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Quantum noise in optical fibers. I. Stochastic
equations
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We analyze the quantum dynamics of radiation propagating in a single-mode optical fiber with dispersion, non-
linearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes
the principal known nonlinear effects and quantum-noise sources, including linear gain and loss. Both Mar-
kovian and frequency-dependent, non-Markovian reservoirs are treated. This treatment allows quantum
Langevin equations, which have a classical form except for additional quantum-noise terms, to be calculated.
In practical calculations, it is more useful to transform to Wigner or 1P quasi-probability operator represen-
tations. These transformations result in stochastic equations that can be analyzed by use of perturbation
theory or exact numerical techniques. The results have applications to fiber-optics communications, network-
ing, and sensor technology. © 2001 Optical Society of America
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1. INTRODUCTION
The propagation of electromagnetic radiation through op-
tical fibers is the central paradigm of optical communica-
tions and sensor technology. It is also a novel physical
system because of the material processing of fused silica,
which leads to single-mode behavior with extremely low
losses. Over short distances (depending on the pulse in-
tensity) the well-known nonlinear Schrödinger (NLS)
equation can describe most optical fibers with great accu-
racy and lead to soliton behavior as well as to many other
effects. Over longer distances, a number of reservoir ef-
fects, including attenuation, Raman scattering, and the
use of amplifiers and filters to compensate for losses, in-
tervene. At the quantum level, both the original nonlin-
earity and the additional couplings to reservoirs can lead
to quantum noise, which modifies the predictions of the
classical NLS equation.

In this paper we analyze the effects of quantum noise
in fiber optics. We extend and explain in more detail ear-
lier theoretical studies in this area, which led to the
prediction1,2 and measurement3 of intrinsic quantum-
noise effects in optical solitons. The theory given here in-
cludes a detailed derivation of the relevant quantum
Hamiltonian. We include quantum-noise effects that are
due to nonlinearities, Raman reservoirs, and Brillouin
scattering. We model the Raman–Brillouin noise by us-
ing a multiple-Lorentzian fit to measured fluorescence
data, to estimate the Raman gain coefficients. Both gain
and loss effects are included. This treatment is unified
with the theory of gain–loss reservoirs, which was also
predicted4 and observed5 to have large effects on soliton
propagation. We treat all these reservoirs without using
0740-3224/2001/020139-14$15.00 ©
the Markovian approximation, to accurately treat the
frequency-dependent reservoirs found in practical appli-
cations.

The purpose of this study is to lay the foundations for
practical methods of calculating and numerically simulat-
ing quantum effects in nonlinear optical fibers. These ef-
fects are significant whenever quantum-limited behavior
is important in communications, sensing, or measure-
ment with optical fibers.

We introduce the basic quantum Hamiltonian for an
optical fiber in Section 2. This gives a Heisenberg equa-
tion of motion that reduces to the NLS equation in the
classical limit. The equation of motion is extended in
Section 3 to include Raman and Brillouin effects, with
gain and absorption processes considered in Section 4.
The complete Heisenberg equation in Section 5 is the cen-
tral result of this paper. Stochastic partial differential
equations can be derived from the quantum equation by
use of the phase-space methods outlined in Section 6.
Applications of these methods to practical examples are
reserved for a following paper.6

2. NONLINEAR SCHRÖDINGER MODEL
The interaction between photons in a fiber is mediated
through the dielectric material that constitutes the fiber.
The coupling to the dielectric introduces frequency-
dependent and time-delayed behavior. The complete
Hamiltonian and its derivation have been given in the
literature1,7–10; we shall merely go over the salient points
here. The starting point is a Lagrangian that generates
the classical Maxwell equations for a one-dimensional di-
2001 Optical Society of America
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electric waveguide and that gives a Hamiltonian corre-
sponding to the dielectric energy:7

HD 5 E dVF 1

2m
uBu2 1 E

t0

t

E~t8! • Ḋ~t8!dt8G , (2.1)

where the electric field E 5 (D 2 P)/e0 includes the po-
larization response of the dielectric to an incident electric
displacement D. The field variables are then quantized
by introduction of equal-time commutators between the
canonical coordinates D and B. We note that, of course,
it is also possible to make other choices of canonical mo-
menta. This choice corresponds to a dipole-coupled11

rather than to a minimal-coupled fundamental Lagrang-
ian. Whereas different Lagrangians are canonically
equivalent, the present choice, originally introduced12 by
Hillery and Mlodinow in applications to dielectric theory,
has the advantage of comparative simplicity. The La-
grangian must produce both the correct energy13 and
Maxwell’s equations; otherwise the conjugate momenta
will contain an arbitrary scaling, leading to incorrect com-
mutation relations.7,12

A. Fiber-Optic Hamiltonian
The optical fiber treated will be a single transverse mode
fiber with dispersion and nonlinearity. Inasmuch as
boundary effects are usually negligible in experiments, it
is useful first to take the infinite volume limit, which ef-
fectively replaces a summation over wave vectors with the
corresponding integral. We start with a single polariza-
tion direction (i.e., a polarization-preserving fiber). The
more-general case is summarized elsewhere14 and will be
treated in detail subsequently. The basic normally or-
dered, nonlinear Hamiltonian for the fiber in this case is7

ĤF 5 E dk\v~k !â†~k !â~k !

2 E d3xH FDx~1 !~x!

2e~v0!
G :uD̂u2~x!:

1 F x~3 !~x!

4e3~v0!
G :uD̂u4~x!:J . (2.2)

Here v(k) is the angular frequency of modes with wave
vector k that describes the linear polariton excitations in
the fiber, including dispersion. We assume that v(k) de-
scribes the average linear response of the fiber, in the
limit of a spatially uniform environment. If the fiber is
spatially nonuniform, then it is necessary to add addi-
tional inhomogeneous terms to the Hamiltonian, of ge-
neric form Dx (1)(x). As usual, e(v0) is the mode-average
dielectric permittivity at a carrier frequency v0 5 v(k0)
and â(k) is an annihilation operator, defined such that

@ â~k8!,â†~k !# 5 d ~k 2 k8!. (2.3)

The coefficient x (3)(x) is the nonlinear coefficient that
arises when the electronic polarization field is expanded
as a function of the electric displacement in the commonly
used Bloembergen13 notation (the units are SI units, fol-
lowing current standard usage). The coefficient may
vary along the longitudinal position on the fiber if the fi-
ber has a variable composition. In terms of modes of the
waveguide, and neglecting modal dispersion, the electric
displacement field operator D̂(x) is

D̂~x! 5 i E dkH \ke@v~k !#v~k !

4p
J 1/2

â~k !u~r!

3 exp~ikx ! 1 h.c., (2.4)

where

E d2ruu~r!u2 5 1. (2.5)

Here v(k) 5 ]v(k)/]k is the group velocity. The func-
tion u(r) gives the transverse mode structure. Although
a general mode structure can be included, for the pur-
poses of this paper we could equally well assume a square
waveguide of area A, which gives u(r) . ey /AA. We
note here that the above mode expansion for a dispersive
medium is a rather general one and has been worked out
both from macroscopic quantization7 and from a micro-
scopic model10 with an arbitrary number of electronic or
phonon resonances.

In the infinite volume limit we define the polariton field
by noting that the annihilation and creation operators
can be related to a quantum field by

Ĉ~t, x ! 5
1

A2p
E dkâ~t, k !exp@i~k 2 k0!x 1 iv0t#.

