To deal with this, we use
the feature of the representation that an infinity of different
functions, P�� ,�+�, may represent the same density matrix.
We may choose, for the initial condition, a particular func-
tion

P+��,�+� =
1

4	2e−1/4�� − �+��2
 1

2
�� + �+����̂�1

2
�� + �+��� ,

�4.9�

that satisfies Eq. �4.1� and is everywhere non-negative, as
required. Alternatively, an initial pure coherent state, with
�̂= �
	

�, can have a �-function representation, also positive,

P��,�+� = �2�� − 
��2��+ − 
�� . �4.10�

The stochastic representation of this initial condition is sim-
ply

� = 
, �+ = 
�. �4.11�

The second problem to deal with is that the diffusion ma-
trix may not be positive semidefinite when written in the
basis of real �x� and imaginary �y� parts ��x ,�x

+ ,�y ,�y
+�.

However, there is another symmetry in the positive-P repre-
sentation, arising from the analyticity in � and �+ of the
nondiagonal projection operator �4.2�, that lets us make re-
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placements to the real and imaginary parts of the derivative
operators �4.8� in �4.3�–�4.6�, in just such a way that the
resulting Fokker-Planck equation, relative to the component
basis, has a positive semidefinite diffusion matrix �8�. With a
positive initial condition and a true, positive semidefinite
Fokker-Planck equation, the distribution is guaranteed to re-
main positive. The standard method of mapping to a stochas-
tic simulation also requires a diffusion matrix that is positive
semidefinite �all of its eigenvalues are non-negative�, so that
stochastic equations are immediately derivable.

The final step of mapping to stochastic differential equa-
tions involves first finding an N-noise factorization of the
diffusion matrix of the form

D�
 = �
n=1

N

B�nB
n. �4.12�

This introduces another gauge degree of freedom that we
will exploit later. Different choices of the factor matrix, B,
that satisfy �4.12� may provide stochastic simulations with
widely different sampling error characteristics.

The result of the adjustment of the diffusion matrix and
this choice of the factor matrix is the set of Itô stochastic
differential equations

d�� = A�dt + �
n=1

N

B�ndwn, �4.13�

where the dwn are N real Weiner increments �8� satisfying
the stochastic average



dwn�t�dwm�t�		 = �nmdt . �4.14�

These SDEs, with appropriate initial conditions �Eqs. �4.11�
for coherent states�, are used to evolve a large ensemble of
trajectories. The positive-P representation is normally or-
dered, meaning that the most easily calculated quantum-
mechanical expectation values are of normally ordered op-
erators. The formula for estimating a normally ordered
quantum-mechanical expectation value as a stochastic aver-
age is


â†mân	 = 

�+m�n		 . �4.15�

We see from Eq. �4.11� that a coherent state can be repre-
sented initially with no noise in the positive-P representa-
tion. In this paper we will not embark on a detailed compari-
son of sampling error in the truncated Wigner, positive-P and
hybrid methods. However, we will take note of the number
of trajectories needed, in each method, for an ensemble av-
erage to converge to a satisfactory result. All of our simula-
tions were performed using xmds �22�, and we used the
built-in sampling error estimates of that program to judge
convergence.

The next part of our construction of the hybrid represen-
tation involves writing the nondiagonal projectors for the
positive-P representation in normally ordered Gaussian
form. The result of manipulating Eq. �4.2� is

�P��,�+� = :e−�â†−�+��â−��: . �4.16�

V. PROBLEMS WITH THE POSITIVE-P METHOD

A particular choice of the factor matrix, B, gives a set of
stochastic differential Eqs. �4.13� that governs the evolution
of the ensemble of trajectories. Unless this evolution is con-
strained in some way, trajectories may wander far from each
other in phase space. Then the averaging over trajectories to
estimate an expectation value may involve additions of many
different, extremely large, numbers. No computer can calcu-
late such an average without incurring a very large round-off
error.

The result is the dramatic rise in sampling error that has
been seen in some positive-P simulations. The growth in
width of the distribution of trajectories often occurs over a
short time scale, so that the sampling error suddenly rises by
many orders of magnitude, with the resulting growth of nu-
merical errors. The simulation is of no value beyond this
critical time.