(2.6)

This photon-density operator Ĉ(t, x) is the slowly varying
field annihilation operator for the linear quasi-particle ex-
citations of the coupled electromagnetic and polarization
fields traveling through the fiber.8 The nonzero equal-
time commutation relations for these Bose operators are

@Ĉ~t, x !,Ĉ†~t, x8!# 5 d ~x 2 x8!. (2.7)

As was shown in earlier treatments,2 the Hamiltonian
[Eq. (2.2)] can now be rewritten approximately as

ĤF 5 \ E dx E dx8v~x, x8!Ĉ†~t, x !Ĉ~t, x8!

2
\

2
E dxxE~x !Ĉ†2~t, x !Ĉ2~t, x !. (2.8)

Here we have introduced the kernel v(x, x8), which is the
linear dielectric component of the Hamiltonian, and a
nonlinear coupling term xE(x). This kernel is then Tay-
lor expanded about k 5 k0 and approximated to qua-
dratic order in (k 2 k0) by

v~x, x8! 5 E dk

2p
v~k !exp@i~k 2 k0!~x 2 x8!#

2
1

2
k0v~k0!E d2rDx~1 !~x!uu~r!u2d ~x 2 x8!

. @v0 1 Dv~x !#d ~x 2 x8!

1 E dk

4p
@iv08~]x8 2 ]x!

1 v09~]x]x8! 1 ...#exp@ik~x 2 x8!#. (2.9)
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In writing Eq. (2.8) we have assumed that the fre-
quency dependence in the nonlinear coupling can be ne-
glected, which is a good approximation for relatively nar-
row bandwidths. The nonlinear term is often called the
x (3) effect, so named because it arises from the third-order
term in the expansion of the polarization field in terms of
the electric field.15 It causes an electronic contribution
n2e to the intensity-dependent refractive index, where n
5 n0 1 In2 5 n0 1 I(n2e 1 n2p). Thus we define xE,
in units of meters per second, as

xE~x ! [ F3\v0
2v~k0!2

4e~v0!c2 G E d2rx~3 !~x!uu~r!u4

[ F\n2e~x !v0
2v2

Ac G . (2.10)

Here A 5 @* d2ruu(r)u4#21 is the effective modal cross sec-
tion and n2e is the refractive-index change per unit field
intensity that is due to electronic transitions. It is less
than the total value observed for n2 , as phonon contribu-
tions have yet to be included.

The free evolution part of the total Hamiltonian, which
will be removed in subsequent calculations, just describes
the carrier frequency v0 . It is not needed in Heisenberg
picture calculations for Ĉ(t, x) because it is canceled by
the slowly varying field definition. Next, on partial inte-
gration of the derivative terms and Fourier transforming,
the resultant interaction Hamiltonian ĤF8 that describes
the evolution of Ĉ in the slowly varying envelope and
rotating-wave approximations is

ĤF8 5 ĤF 2 E dk\v0â†~k !â~k !

5
\

2
E

2`

`

dxFDv~x !Ĉ†Ĉ 1
iv

2
~¹Ĉ†Ĉ 2 Ĉ†¹Ĉ!

1
v9

2
¹Ĉ†¹Ĉ 2

xE~x !

2
Ĉ†2Ĉ2G . (2.11)

For simplicity, only quadratic dispersion is included
here. However, the extension to higher-order dispersion
is relatively straightforward. It can be achieved by inclu-
sion of higher-order terms in the expansion of the dielec-
tric kernel or else by treatment of the dispersion as part
of the reservoir response function, as in what follows.
The response function approach has the advantages that
a completely arbitrary polarization response can be in-
cluded and that transformations to a different frame of
reference are simplified. If part of the dielectric response
is treated with response functions, then this part of the
measured refractive index must be excluded from the free
Hamiltonian to avoid double counting.

B. Heisenberg Equation
From the interaction Hamiltonian [Eq. (2.11)] we find the
following Heisenberg equation of motion for the field op-
erator propagating in the 1x direction:
S v
]

]x
1

]

]t D Ĉ~t, x ! 5 F2iDv~x ! 1
iv9

2

]2

]x2

1 ixE~x !Ĉ†~t, x !Ĉ~t, x !GĈ~t, x !.

(2.12)

This is the quantum NLS equation in the laboratory
frame of reference, which is completely equivalent to the
theory of a Bose gas of massive quasi-particles with an ef-
fective mass of \/v9 and an average velocity of v for pho-
tons near the carrier frequency of interest. It includes
the possibility that the dielectric constant (i.e., the linear
response) has a spatial variation, through the term
Dv(x).

We note here that it is occasionally assumed that op-
erators obey equal-space, rather than equal-time, commu-
tation relations. This cannot be exactly true, because
commutators in an interacting quantum field theory are
well defined only at equal times. At different times, it is
possible for a causal effect to propagate to a different spa-
tial location, which can therefore change the unequal-
time commutator. In other words, imposing free-field
equal-space but unequal-time commutators is not strictly
compatible with causality. The assumption of equal-
space commutators may be used as an approximation un-
der some circumstances, provided that interactions are
weak. In this paper we shall use standard equal-time
commutators.

3. RAMAN HAMILTONIAN
To the Hamiltonian given in Eq. (2.11) must be added
couplings to linear gain, absorption, and phonon
reservoirs.16–18 The gain and absorption reservoirs are
discussed at length in Section 4 below. The phonon field
consists of thermal and spontaneous excitations in the
displacement of atoms from their mean locations in the
dielectric lattice. Although previous quantum treat-
ments of Raman scattering have been given,19 it is neces-
sary to modify them somewhat in the present situation.
The Raman interaction energy16,20 of a fiber, in terms of
atomic displacements from mean lattice positions, is
known to have the form

HR 5
1

2 (
j

h j
R
]D~ x̄ j!D~ x̄ j!dx j 1

1

2 (
ij

k ij :dx idx j.

(3.1)

Here D(x̄ j) is the electric displacement at the jth mean
atomic location x̄ j,dx j is the atomic displacement opera-
tor, h j

R is a Raman coupling tensor, and k ij represents
the short-range atom–atom interactions.

To quantize this interaction with atomic positions, us-
ing our macroscopic quantization method, we must now
take into account the existence of a corresponding set of
phonon operators, b̂(v, x) and b̂†(v, x). These operators
diagonalize the atomic displacement Hamiltonian in each
fiber segment and have well-defined eigenfrequencies.
There are calculations21 of the frequency spectrum and
normal modes of vibration for vitreous silica that use
physical models based on the random network theory of
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disordered systems. The computed vibrational frequency
spectrum is remarkably similar to the observed Raman
gain profile.22 The phonon–photon coupling induces Ra-
man transitions and scattering from acoustic waves (the
Brillouin effect), resulting in extra noise sources and an
additional contribution to the nonlinearity. The initial
state of phonons is thermal, with nth(v) 5 @exp(\v/
kT)21#21.

A. Hamiltonian and Heisenberg Equations
In terms of these phonon operators, the fiber Hamiltonian
in the interaction picture and within the rotating-wave
approximation for a single polarization is16 Ĥ8 5 ĤR

1 ĤF8, where we have introduced a Raman interaction
Hamiltonian:

ĤR 5 \E
2`

`

dx E
0

`

dv$Ĉ†~x !Ĉ~x !R~v, x !