The problem can be caused by drift terms or noise terms,
or a combination of both. A single-mode example to illus-
trate these problems is the anharmonic oscillator, with
Hamiltonian

Ĥ = �â†â + �â†â†ââ �5.1�

and positive-P Itô stochastic differential equations,

d� = − i�� + 2��+���dt + �− 2i�dw , �5.2�

d�+ = + i�� + 2��+���+dt + �2i�dw+. �5.3�

If we ignore the noise terms and choose �+� as a real num-
ber initially, the trajectory will be a circle in the complex �
plane. But if �+� includes an imaginary part �from noise or
from an initial condition other than the coherent state condi-
tion �4.11��, either � or �+ will spiral toward infinity, while
the other spirals in toward the origin. The noise terms of the
SDEs contribute to the problem, since they generally move
�+� away from real values, thereby inducing the spiraling.

Note that the single Wigner representation does not suffer
from this problem because the real term ���2 will always
appear in place of �+� in the SDEs.

Sampling error growth can be reduced or postponed by
using our freedom to choose different factor matrices that
give the same diffusion matrix, and by modifying the drift
equations. Such methods are called stochastic gauge tech-
niques �23–25�. However, while these are useful in single-
mode examples, they are somewhat complicated when gen-
eralized to multimode cases. Also, we are interested in
extending the time available for useful, error-free simulations
to even longer time scales than these methods can provide.

A special case of problems with drift trajectories is when
a trajectory is capable of reaching infinity in a finite time �7�.
This typically results in power-law tails in the distribution
function, which violates the assumption that partial integra-
tion can be carried out. The simulation as it stands is then
invalid beyond the singularity time. This problem can be
dealt with using drift gauges �23�. Our examples will not fit
into this category.

We simulated the anharmonic oscillator in the positive-P
representation to illustrate the sampling error problem. Fig-
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ure 1 shows the X quadrature �X̂= 1
2 �â+ â†��, with the choices

�=0 �for simplicity� and initial average number N0=1. As
we will do for all of our simulations, we plot results against
a scaled time parameter, in this case �t. �This is dimension-
less when using �=1.�

Deuar and Drummond �23� have investigated various fac-
tors that affect the time for sampling error to become unman-
ageable in a multimode positive-P simulation. They have
found that coarser spatial lattices, weaker interactions, and
lower particle densities all extend the lifetime of the simula-
tion. Of course the spatial lattice spacing can only be in-
creased at the expense of systematic error, while the other
two factors are fixed by the system being simulated.

In the hybrid scheme we will be using the positive-P rep-
resentation only for the modes with lowest occupations. Our
test cases will investigate whether this delays the onset of
large sampling error.

VI. HYBRID METHOD

The hybrid method is designed to exploit a particular fea-
ture of Bose-Einstein condensate systems: A limited number
of modes have very high occupation numbers. The method
involves separating the physical system into modes that are,
at least initially, highly occupied �the condensed modes� and
those that are lightly occupied �the output of an atom laser or
the products of a BEC collision�. Then we intend to use
different representations to treat different modes, treating the
highly occupied modes with a form of the Wigner represen-
tation and the lightly occupied modes with the positive-P
representation.

Use of the Wigner representation for the highly occupied
modes will in general simplify the structure of the resulting
diffusion matrix. In a simple two-mode model discussed in
Sec. VII, we will see that this allows us to delay the rapid
growth of sampling error. Also, by not using the Wigner
representation for the potentially very large number of lightly
occupied modes, we intend to avoid the false halo problem.

Our first task is to show that we can consistently use two
different representations on different modes, correctly de-

scribing interactions that couple these different modes. For
general interactions of this sort, diffusion terms involving the
Wigner modes are inevitable. To be able to construct a posi-
tive semidefinite diffusion matrix in the general case, we
must use a doubled phase space throughout.

Now we can exploit the similarities in Eqs. �2.6� and
�4.16� to define a hybrid representation with a particularly
simple notation. We suppose that a system has modes labeled
m=1, . . . ,M. These modes are to be treated with the Wigner
representation or the positive-P representation depending on
whether a parameter rm takes the value

rm = 1 for positive-P, �6.1�

rm = 2 for Wigner. �6.2�

The nondiagonal projection operator is a direct product of
terms for each mode, m,

�̂H��� ;r�� = �
m=1

M

rm:e−rm�â†−�+��â−��: . �6.3�

Then the hybrid representation of the density matrix be-
comes

�̂ =� d4M�� PH��� ;r���̂H��� ;r�� , �6.4�

where �� = ��1 ,�1
+ , . . . ,�M ,�M

+ � and r�= �r1 , . . . ,rM�.
Note that the use of the parameter r for these doubled

phase-space representations is very much like the Glauber
and Cahill use of the parameter s to span antinormally or-
dered, symmetrically ordered, and normally ordered single
phase-space representations. The connection between the
two schemes follows by taking

r =
s − 1

s
�6.5�

and mapping doubled to single phase spaces.
The applicability of the positive-P method depends on the

two results that we mentioned in Sec. IV. First, for any initial
density matrix, it is possible to choose a phase-space distri-
bution that is everywhere real and non-negative �using Eq.
�4.9��. Second, it is always possible to cast any diffusion
matrix into a form that is equivalent with respect to physical
predictions and that is positive semidefinite in the basis of
real and imaginary parts of the phase-space variables. Corre-
sponding results must hold for any hybrid representation in
order for that method to be usable. We were able to prove
both assertions.

First, we found an integral transform that takes a
positive-P distribution to a doubled Wigner distribution rep-
resenting the same density matrix. We show the single-mode
case,

W��,�+� =
1

2	
� d2��e−1/2�� − ���2P�1

2
��� + ��,

1

2
��� − ��� ,

�6.6�

with
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FIG. 1. X quadrature for single-mode anharmonic oscillator vs
�t: Positive-P method. Plotted are the ensemble average and the
ensemble average � sampling error estimate. The dashed line is the
exact result. Parameters: �=0, N0=1. Number of trajectories: 1000.
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� = � + �+�, � = � − �+�. �6.7�

Note that P has four independent real parameters, but the
integration is over only two degrees of freedom. The single-
mode case is shown but the extension to the multimode case
is straightforward. Since the kernel is positive, the transform
can be used to take the initial positive distribution �4.9� to an
everywhere positive doubled Wigner distribution. Extension
to the case with many modes treated by different representa-
tions proves the first assertion.

The proof of the second assertion is exactly like the text-
book proof for the positive-P representation, since the de-
rivative equivalences

�

��
↔

�

��x
↔ − i

�

��y
, �6.8�

�

��+ ↔
�

��x
+ ↔ − i

�

��y
+ , �6.9�

are the same as their positive-P counterparts.
Use of the hybrid method is simple for few-mode prob-

lems. For the mapping of the evolution Eq. �3.1� for � to a
Fokker-Planck equation, we use either the Wigner
�2.7�–�2.10� or positive-P �4.3�–�4.6� operator correspon-
dences as appropriate for each mode. In general there will be
terms with three derivative operators for quartic Hamilto-
nians. �Terms with four derivatives always cancel.� For each
application, we must decide whether truncation of these
terms, to produce a drift or diffusion problem, is valid. Scal-
ing arguments such as those applied to the Wigner method
�3.3� can be used here. In problems involving both highly
occupied modes and lightly occupied modes, there may oc-
cur problematic three-derivative terms from mutual interac-
tion of those modes.

A feature peculiar to the hybrid method is that there will
appear what we call interface noise: There will be diffusion
terms that are proportional to the difference of r values for
different modes, that would vanish if those modes were
treated with the same representation.

The mapping to stochastic differential equations uses the
same rule as is used for the positive-P representation: If a
generally complex matrix B provides a factorization D
=BBT of the diffusion matrix, then the Itô stochastic differ-
ential equations can be chosen as

d�� = A�dt + �
n=1

N

B�ndwn, �6.10�

where � labels the components of the vector of phase-space
variables �� = ��1 ,�1

+ , . . . ,�M ,�M
+ � and the dwn are N real,

independent Weiner increments. We note that the freedom of
choice of a factor matrix, B, introduces a gauge degree of
freedom that may allow us to reduce sampling error in simu-
lations.

The relation between physical expectation values and sto-
chastic averages will take new forms in the hybrid represen-
tation. Here an observable may be a product of factors to be
treated with the symmetrically ordered Wigner representation
and others to be treated with the normally ordered positive-P

representation. So, for example, in Sec. IX we will need to
calculate an expectation value as


N̂aŶb	 = 
 1

2i
â†â�b̂ − b†�� = 

 1

2i
��+� −

1

2
��� − �†��� ,

�6.11�

where the a mode is treated with the Wigner representation
while the b mode is treated with the positive-P representa-
tion.