3 @ b̂~v, x !1b̂†~v, x !# 1 vb̂†~v, x !b̂~v, x !%. (3.2)

Here the atomic vibrations within the silica structure of
the fiber are modeled as a continuum of localized oscilla-
tors and are coupled to the radiation modes by a Raman
transition with a real frequency-dependent coupling
R(v, x). This coupling could be nonuniform in space and
is determined empirically through measurements of the
Raman gain spectrum.16 The atomic displacement is
proportional to b̂ 1 b̂†, where the phonon annihilation
and creation operators, b̂ and b̂†, have the equal-time
commutations relations

@ b̂~t, v, x !, b̂†~t, v8, x8!# 5 d ~x 2 x8!d ~v 2 v8!. (3.3)

Thus the Raman excitations are treated as an inhomoge-
neously broadened continuum of modes, localized at each
longitudinal location x. Guided wave acoustic Brillouin
scattering23–26 is a special case of this, in the low-
frequency limit. Because neither Raman nor Brillouin
excitations are completely localized, this treatment re-
quires a frequency and wave-number cutoff such that the
field operator Ĉ is slowly varying on the phonon scatter-
ing distance scale. The corresponding coupled nonlinear
operator equations are

S v
]

]x
1

]

]t D Ĉ~t, x ! 5 iF2Dv~x ! 1
v9

2

]2

]x2

1 xE~x !Ĉ†~t, x !Ĉ~t, x !GĈ~t, x !

2 iH E
0

`

R~v, x !@ b̂~t, v, x !

1 b̂†~t, v, x !#dvJ Ĉ~t, x !,

]

]t
b̂~t, v, x ! 5 2ivb̂~t, v, x !

2 iR~v, x !Ĉ†~t, x !Ĉ~t, x !. (3.4)

In summary, the original theory of nonlinear quantum
field propagation is now extended to include both the elec-
tronic and the Raman nonlinearities. The result is a
modified Heisenberg equation with a delayed nonlinear
response to the field that is due to the Raman coupling.
On integrating the Raman reservoirs, one obtains

S v
]

]x
1

]

]t D Ĉ~t, x ! 5 iF2Dv~x ! 1
v9

2

]2

]x2

1 E
02

`

dt8x~t8, x !

3 @Ĉ†Ĉ#~t 2 t8, x !

1 ĜR~t, x !GĈ~t, x !,

where

x~t, x ! 5 xE~x !d~t ! 1 2Q~t !E
0

`

R2~v, x !sin~vt !dv,

ĜR~t, x ! 5 2E
0

`

R~v, x !@ b̂~t, v, x ! 1 b̂†~t, v, x !#dv,

(3.5)

in which we have defined Q(t) as the step function.
The operators ĜR and ĜR† are stochastic, with Fourier

transforms defined by use of the normal Fourier-
transform conventions for field operators:

ĜR~v, x ! 5
1

A2p
E d t exp~ivt !ĜR~t, x !, (3.6)

ĜR†~v, x ! 5
1

A2p
E d t exp~2ivt !ĜR~t, x !.

(3.7)

The frequency–space correlations are given by

^ĜR†~v8, x8!ĜR~v, x !& 5 2x9~x, uvu!

3 @nth~ uvu! 1 Q~2v!#

3 d~x 2 x8!d~v 2 v8!. (3.8)

In Eq. (3.8) we introduce a Raman amplitude gain of x9
per unit photon flux, equal to the imaginary part of the
Fourier transform of x(t, x), such that x9(x, uvu)
5 pR2(x, uvu). Here we use the Bloembergen normal-
ization for response function Fourier transforms:

x̃~v, x ! 5 E dt exp~ivt !x~t, x !, (3.9)

which does not include the A2p factor.
Of some significance is the physical interpretation of

the correlation functions, which can be regarded as con-
tributing directly to the normally ordered spectrum of the
transmitted field. Given a cw carrier, the correlations
when v is positive correspond to an anti-Stokes (blue-
shifted) spectral term, which is clearly zero unless the
thermal phonon population is appreciable. However,
when v is negative, the theta function term indicates that
the Stokes (redshifted) spectral term is nonzero, owing to
spontaneous Stokes photons emitted even at zero tem-
perature.
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B. Raman Gain Measurements
The measured intensity gain that is due to Raman effects
at a given relative frequency v per unit length, per unit
carrier photon flux I0 5 v^Ĉ†Ĉ&, is

1

I0

] ln I

]x
5 22x9~v, x !/v2. (3.10)

Here the gain is positive for Stokes-shifted frequencies
(v , 0) and negative for anti-Stokes (v . 0), as one
would expect. This relationship allows the coupling to be
estimated from measured Raman gain and fluorescence
properties. The simplest way to achieve this goal is to
expand the Raman response function in terms of a
multiple-Lorentzian model, which can then be fitted to ob-
served Raman fluorescence data by a nonlinear least-
squares fit. We therefore expand

x~t, x ! 5 xE~x !d~t !

1 x~x !Q~t !(
j50

n

Fjd j exp~2d jt !sin~v jt !. (3.11)

For normalization purposes, we have introduced x(x),
which is defined as the total effective nonlinear phase-
shift coefficient per unit time and photon density, in units
of radius times meters per second, obtained from the low-
frequency nonlinear refractive index. The coefficient is
given in terms of the electronic or fast-responding nonlin-
ear coefficient xE(x), together with the Raman contribu-
tion, by integration over time:

x~x ! 5 xE~x ! 1 2E
0

`E
0

`

R2~v, x !sin~vt !dvd t. (3.12)

In the above expansion, Fj are a set of dimensionless
Lorentzian strengths and v j and d j are the resonant fre-
quencies and widths, respectively, of the effective Raman
resonances at each frequency. To improve convergence,
we do not constrain the Lorentzian strength parameters
to be positive. The j 5 0 Lorentzian models the Bril-
louin contribution to the response function. In general,
all these parameters could be x dependent, but for nota-
tional simplicity we often assume that they are constant
in space. The values for an n 5 10 fit in the case of a
typical fused-silica fiber are given in Table 1, including an
estimate of the effective Brillouin contribution averaged
over the individual Brillouin scattering peaks. The coef-
ficient of the electronic nonlinearity is now obtained ex-
plicitly in terms of the total nonlinear refractive index:

xE~x ! 5
\~1 2 f !n2v0

2v2

Ac
, (3.13)

where v0 is the carrier frequency, A is the effective cross-
sectional area of the traveling mode, and f is the fraction
of the nonlinearity that is due to the Raman gain, which
has been estimated from the procedure outlined above:

f 5
xR

x
5

2

x
E

0

`

dt E
0

`

dvR2~v, x !sin~vt ! . 0.2. (3.14)

A result of this model is that the phonon operators do
not have white-noise behavior. In fact, this colored noise
property is significant enough to invalidate the usual
Markovian and rotating-wave approximations, which are
therefore not used in the phonon equations. Of course,
the photon modes may also be in a thermal state of some
type. However, thermal effects are typically much more
important at the low frequencies that characterize Ra-
man and Brillouin scattering than they are at optical fre-
quencies. In addition, if the input is a photon field gen-
erated by a laser, any departures from coherent statistics
will be rather specific to the laser type, rather than hav-
ing the generic properties of thermal fields.