VII. TEST CASE: COUPLED ANHARMONIC
OSCILLATORS

As a first test of the hybrid method, we simulated the
behavior of two coupled anharmonic oscillators, with a cou-
pling that preserves the individual mode occupations. The
Hamiltonian is

Ĥ = �aâ†â + �aâ†â†ââ + �bb̂†b̂ + �bb̂†b̂†b̂b̂ + gâ†âb̂†b̂ .

�7.1�

We used an initial coherent state for the a mode �with high
mean occupation Na0=100� and for the b mode �low mean
occupation Nb0=0.01�. We set �a=�b=0 for convenience
and used �a=�b=g=1, which sets the scale for the time vari-
able.

This model is meant to resemble just a few terms of the
much larger multimode Hamiltonian for a Bose gas with
s-wave scattering terms.

Note that we have chosen a model system in which the a
occupation remains constantly large, while the b occupation
stays small. The hybrid method can be used in cases where
these numbers are not conserved, and gives good results
when the occupations of the modes remain high and low
over the interaction time, respectively. Results from this cat-
egory will be presented in a later work.

We simulated this system using the hybrid method and,
for comparison, the truncated Wigner method and the
positive-P method. We were also able to obtain an exact
solution for coherent state initial conditions, as did
Chaturvedi and Srinivasan �26�.

We insert the hybrid representation �6.4� of the density
matrix into the evolution equation �3.1�. An integration by
parts, justified in this case, amounts to using the hybrid op-
erator correspondences ��2.7�–�2.10� and �4.3�–�4.6��. This
gives an equation of the form

� d8��
�PH

�t
�̂H��� ,r�� =� d8��L��� ,r��PH��� ,r���̂H��� ,r�� ,

�7.2�

where L is a linear, differential operator that acts on PH.
We extract a Fokker-Planck equation for PH from �7.2�,

keeping all terms, including third-order derivative terms.
�We note that for doubled phase-space representations this
choice is not unique.�. We find
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i
�PH

�t
= −

�

��
�2�a��+� − 1� + g�+���PH

+
�

��+ �2�a��+� − 1� + g�+���+PH

−
�

��
�2�b�+� + g��+� −

1

2
���PH

+
�

��+�2�b�+� + g��+� −
1

2
���+PH + �b

�2

��2�2PH

− �b
�2

��+2�+2PH +
g

2

�

��

�

��
��PH +

g

2

�

��

�

��+��+PH

−
g

2

�

��+

�

��
�+�PH −

g

2

�

��+

�

��+�+�+PH

+
g

4

�

��

�

��+� �

��
� −

�

��+�+�PH +
�a

2
� �2

��2

�

��+�

−
�2

��+2

�

��
�+�PH. �7.3�

We use the convention that the derivative operators act on all
factors to the right-hand side.

To apply the scaling argument discussed in Sec. III, we
write the third-order derivative terms above �which we call
T3� in terms of the scaled phase-space variables

u � �/�Na0, u+ � �+/�Na0, �7.4�

v � �/�Nb0, v+ � �+/�Nb0. �7.5�

Then T3 becomes

T3 =
1

Na0

g

4

�

�u

�

�u+� �

�v
v −

�

�v+v+�PH

+
1

Na0

�a

2
� �2

�u2

�

�u+u −
�2

�u+2

�

�u
u+�PH. �7.6�

We expect, in the stochastic simulation of this problem, that
there will be a finite time scale over which � and �+ will
remain distributed close to order �Na0 in magnitude, while �
and �+ remain near �Nb0. Our first simulation will stay
within this time region. Over that time scale, the third-order
derivative terms will make a negligible contribution to PH
compared to the drift terms �first-order terms which scale as
Na0� and the diffusion terms �second-order terms which scale
as 1�.

After we truncate these terms, the Fokker-Planck equation
has drift vector �in the basis �� ,�+ ,� ,�+��

A =�
− i�2�a��+� − 1� + g�+���
+ i�2�a��+� − 1� + g�+���+

− i�2�b�+� + g��+� −
1

2
���

+ i�2�b�+� + g��+� −
1

2
���+� �7.7�

and diffusion matrix

D =�
0 0 −

ig

2
�� −

ig

2
��+

0 0 +
ig

2
�+� +

ig

2
�+�+

−
ig

2
�� +

ig

2
�+� − 2i�b�2 0

−
ig

2
��+ +

ig

2
�+�+ 0 + 2i�b�+2

� .