Finally, there is another effect that has so far been ne-
glected. This is the ultralow-frequency tunneling that is
due to lattice defects.27 As this effect is not strictly lin-
ear, it cannot be included accurately in our macroscopic
Hamiltonian. Despite this, the effects of this 1/f type of
noise may be included approximately for any predeter-
mined temperature. One can achieve this inclusion by
simply modifying the refractive-index perturbation term
such that it becomes Dv(t, x) and generates the known
low-frequency refractive-index fluctuations.

4. GAIN AND ABSORPTION
In silica optical fibers there is a relatively flat absorption
profile, with a minimum absorption coefficient of approxi-
mately 0.2 dB/km in the vicinity of the commonly used
communications wavelengths of ;l 5 1.5 mm. This ef-
fect can be compensated for by the use of fiber laser am-
plifiers, resulting in nearly zero net absorption over a to-
tal link that includes both normal and amplified fiber
segments. In practical terms, this situation leads to an
approximately uniform fiber environment, provided that
the net gain and loss are spatially modulated more rap-
idly than is the pulse dispersion length. These addi-
tional effects need to be included within the present
Hamiltonian model for a fully consistent quantum theory.
For wideband communications systems with either time-
domain multiplexing or frequency-domain multiplexing,
it can become necessary to include the frequency depen-
dence and spatial variation of the gain and loss terms.
This is especially true if spectral filters are included in
the fiber.

Table 1. Fitting Parameters for the 11-Lorentzian
Model of the Raman Gain Function hR(tÕt0)a

j Fj v j d j

0 0.16 0.005 0.005
1 20.3545 0.3341 8.0078
2 1.2874 26.1129 46.6540
3 21.4763 32.7138 33.0592
4 1.0422 40.4917 30.2293
5 20.4520 45.4704 23.6997
6 0.1623 93.0111 2.1382
7 1.3446 99.1746 26.7883
8 20.8401 100.274 13.8984
9 20.5613 114.6250 33.9373

10 0.0906 151.4672 8.3649

a All frequencies are in Terarad/s.
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A. Absorbing Reservoirs
The absorption reservoir is modeled most simply by a cou-
pling to a continuum of harmonic oscillators at resonant
frequency v. In the interaction picture used here, the
Hamiltonian term that causes rapidly varying operator
evolution of the reservoir at carrier frequency v0 is sub-
tracted, leaving

ĤA8 5 \E
2`

`

dxE
0

`

dv$@Ĉ~x !â†~v, x !A~v, x ! 1 h.c.#

1 ~v 2 v0!â†â~v, x !%, (4.1)

where A(v, x) provides the frequency-dependent coupling
between the radiation modes and the absorption reser-
voirs. The reservoir annihilation and creation operators,
â and â†, have the commutation relations

@ â~v, x !,â†~v8, x8!# 5 d~x 2 x8!d ~v 2 v8!. (4.2)

The equations for the absorbing photon reservoirs can
be integrated immediately. The photon reservoir vari-
able, for instance, obeys

]

]t
â~t, v, x ! 5 2i~v 2 v0!â~t, v, x ! 2 iA~v, x !Ĉ~t, x !.

(4.3)

Hence the solutions are

â~t, v, x ! 5 â~t0 , v, x !exp@2i~v 2 v0!~t 2 t0!#

2iA~v, x !E
t0

t

exp@2i~v 2 v0!

3 ~t 2 t8!#Ĉ~t8, x !dt8, (4.4)

with initial correlations for the reservoir variables in the
far past (t0 → 2`) given by

^â†~t0 , v, x !â~t0 , v8, x8!& 5 nth~v!d~x 2 x8!d~v 2 v8!,

^â~t0 , v, x !â†~t0 , v8, x8!& 5 @nth~v! 1 1#

3 d~x 2 x8!d~v 2 v8!.

(4.5)

The solution for â(t, v, x) is substituted into the
Heisenberg equation for the field evolution, giving rise to
an extra time-dependent term of the form

2iE
0

`

A* ~v, x !â~t, v, x !dv

5 2E
0

`

dvuA~v, x !u2 E
t0

t

dt8 exp@2i~v 2 v0!~t 2 t8!#

3 Ĉ~t8, v!2i E
0

`

dvA* ~v, x !exp@2i~v 2 v0!

3 ~t 2 t0!#â~t0 , v, x !

5 2E
0

`

dt9gA~t9, x !Ĉ~t 2 t9, x ! 1 ĜA~t, x !,

(4.6)

where t9 5 t 2 t8 and we obtain the response function
and reservoir terms most simply by extending the lower
limit on the frequency integral to 2`, introducing only an
infinitesimal error in the process, such that

g A~t, x ! ' Q~t !E
2`

1`

dvuA~v, x !u2 exp@2i~v 2 v0!t#,

ĜA~t, x ! 5 2i E
0

`

dvA* ~v, x !exp@2i~v 2 v0!~t 2 t0!#

3 â~t0 , v, x !. (4.7)

The response function integral represents a determin-
istic, or drift, term to the motion, with a Fourier trans-
form of

g̃ A~v, x ! 5 E g A~t, x !exp~ivt !dt

5 g A~v, x ! 1 ig A9~v, x !, (4.8)

so the amplitude loss rate is

g A~v, x ! 5 puA~v0 1 v, x !u2. (4.9)

In the case of a spatially uniform reservoir with a flat
spectral density, the Wigner–Weiskopff approximation
(neglecting frequency shifts) gives a uniform Markovian
loss term with

g A~t ! ' g̃Ad~t !, (4.10)

where the average amplitude loss coefficient is

g̃ A 5 g̃ A~0 ! 5 E
0

`E
2`

1`

dtdvuA~v!u2 exp@2i~v 2 v0!t#

5 g A 1 ig A9. (4.11)

This approximation, known as the Markov approxima-
tion, is generally rather accurate for the absorbing reser-
voirs, whose response does not typically vary fast with
frequency. Exceptions to this rule would be any case in-
volving resonant impurities in the fiber or very short
pulses whose bandwidths are comparable with the fre-
quency scale of absorption changes.

The second quantity in expressions (4.7), ĜA(t, x), be-
haves as a stochastic term owing to the random initial
conditions. Neglecting the frequency dependence of the
thermal photon number yields the corresponding correla-
tion functions

^ĜA~t, x !ĜA†~t8, x8!&

5 E
0

`

dvuA~v, x !u2 exp@2i~v 2 v0!~t 2 t8!#

3 @nth~v! 1 1#d~x 2 x8!

' @gA~t 2 t8, x ! 1 gA* ~t8 2 t, x !#

3 @nth~v0! 1 1#d~x 2 x8!, (4.12)
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^ĜA†~t8, x8!ĜA~t, x !&

5 E
0

`

dvuA~v, x !u2 exp@2i~v 2 v0!

3 ~t 2 t8!#nth~v!d~x 2 x8!

' @gA~t 2 t8, x ! 1 gA* ~t8 2 t, x !#

3 nth~v0!d~x 2 x8!. (4.13)

At optical or infrared frequencies it is a good approxima-
tion to set nth(v0) 5 0. On Fourier transforming the
noise sources, one obtains

^ĜA~v, x !ĜA†~v8, x8!& 5 2g A~v, x !d~x 2 x8!d~v 2 v8!.