�7.8�

Because of the use of the Wigner representation for the a
mode, this diffusion matrix differs from the one resulting
from a pure positive-P treatment in the absence of terms
−2i�a�2 and +2i�a�+2 in the first two diagonal spaces, re-
spectively.

We were able to construct a factorization of the diffusion
matrix �7.8� by first treating the diagonal terms and then
recognizing a simple structure in the remaining matrix. The
following factor matrix requires only four real noises in the
SDEs:

B = �2i�b�
0 0 0 0

0 0 0 0

i� 0 0 0

0 �+ 0 0
� +

1

2
�− ig�

0 0 � i�

0 0 − �+ − i�+

0 0 � − i�

0 0 �+ − i�+
� .

�7.9�

The resulting SDEs produced the results shown in Figs. 2
and 3. We calculated the expectation values of the quadrature

operators X̂a= 1
2 �â+ â†� and X̂b= 1

2 �b̂+ b̂†�. The simulation was
clearly stable over the time scale shown and gave results in
excellent agreement with the exact solution. We will refer to
the method used here as a gauge hybrid method, since it
relies on being able to find a diffusion gauge �a useful fac-
torization of the diffusion matrix�.
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FIG. 2. X quadrature for mode a vs �at: Coupled anharmonic
oscillators treated with the gauge hybrid method. Plotted are the
ensemble average, the ensemble average � sampling error estimate,
and the exact solution. Parameters: �a=�b=0, �a=�b=g, Na0

=100, Nb0=0.01. Number of trajectories: 10 000.
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When we simulated this same problem using the truncated
Wigner method, the results were nearly indistinguishable
from Figs. 2 and 3 �using 150 000 trajectories�, so we do not
display them here. With regard to this first test, we have not
yet established superiority of the hybrid method over the
truncated Wigner, except to note that the hybrid method re-
quires far fewer trajectories to attain a given accuracy. In
Sec. VIII we will explore a different region of parameter
space and in Sec. X we will calculate a higher-order moment
in the same system. In both cases, we will see results that
show a clear distinction between the methods.

We also simulated this problem with the positive-P
method. Sampling error increased to very large values at
about �at=0.04, after just one oscillation of the quadratures.

Analysis of the third-order derivative terms from the pure
Wigner calculation, similar to the above analysis for the hy-
brid method, shows terms that scale as 1 /Nb0 and so cannot
be justifiably neglected.

The mechanism at work in stabilizing the hybrid simula-
tion over limited times is as follows. With this choice of
gauge, the stochastic differential equations keep the quantity
�+� fixed, for each trajectory, at its initial value. These val-
ues, selected by the stochastic Wigner initial condition of the
form �2.11� and �2.12�, will always be real and close to Na0.
The quantity �+� starts at Nb0 then acquires an imaginary
part, but its magnitude is kept of order Nb0 over the simula-
tion time.

Further inspection shows that the magnitudes of � and �+

will remain near �Na0 while those of � and �+ remain of the
order of �Nb0 over the simulation time. �These estimates
were used to justify our neglect of the third-order derivative
terms in Eqs. �7.4�–�7.6�.� So the drift terms are dominated
by the factors of �+� and spiraling is negligible.

Over a short time �t, the relative sizes of the drift and
diffusion increments, for z one of the phase-space variables,
are given by

Drift: �z � Naz�t ,

Diffusion: �z � z��t

�with �a=�b=g=1�. So diffusion is, in this example, negli-
gible compared to drift over the time scale of interest.

We calculated the quadrature Xa in our model to longer
times, with results shown in Fig. 4. �To obtain the qualitative
features rapidly, we used, in each case, a lower number of
trajectories than we used in our previous simulations.� The
exact result showed a recurrence centered on �at=	. The
gauge hybrid method showed large sampling error before
that time, starting at about �at=2.5. The truncated Wigner
method was also unable to predict this recurrence, showing
instead a quadrature remaining close to zero. Recalling that
the pure positive-P treatment suffered large sampling error
after about �at=0.04, we see that the gauge hybrid method
extended the useful simulation time by a factor of 60.

VIII. WEAK COUPLING

In the previous example, both the gauge hybrid method
and the truncated Wigner method are aided by the fact that
the quadratures are strongly damped before the neglect of
terms �for both methods� and sampling error growth �for the
hybrid method� can become important. We lowered the mu-
tual interaction strength between the two modes, relative to
�a=�b, by setting g /�a=0.0001. This greatly extended the
damping time for the b mode, allowing us to see differences
in the predictions of the gauge hybrid and truncated Wigner
methods.

The results are shown in Fig. 5.
We see that the truncated Wigner method fails from �at

=0, consistent with our expectations for a system with a very
lightly occupied mode. The gauge hybrid method performs
well until about �at=1.5, when it is overwhelmed by sam-
pling error.

IX. FURTHER TRUNCATION

In the examples we have seen so far, truncation of terms
in the hybrid method has not prevented it from attaining
excellent agreement with the exact solutions at early times,
even when dealing with a very lightly occupied mode. The
method is, however, clearly limited by the growth of sam-
pling error. In this section, we try a simple adjustment to the
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FIG. 3. X quadrature for mode b vs �at: Coupled anharmonic
oscillators treated with the gauge hybrid method. Plotted are the
ensemble average, the ensemble average � sampling error estimate,
and the exact solution. Parameters: �a=�b=0, �a=�b=g=1, Na0

=100, Nb0=0.01. Number of trajectories: 10 000.
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FIG. 4. X quadrature for mode a calculated to longer �dimen-
sionless� times �at. �a� Exact result. �b� Gauge hybrid result: 100
trajectories. �c� Truncated Wigner result: 10 000 trajectories. Param-
eters: �a=�b=0, �a=�b=g, Na0=100, Nb0=0.01.
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equations to try to extend useful results to longer times.
When phase-space distributions grow wide in uncon-

strained directions, the trajectories sampling those distribu-
tions are widely spread and the calculation of expectation
values becomes a great numerical difficulty. To understand
the meaning of the widths in “unconstrained directions,” we
note that we could estimate the spread of our hybrid distri-
bution by calculating all the stochastic averages 

�i� j		,
where �i is a real or imaginary part of �� �defined after Eq.
�6.10��. Some of the linear combinations of these averages,
such as 

�+�		, are constrained to approach physical predic-
tions as the number of trajectories grows large. Widening of
the distribution in the other directions will increase sampling
error, but may be reduced using the gauge freedoms of
doubled phase-space representations, or other methods.

Spiraling of the drift trajectories is one source of spread-
ing that we have identified, and that we have already par-
tially controlled using our choice of gauge. For our gauge
SDEs, the quantity �+� remains completely real for all
times, and thus does not cause spiraling in the drift equa-
tions. This is not the case for the quantity �+�, which starts
with a purely real value but can immediately develop an
imaginary part from the influence of the noise terms.

We tried a further truncation of our gauge hybrid equa-
tions, making the replacement

�+� → Re��+�� . �9.1�

In future applications, if �+� is not constrained, we propose
to also try the truncation

�+� → Re��+�� . �9.2�

We find good short-time behavior from this truncated hybrid
method, equaling that of all the other methods. At longer
times the method was unable to predict the recurrence, show-
ing quadratures staying close to zero. But the sampling error
remained at a manageable level to �at=5.0. In future work,
we will investigate whether this somewhat ad-hoc truncation
can be used as a simple way to extend simulations to longer

times without incurring excessive systematic error.

X. TEST CASE: QUANTUM NONDEMOLITION
MEASUREMENT

Our first test case showed the hybrid method—with a dif-
fusion gauge choice and with a further truncation—able to
successfully simulate an interacting system beyond the time
at which the positive-P method became unusable. But the
Wigner method was able to give equally good results on the
same system. �A distinction was found in the weak coupling
case.� Here we investigate a different observable—a higher-
order moment—in the same system, and find the results
more sensitive to the choice of method.

The concept of quantum nondemolition measurements
�27,28� began with the need for a way to measure the very
small displacements of a gravitational wave detector that are
expected to occur from the passage of a gravitational wave.
Repeated measurements of position, to high accuracy, would
be required to distinguish the signal from other effects.
Quantum mechanics sets limits on schemes to measure those
small displacements. Measurement of a position observable
with a finite uncertainty may produce a state in which the
uncertainty in position grows after the measurement. At later
times, when another measurement of position is performed,
the uncertainty would be larger that the desired maximum.