(4.14)
Again taking the simplifying case of a spatially uniform
reservoir in the Wigner–Weiskopff limit reduces Eq.
(4.14) to

^ĜA~t, x !ĜA†~t8, x8!& 5 2g Ad~t 2 t8!d~x 2 x8!,

^ĜA†~t, x !ĜA~t8, x !& 5 0. (4.15)

Note that the dimensions for the amplitude relaxation
rates gA are inverse tune. It is easy to show that 2gA/v
corresponds to the usual linear absorption coefficient for
fibers during propagation. A typical measured absorp-
tion figure in current fused-silica communications fibers
is 0.2 dB/km in the minimum region of absorption (near
l 5 1.5 mm). The corresponding absorption coefficient is
2g A/v . 2.3 3 1025 m21. To the extent that this effect
is wavelength (and hence frequency) dependent, the re-
sultant dispersion can be included as well, giving rise to a
complete response function g A(t) for absorption. Non-
Markovian effects like this can either be neglected com-
pletely, which is a good approximation for slowly varying
absorption in undoped fiber, or else included in the corre-
lation functions of the reservoirs as given above.

One can best understand the physical meaning of the
reservoir operator spectral correlations by considering the
effect of these terms on photodetection, which, according
to photodetection theory, means a normally ordered field
correlation. This involves normally ordered reservoir
correlations to lowest order. Inasmuch as these correla-
tions are zero, we conclude that the absorbing reservoirs
essentially add no quantum noise that is observable by
normal photodetection methods.

B. Waveguide Laser Amplifiers
The equations for gain or laser reservoirs are generally
more complex, involving the nonlinear response of atomic
impurities added to provide some gain in the fiber me-
dium. A pump process (usually from a semiconductor la-
ser) to maintain the lasing atoms in an inverted state is
also involved. In the case of silica fibers, a commonly
used lasing transition is provided by erbium impurities.28

The effect of these gain reservoirs is typically to introduce
new types of dispersion, owing to the frequency depen-
dence of the gain.29 In addition, there are new nonlinear
effects that are due to the effects of saturation, which in
turn depend on the pumping intensity.

It is possible to develop a detailed theory of erbium la-
ser amplifiers. However, in this paper we shall treat the
simplest possible quantum theory of a traveling-wave
quantum-limited laser amplifier. More details of the
quantum theory, including nonlinear effects, are treated
elsewhere.30 However, the simple theory presented here
provides a microscopic justification for observed
quantum-noise effects in fiber amplifier chains. In par-
ticular, it reproduces the results of the phenomenological
theory of Gordon and Haus,4 which is known to give pre-
dictions in accord with soliton transmission experiments.
The resultant Gordon–Haus jitter can be reduced through
the use of filtering techniques. Assuming that the laser
amplifier is polarization insensitive, we again omit the
polarization index. The reservoir variable ŝm

5 u1&m^2um is an atomic transition operator, which in-
duces a near-resonant atomic transition from an upper to
a lower state, with two-level transitions having an as-
sumed density of r(v, x) in position and resonant angular
frequency v.

We model these quantum effects here by including gain
reservoirs in the Hamiltonian, coupled by a frequency-
dependent term G(v, x) to the radiating field. Here the
gain terms ŝ6(v, x, t) represent the raising and lowering
Pauli field operators for two-level lasing transitions at
frequency v. In more detail, we have gain given by an
interaction Hamiltonian:

ĤG8 5 \ E
2`

`

dx E
0

`

dvH @Ĉŝ1~v, x !G~v, x ! 1 h.c.#

1
v 2 v0

2
s z~v, x !J , (4.16)

where the atomic raising and lowering field operators,
ŝ6, are defined in terms of discrete Pauli operators by

ŝ1~v, x, t ! 5
1

Ar~v, x !
(

m
u2&^1um exp~2iv0t !

3 d ~x 2 xm!d ~v 2 vm!,

ŝ2~v, x, t ! 5
1

Ar~v, x !
(

m
u1&^2um exp~iv0t !

3 d ~x 2 xm!d ~v 2 vm!,

ŝz~v, x, t ! 5
1

r~v, x !
(

m
@ u2&^2u 2 u1&^1u#m

3 d ~x 2 xm!d ~v 2 vm!. (4.17)

These operators are, in general, time dependent in the
Heisenberg picture but have the equal-time commutation
relations

@ŝ1~t, v, x !,ŝ2~t, v8, x8!# 5 ŝz~t, v, x !

3 d ~x 2 x8!d~v 2 v8!.

(4.18)

In the limit of complete inversion, with linear response
and pure inhomogeneous broadening,
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]

]t
ŝ2~t, v, x ! 5 2i~v 2 v0!ŝ2~t, v, x !

1 iŝz~t, v, x !G~v, x !Ĉ~t, x !.

(4.19)

Hence the solutions in the amplifier case are

ŝ2~t, v, x ! 5 ŝ2~t0 , v, x !exp@2i~v 2 v0!~t 2 t0!#

1 iG~v, x !E
t0

t

exp@2i~v 2 v0!

3 ~t 2 t8!#ŝz~t8v, x !Ĉ~t8, x !dt8.

(4.20)

With complete inversion, ^ŝz(t0 , v, x)& 5 1, so the initial
correlations for the reservoir variables in the far past (t0
→ 2`) are given by

^ŝ1~t0 , v, x !ŝ2~t0 , v8, x8!& 5 d~x 2 x8!d~v 2 v8!,

^ŝ2~t0 , v, x !ŝ1~t0 , v8 x8!& 5 0. (4.21)

We substitute the solution for ŝ2(t, v, x) into the
Heisenberg equation for the field evolution, assuming no
depletion of the inversion, and trace over the atomic gain
reservoirs. This gives rise to an extra time-dependent
term, of the form

2i E
0

`

G* ~v, x !ŝ2~t, v, x !dv

5 E
0

`

dvuG~v, x !u2 E
t0

t

dt8 exp@2i~v 2 v0!

3 ~t 2 t8!#Ĉ~t8, x ! 2 i E
0

`

dvG* ~v, x !

3 exp@2i~v 2 v0!~t 2 t0!#s 2~t0 , v, x !

5 E
0

`

dt9gG~t9, x !Ĉ~t 2 t9, x ! 1 ĜG~t, x !, (4.22)

where t9 5 t 2 t8, as before. This gives

gG~t, x ! ' Q~t !E
2`

1`

dvuG~v, x !u2 exp@2i~v 2 v0!t#,

ĜG~t, x ! ' 2i E
2`

`

dvG* ~v, x !exp@2i~v 2 v0!

3 ~t 2 t0!#s 2~t0 , v, x !. (4.23)

Fourier transforming the response function gives

g̃G~v, x ! 5 E gG~t, x !exp~ivt !dt

5 gG~v, x ! 1 igG9~v, x !, (4.24)

and the (real) resonant amplitude gain coefficient is

gG~v, x ! 5 puG~v 1 v0 , x !u2. (4.25)

As with the loss case, ĜG(t, x) behaves as a stochastic
term because of the random initial conditions. The cor-
responding correlation functions are
^ĜG†~t8, x8!ĜG~t, x !&

5 E
0

`

dvuG~v, x !u2exp@i~v 2 v0!~t 2 t8!#d~x 2 x8!

5 @gG~t 2 t8, x ! 1 gG* ~t8 2 t, x !#d~x 2 x8!. (4.26)

Fourier transforming these noise sources gives

^ĜG†~v8, x8!ĜG~v, x !& 5 2gG~v, x !d~x 2 x8!d~v 2 v8!.