Instead, measurement of a conserved observable, such as
the momentum of a free particle, can be repeated an arbitrary
number of times without causing the uncertainty to increase.
The quantum nondemolition �QND� measurement scheme
involves choosing an appropriate conserved observable �in a
probe beam� that can give information about the signal of
interest after the signal and probe interact.

A QND scheme can be constructed from our model of
interacting anharmonic oscillators �29�. We suppose that the
bosons in question are now photons, and that they can inter-
act with each other in a suitable nonlinear medium, such that
our number-conserving interaction Hamiltonian gives a toy
model of the dynamics. Of course a fuller description of the
dynamics would involve propagation in space, dispersion,
and other factors �30�. A lightly occupied signal beam and a
highly occupied probe beam interact in the medium. Phase
information will be exchanged between them, while their
individual number distributions are conserved.

In one QND scheme, the conserved QND observable is

taken as the photon number, N̂a, in the highly occupied probe
beam. The signal is the phase quadrature of the lightly occu-

pied beam, Ŷb=− i
2 �b̂†− b̂�.

We suppose that the interaction between signal and probe
lasts only for a short time, as would be the case for two short
pulses interacting in an optical fiber. We make the interaction
cease when the magnitude of the correlation function reaches
its first maximum. This means that we use the previous
Hamiltonian of Eq. �7.1�, except with g=1 for t� t0, and g
=0 for t��at0, where �at0=0.1 in our example.

We calculate the correlation function between probe and
signal, a measure of the potential success of the measurement
scheme,
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FIG. 5. Comparison of the gauge hybrid and truncated Wigner
methods in predicting the X quadrature for the b mode of the
coupled anharmonic oscillators, with weak coupling. Quadratures
plotted against �at. Gauge hybrid result: 10 000 trajectories. Trun-
cated Wigner result: 15 000 trajectories. Parameters: �a=�b=0,
�a=�b, g /�a=0.0001, Na0=100, Nb0=0.01.
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C�Na,Yb� =

N̂aŶb	 − 
N̂a	
Ŷb	
V1/2�Na�V1/2�Yb�

, �10.1�

where

V��̂� = 
�̂2	 − 
�̂	2 �10.2�

is the variance of an operator �̂. We set �a=0 for conve-
nience, since this will remove a high-frequency variation
from our expectation value. Likewise, we set �b=−Na0g to
obtain a slowly varying expectation value. This latter choice
is equivalent to a particular choice of local oscillator fre-
quency in the homodyne detection of Yb.

Figure 6 shows the correlation function calculated with
two different phase-space methods and compared to the ex-
act result. The gauge hybrid method shows excellent agree-
ment with the exact result. In contrast, the truncation of the
Wigner method evidently removes terms that are needed to
correctly predict the correlation function at times after the
interaction ceases. The tendency of the truncated Wigner
method to give worse results when predicting higher-order
moments was investigated by Drummond et al. �16�.

XI. CONCLUSIONS

We have shown that, for a stochastic phase-space treat-
ment of a multimode system, it is possible to use the doubled
Wigner representation for some modes and the positive-P
representation for the remainder. We tested our method on a
system of two coupled anharmonic oscillators, one with a
mean occupation that remained at 100, the other with a mean
occupation of 0.01. The method was able to simulate the
evolution of quadrature expectation values for times far be-
yond where the positive-P method suffers a rapid growth of
sampling error. Results were in excellent agreement with the
exact solution.

While the truncated Wigner method performed as well as
the hybrid method when calculating these quadrature observ-
ables �over a finite time�, for the calculation of a higher-order

moment corresponding to a QND experiment there was a
very clear advantage of the hybrid over the truncated Wigner.
The latter results contained a large systematic error, while the
hybrid result was in excellent agreement with the exact re-
sult.

At least as applied to this system with a small number of
modes, the hybrid method was able to delay the onset of
rapid sampling error growth by a factor of 60 compared to
the positive-P method. Further investigations will focus on
many-mode systems to see whether these advantages over
the earlier methods can be maintained.

It is interesting to note here that our results show that a
very natural application of the hybrid method is to systems
of two different types of particles with interactions that con-
serve individual species numbers. This presents a natural
framework to investigate quantum Brownian motion, which
will be treated in subsequent work.
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APPENDIX: EXACT SOLUTIONS

The Hamiltonian

Ĥ = �aâ†â + �aâ†â†ââ + �bb̂†b̂ + �bb̂†b̂†b̂b̂ + gâ†âb̂†b̂ ,

�A1�

describing two coupled anharmonic oscillators, can be writ-

ten just in terms of the number operators, N̂a= â†â and N̂b

= b̂†b̂, as

Ĥ = �aN̂a + �bN̂b + �a�N̂a
2 − N̂a� + �b�N̂b

2 − N̂b� + gN̂aN̂b.

�A2�

So the number states

�nanb	 =
â†na

�na!

â†nb

�nb!
�0	 �A3�

are eigenvectors of the Hamiltonian with eigenvalues

E�na,nb� = �ana + �bnb + �a�na
2 − na� + �b�nb

2 − nb� + gnanb.

�A4�

We consider an initial state that is a coherent superposi-
tion of the number states �A3� of the form

�
a
b	 = �
na=1

�

e−1/2�
a�2 
a
na

�na!
�
nb=1

�

e−1/2�
b�2 
b
nb

�nb!
�nanb	 ,

�A5�

where 
a=�Na0, 
b=�Nb0, and Na0 and Nb0 are the average
occupations of the modes.

We are interested in observables, �, that are simple com-
binations of a small number of creation and/or annihilation
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FIG. 6. Comparison of methods for determining the correlation
between Na and Yb for a QND scheme vs �at. Results are shown for
the hybrid method with a diffusion gauge �50 000 trajectories� and
the truncated Wigner method �50 000 trajectories�, compared to the
exact result. Parameters: Na0=100, Nb0=0.01, �a=0, �b=−Na0g,
�a=�b, g /�a=1 for �at�0.1, g=0 for �at�0.1.
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operators. These have simple matrix elements,


na�nb���̂�nanb	, between the number eigenvectors. All terms
will be proportional to Kronecker �’s of the form
�na�,na+ma

�nb�,nb+mb
, for ma and mb integers. Then, the expecta-

tion value of such an operator in the state vector produced by
time evolution of �A5� will always reduce to a double sum
�over na and nb�, with the unitary time evolution producing a
known phase factor inside the sum.

The time-dependent expectation values of the quadrature
operators Xa= 1

2 �a+a†�, Ya= 1
2i �a−a†�, Xb= 1

2 �b+b†�, and Yb

= 1
2i �b−b†�, for the initial state �A5�, can then be evaluated as

sums over na and nb. We find the results


Xa�t�	 = �Na0e−�Na0�1−cos 2�at�+Nb0�1−cos gt��

�cos��at + Na0 sin 2�at + Nb0 sin gt� , �A6�


Ya�t�	 = − �Na0e−�Na0�1−cos 2�at�+Nb0�1−cos gt��

�sin��at + Na0 sin 2�at + Nb0 sin gt� . �A7�

For 
Xb�t�	 and 
Yb�t�	, we make the replacement a↔b in
expressions �A6� and �A7�, respectively.

Our model of a QND measurement has the feature that the
coupling strength, g, is constant up to a time, �, and vanishes
after that. This is meant to model two light pulses that cease
to interact after they no longer overlap within an optical fi-
ber. The evolution operator for the resulting time-dependent

Hamiltonian is Û�t�=exp−�0
t Ĥ�t��dt�. For times up to �, we

evaluate the following:


N̂aŶb�t�	 = − Na
�Nbe−Na0�1−cos gt�e−Nb0�1−cos 2�bt� sin���b + g�t

+ Na0 sin gt + Nb0 sin 2�bt� , �A8�

V�Ŷb� = 
Ŷb
2	 − 
Ŷb	2

= −
1

2
Nb0e−�Na�1−cos 2gt�+Nb�1−cos 4�bt��

�cos�2��b + �b�t + Na sin 2gt + Nb sin 4�bt�

− Nbe−2�Na�1−cos gt�+Nb�1−cos 2�bt��

�sin2��bt + Na sin gt + Nb sin 2�bt� +
1

4
+

1

2
Nb0.

�A9�

For times beyond �, we make the replacement gt→g� in
�A8� and �A9�. This rule applies also to the expectation val-
ues �A6� and �A7� for t�� in this QND scheme.

Finally we note that the individual particle numbers are
conserved under this Hamiltonian, and the coherent state ini-
tial conditions �A5� give


N̂a	 = Na0, 
N̂b	 = Nb0, �A10�

V�N̂a� = Na0, V�N̂b� = Nb0. �A11�
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