(4.27)
Taking the uniform fiber in the Wigner–Weiskopff limit
as before, so gG 5 gG(0, x), reduces Eq. (4.27) to

^ĜG~t, x !ĜG†~t8, x8!& 5 0,

^ĜG†~t, x !ĜG~t8, x8!& 5 2gGd~t 2 t8!d~x 2 x8!.
(4.28)

The dimensions for the amplitude gain gG are inverse
time. On Fourier transforming, the response function
can be related to the measured intensity gain
2 Re@g̃G(v, x)/v# at any frequency offset v relative to the
carrier frequency v0 . This allows one to obtain the lin-
ear gain coefficient for fibers during propagation. As
measured laser gain figures can be much greater than the
absorption, it is possible to compensate for fiber absorp-
tion with relatively short regions of gain. The results
presented here are valid only in the linear gain regime.
More generally, a functional Taylor expansion up to at
least third order in the field would be needed to represent
the full nonlinear response of the laser amplifier, together
with additional quantum-noise terms.

Finally, it is necessary to consider the result of incom-
plete inversion of an amplifier. Here, the noninverted at-
oms give rise to absorption, not gain, and will generate
additional quantum-noise and absorption response terms.
These terms must be treated as in Subsection 4.A, includ-
ing non-Markovian effects if the absorption line is narrow
band. An important consequence is that the measured
gain gives only the difference between the gain and the
loss, which does not cause any problems with the deter-
ministic response function but does cause difficulties in
determining the amplifier quantum noise levels, which
can be uniquely determined only through spontaneous
fluorescence measurements. Obviously, the lowest
quantum-noise levels occur when all the lasing transi-
tions are completely inverted.

The physical meaning of the reservoir operator spectral
correlations for the amplifier is clearly quite different
from that of the absorber. If we consider the effect of
these terms on photodetection as before, which means a
normally ordered field correlation, we should look again
at the normally ordered correlations of the reservoirs.
Because these correlations are no longer zero, we con-
clude that the amplifying reservoirs emit fluorescent pho-
tons as a result of spontaneous emission over the ampli-
fier bandwidth.

5. COMBINED HEISENBERG EQUATIONS
Coupling linear gain and absorption reservoirs in this
way to the Raman-modified Heisenberg equation leads to
a generalized quantum nonlinear Schrödinger equation.
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Such equations are sometimes called quantum Langevin
equations. In the present case of single polarization, the
resultant field equations are

S v
]

]x
1

]

]t D Ĉ~t, x !

5 2E
0

`

dt8g ~t8, x !Ĉ~t 2 t8, x ! 1 Ĝ~t, x !

1 iH v9

2

]2

]x2 1 E
02

`

dt8x~t8!

3 @Ĉ†Ĉ#~t 2 t8, x ! 1 ĜR~t, x !J Ĉ~t, x !. (5.1)

In Eq. (5.1),

g ~t, x ! 5 g A~t, x ! 2 gG~t, x ! 1 iDv~x !d~t ! (5.2)

is a net linear response function that is due to coupling to
linear gain–absorption reservoirs, including the effects of
a spatially varying refractive index. The reponse func-
tion can be Fourier transformed, giving g̃(v, x)
5 g (v, x) 1 ig9(v, x), where g (v, x) , 0 for gain and

g (v, x) . 0 for absorption. Similarly, Ĝ(t, x) is the lin-
ear quantum noise that is due to gain and absorption.
The actual measured intensity gain at frequency v 1 v0
is given in units of inverse meters by

] ln I

]x
5 2@gG~v, x ! 1 gA~v, x !#/v. (5.3)

The stochastic terms have the correlations

^ĜR†~v8, x8!ĜR~v, x !& 5 2x9~x, uvu!@nth~ uvu!

1 Q~2v!#d~x 2 x8!

3 d~v 2 v8!,

^Ĝ†~v8, x8!Ĝ~v, x !& 5 2gG~v, x !d ~x 2 x8!d ~v 2 v8!,

^Ĝ~v, x !Ĝ†~v8, x8!& 5 2gA~v, x !d~x 2 x8!d~v 2 v8!,

(5.4)
where we have introduced minimal linear quantum-noise
terms Ĝ and Ĝ† for the gain–absorption reservoirs and
where thermal photons have been neglected (because usu-
ally \v0 @ kT, as we explained in Section 4). Equation
(5.1) can easily be generalized to include nonlinear ab-
sorption or laser saturation effects relevant to amplifiers
with intense fields, but these terms are omitted here for
simplicity.

This complete Heisenberg equation gives a consistent
quantum theoretical description of dispersion, nonlinear
refractive index, Raman/guided wave acoustic Brillouin
scattering, linear gain, and absorption. It is important to
notice that the reservoir correlations have a simple physi-
cal interpretation, especially in the zero-temperature
limit. Normally ordered noise correlations occur when
there is gain; antinormally ordered correlations, when
there is absorption. This is why the normally ordered
Raman noise correlations vanish at zero temperature for
positive frequencies. At low temperatures, Raman pro-
cesses cause absorption to occur only at positive detun-
ings from a pump frequency. Thermal correlations have
a more classical behavior and occur for both types of op-
erator ordering.

It is often useful to do calculations in a simpler model,
in which we include the effects of uniform gain and loss in
a moving frame. This modeling can be carried out either
with a standard moving frame (xv 5 x 2 vt) or with a
propagative time (tv 5 t 2 x/v) as in the original
Gordon–Haus calculations. For propagative calculations
it is most convenient to use photon flux operators:

F̂~tv , x ! 5 AvĈ~t, x !. (5.5)
For long pulses, assuming a uniform gain–loss response
in the frequency domain, the propagative transformation
gives the following approximate equations:

]

]x
F̂~tv , x ! 5 2E

0

`

dtv8
g ~tv8, x !

v
F̂~tv 2 tv8, x !

1 Ĝ~t !Y Av 1 iH 2
k9

2

]2

]tv
2

1 E
0

`

dt8
x~tv8!

v2

3 @F̂†F̂#~tv 2 tv8, x ! 1
1

v
ĜRJ F̂~tv , x !.

(5.6)
In addition, if the pulses are narrow band compared with
the gain and loss bandwidths, and the reservoirs are uni-
form, then the gain and absorption reservoirs are nearly
delta correlated, with

^Ĝ†~t, xv!Ĝ~t8, xv8!& 5 2gGd~xv 2 xv8!

3 d ~t 2 t8!

3 ^Ĝ~t, xv!Ĝ†~t8, xv8!&

5 2gAd~xv 2 xv8!d~t 2 t8!.

(5.7)
It is essentially this set of approximate equations that

corresponds to those used to predict the soliton31 self-
frequency shift32 and related effects4 in soliton propaga-
tion, except for the omission of the Raman reservoir
terms.

6. PHASE-SPACE METHODS
The Heisenberg equations are not readily solvable in
their present form. To generate numerical equations for
analytic calculations or for simulation, operator represen-
tation theory can be used. There is more than one pos-
sible method, depending on which phase-space represen-
tation is used. The 1P representation, for example,
produces exact results,1,8,16 provided that phase-space
boundary terms are negligible, whereas a truncated
Wigner representation33,34 gives approximate results that
are valid in the limit of large photon number. It is im-
portant to note that the Wigner method represents sym-
metrically ordered rather than normally ordered operator
products and so has finite quantum-noise terms even for a
vacuum field. These terms can be thought of as corre-
sponding to the shot noise detected in a homodyne or
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local-oscillator measurement, whereas the 1P represen-
tation represents normally ordered operators and there-
fore corresponds to direct-detection noise.

Either technique can be used for this problem, each
with its characteristic advantages and disadvantages.
The 1P representation, although it is exact, uses an en-
larged phase space, which therefore takes longer to simu-
late numerically. It includes only normally ordered noise
and initial conditions, and this is an advantage in some
cases, as the resultant noise is zero in the vacuum state.
The Wigner technique is simpler, and for large mode oc-
cupations its results are accurate enough for many pur-
poses. However, it has the drawback that it includes
symmetrically ordered vacuum fluctuations.

First, we expand the field operators in terms of opera-
tors for the free-field modes. Applying the appropriate
operator correspondences to the master equation for the
reduced density operator r̂C in which the reservoir modes
have been traced over, namely,

r̂̇C 5 Tr R r̂̇C 5 Tr R

1

i\
@Ĥ, r̂ #, (6.1)

gives a functional equation for the corresponding operator
representation.

In the 1P case, the equation is defined on a functional
phase space of double the classical dimensions, so that a
complete expansion in terms of a coherent-state basis uC&
is obtained:

r̂C~t ! 5 EE P~t, C, C̄!
uC&^C̄u

^C̄uC&
d@C#d@C̄#. (6.2)

The resultant Fokker–Planck equation for the positive
distribution P(t, C, C̄) has only second-order derivative
terms. Sometimes the notation C1 5 C̄* is used to indi-
cate the stochastic field that corresponds to the Hermitian
conjugate of C.

The equation for the Wigner function W(t, C) also con-
tains third- and fourth-order derivative terms, which may
be neglected at large photon number. The resultant
Fokker–Planck equation in either case can be converted
into equivalent Ito stochastic equations for the phase-
space variables C (and C̄). We can calculate physical
quantities by forming the average over many stochastic
realizations, or paths, in phase space. For example, in
the 1P representation, ^C̄* C&stochastic 5 ^Ĉ†Ĉ&quantum ,
whereas, in the Wigner representation, ^C* C&stochastic

5 1/2^Ĉ†Ĉ 1 ĈĈ†&quantum .
It should be clear therefore that the 1P representation

directly generates an intensity that corresponds to the
usual normally ordered intensity that is detected in direct
photodetection. The Wigner representation, however,
generates an intensity result that includes some vacuum
fluctuations. In a computer simulation with a finite
number M of modes, we must correct the Wigner result by
subtracting M/2 from any simulated photon number, or
vM/2 from any calculated photon flux, to obtain the direct
photodetection result. For the calculation of a homodyne
measurement, the Wigner method will give the most di-
rectly suitable result with symmetric ordering. In this
case it is the 1P representation that will need correction
terms added to it. Once these corrections are made, the
two methods will give similar results, although the sam-
pling error may not be identical.

A. Modified Nonlinear Schrödinger Equation
Standard custom in fiber-optics applications31 involves
using the propagative reference frame with the normal-
ized variables: t 5 (t 2 x/v)/t0 and z 5 x/x0 , where t0
is a typical pulse duration used for scaling purposes and
x0 5 t0

2/uk9u ; 1 km for dispersion-shifted fiber. This
change of variables is useful only when slowly varying
second-order derivatives involving z can be neglected, a
condition that occurs for vt0 /x0 ! 1. For typical values
of the parameters used in experiments, this inequality is
often well satisfied (vt0 ; 1024 m). To make comparison
with this usage simpler, we make the same transforma-
tion for the stochastic equations that are equivalent to
our complete operator equations and scale the variables
used in a dimensionless form.

For definiteness, we now focus on the spatially uniform
case. The resultant equation, which includes gain and
loss, is a Raman-modified NLS equation with stochastic
noise terms:

]

]z
f~t, z! 5 2E

2`

`

dt8g~t –t8!f~t8, z! 1 G~t, z!

1 F 6
i

2

]2f

]t 2 1 i E
2`

`

dt8h~t 2 t8!

3 f* ~t8, z!f~t8, z! 1 GR~t, z!Gf~t, z!,

(6.3)

where f 5 CAvt0 /n̄ is a dimensionless photon field am-
plitude. The photon flux is ufu2n̄/t0 , and n̄
5 uk9uAc/(n2\vc

2t0) 5 v2t0 /xx0 is the typical number of
photons in a soliton pulse of width t0 , for scaling pur-
poses. The positive sign in front of the second derivative
term applies for anomalous dispersion (k9 , 0), which
occurs for longer wavelengths, and the negative sign ap-
plies for normal dispersion (k9 . 0). A similar equation
is obtained in the 1P case, except that f* and GR* (t, z)
are replaced by non-complex-conjugate fields, denoted f1

and GR1(t, z), respectively:

]

]z
f1~t, z! 5 2E

2`

`

dt8g* ~t 2 t8!f1~t8, z! 1 G1~t, z!

1 F 7
i

2

]2f1

]t 2 2 i E
2`

`

dt8h* ~t 2 t8!

3 f~t8, z!f1~t8, z! 1 G1R~t, z!Gf1~t, z!.

(6.4)

The equations in f and f1 have the same additive noises
and identical mean values, differing only in the indepen-
dent parts of the multiplicative noise sources, which
therefore generate nonclassical quantum statistics.
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The causal linear response function g(t) is defined as

g~t! 5
g ~tt0!x0

v
. (6.5)

If the Fourier transform of this function is g̃(V) 5 g(V)
1 ig8(V), then we can relate this to dimensionless inten-
sity gain aG(V) and loss aA(V), at a relative (dimension-
less) detuning of V, by

2g~V! 5 aA~V! 2 aG~V!. (6.6)

The causal nonlinear response function h(t) is normal-
ized such that * h(t)dt 5 1, and it includes both elec-
tronic and Raman nonlinearities:

h~t! 5 hE~t! 1 hR~t! 5
n̄x0x~t t0!

v2 . (6.7)

The Raman response function hR(t) causes effects such
as the soliton self-frequency shift.32 The response func-
tion Fourier transform is given by

h̃~V! 5 E dt exp~iVt!h~t! 5 h8~V! 1 ih9~V!. (6.8)

This definition has the property that the value of h̃(V)
5 h̃(vt0) is a dimensionless number, which depends on
the frequency v only, independently of the time scale used
for normalization. The Raman gain, whose spectrum has
been extensively measured,22 can be modeled as a sum of
n Lorentzians, as explained in Section 3 and as illustrated
in Fig. 1.

This expansion as n Lorentzians gives a response func-
tion of the form

hR~t/t0! 5 Q~t !(
j50

n

Fjd jt0 exp~2d jt !sin~v jt !. (6.9)

It is most convenient to express these Lorentzians in
terms of dimensionless parameters V j 5 v jt0 and D j
5 d jt0 , giving

Fig. 1. Parallel polarization Raman gain uI$h̃(vt0)%u
5 uh9(vt0)u for the 11-Lorentzian model (continuous curve) and
the single-Lorentzian model (dashed curve) for a temperature of
T 5 300 K.
hR~t! 5 Q~t!(
j50

n

FjD j exp~2D jt!sin~V jt!. (6.10)

Here D j are the equivalent dimensionless widths (corre-
sponding to damping) and V j are the dimensionless cen-
ter frequencies, all in normalized units. It is useful to
compare these results with the dimensionless Raman
gain aR(V) normalized following Gordon,32 which uses a
characteristic time scale of t0 . The relationship of mac-
roscopic coupling R(v) to measured Raman gain aR(V) is
R2(v) 5 xaR(vt0)/2p. It follows that the dimensionless
gain function is

aR~V! 5 2uh9~V!u. (6.11)

These stochastic partial differential equations can be
discretized and, without any further approximation, can
be numerically simulated33,35 with a split-step Fourier in-
tegration routine. The equations include all the cur-
rently known noise physics that is significant in soliton
propagation, including effects such as the soliton self-
frequency shift. Guided acoustic wave Brillouin
scattering23–25 noise sources are included in the Raman
gain function. They have little effect on the position of
an isolated soliton but are important for long-range soli-
ton collision effects26 that occur in pulse trains.

B. Initial Conditions
The initial conditions for the calculations could involve
any required quantum state if the 1P representation is
used. In the case of the Wigner equations, only a subset
of possible states can be represented with a positive prob-
ability distribution. The usual initial condition is the
multimode coherent state, as this is the simplest model
for the output of mode-locked lasers. In general, there
could be extra technical noise. We note that the choice of
a coherent state is the simplest known model of a laser
sources; to represent it in the 1P distribution is simple;
one just takes

fP~t, 0 ! 5 @ fP
1~t, 0 !#* 5 ^f̂~t, 0 !&. (6.12)

In the Wigner case, which corresponds to symmetric op-
erator ordering, one must also include complex quantum
vacuum fluctuations to represent operator fields correctly.
For coherent inputs, the Wigner vacuum fluctuations are
Gaussian and are correlated as

^ fW~t, 0 !& 5 ^f̂~t, 0 !&,

^DfW~t, 0 !DfW* ~t8, 0 !& 5
1

2n̄
d~t 2 t8!. (6.13)

We note that these equations imply that an appropriate
correction is made for losses at the input interface, so the
mean-field evolution is known at the fiber input face.

C. Wigner Noise
Both fiber loss and the presence of a gain medium contrib-
ute quantum noise to the equations in this symmetrically
ordered representation. The complex gain–absorption
noise enters the Wigner equation through an additive sto-
chastic term G, whose correlations one obtains by averag-
ing the normally and antinormally ordered reservoir cor-
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relation functions already determined, together with
appropriate variable changes. This symmetrically or-
dered noise source is present for both gain and loss reser-
voirs. Thus,

^G~V, z!G* ~V8, z8!& 5
@aG~V! 1 aA~V!#

2n̄

3 d ~z 2 z8!d~V 2 V8!, (6.14)

where G(V, z) is the Fourier transform of the noise
source:

G~V, z! 5
1

A2p
E

2`

`

dtG~t, z!exp~iVt!,

G* ~V, z! 5
1

A2p
E

2`

`

dtG* ~t, z!exp~2iVt!. (6.15)

Similarly, the real Raman noise, which appears as a mul-
tiplicative stochastic variable GR, has correlations

^GR~V, z!GR* &~V8, z8!& 5
aR~ uVu!

n̄
@nth~ uVu/t0! 1 ~1/2!#

3 d ~z 2 z8!d ~V 2 V8!.

(6.16)

Thus the Raman noise is strongly temperature depen-
dent, but it also contains a spontaneous component that
provides vacuum fluctuations even at T 5 0. As the
spontaneous component can occur through coupling to ei-
ther a gain or a loss reservoir, in a symmetrically ordered
representation it is present for both positive and negative
frequency detunings.

It must be remembered here that the noise terms in the
Wigner representation do not correspond to normally or-
dered correlations and so have no direct interpretation in
terms of photodetection experiments. Any predictions
made with this method of calculation need to be corrected
by subtraction of the appropriate commutators to convert
the results into a normally ordered form. This is the rea-
son why there is no obvious distinction between the am-
plifier and absorber cases.

D. 1P Noise
The 1P representation is a useful alternative strategy for
deriving complex-number equations, because it does not
require truncation of higher-order derivatives in a
Fokker–Planck equation and corresponds directly to ob-
servable normally ordered, time-ordered operator correla-
tions. It has no vacuum fluctuation terms. Provided
that the phase-space boundary terms are negligible, one
can obtain a set of c-number stochastic differential equa-
tions in a phase space of double the usual classical dimen-
sions. These are similar to the classical equations.
Here the additive stochastic term is as before, except that
it depends only on gain term aG; the conjugate term G* is
used in the f1 equation:

^G~V, z!G* ~V8, z8!& 5
aG~V!

n̄
d~z 2 z8!d~V 2 V8!.

(6.17)
Because this representation is normally ordered, the only
noise sources present are due to the gain reservoirs.
There is no vacuum noise term for the absorbing reser-
voirs, because absorption simply maps a coherent state
into another coherent state.

The complex terms GR and GR1 include both Raman
and electronic terms [through h8(V)]. As elsewhere in
this paper, we regard GR1(V, z) as a Hermitian conjugate
Fourier transform (with the opposite sign frequency expo-
nent):

G1~V, z! 5
1

A2p
E

2`

`

dtG1~t, z!exp~2iVt!. (6.18)

This quantity is not the same as GR* (V, z), as it involves
a noise source that is in general independent. In some
cases in which classical noise is dominant (and nonclassi-
cal squeezing is negligible), we can ignore this fact and
approximately set GR1(V, z) 5 GR* (V, z). More gener-
ally, we obtain the following results:

^GR~V, z!GR~V8, z8!& 5 d~z 2 z8!d~V 1 V8!

3 $@nth~ uVu/t0! 1 1/2#

3 aR~ uVu! 2 ih8~V!%/n̄,

^GR1~V8, z8!GR~V, z!& 5 d~z 2 z8!d~V 2 V8!

3 @nth~ uVu/t0!

1 Q~2V!#aR~ uVu!/n̄.

(6.19)

Equations (6.19) are the expected result, as they state
that when V , 0 the spectral intensity of noise that is
due to the Stokes process, in which a photon is down-
shifted in frequency by an amount V with the production
of a phonon of the same frequency, is proportional to nth
1 1. However, the anti-Stokes process in which a pho-
non is absorbed (V . 0) is proportional only to nth .
Thus at low temperatures the only direct noise effect is
that which is due to the Stokes process, which can be in-
terpreted physically as originating in spontaneous photon
emission that is detectable through photodetection.

As one might expect, the two forms of equation are
identical at high phonon occupation numbers when clas-
sical noise is so large that it obscures the differences that
are due to the operator orderings of the two representa-
tions. Another, less obvious, result is that the two equa-
tions have identical additive noise sources, provided that
gain and loss are balanced. To understand this, we can
see that, in the absence of any net gain or loss, the differ-
ence in the operator correlations that is due to ordering is
a constant, which is contained in the initial conditions.

However, when gain and loss are not equal, the addi-
tive noise sources are quite different. In particular, the
Wigner representation has noise contributions from both
types of reservoir. However, the normally ordered 1P
method leads to additive noise only when there is a real
fluorescent field present, which is detectable through pho-
todetection. This field corresponds physically to some
kind of gain, either because of the presence of an ampli-
fier or through Raman effects.
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In general, the Wigner and 1P reservoir correlations
are obtainable simply by examination of the expectation
values of the Heisenberg reservoir terms, with symmetric
and normal ordering, respectively. The additional term
proportional to h8(V) in the 1P noise terms is due to dis-
persive nonlinear effects and gives rise to a nonclassical
noise source that is responsible for the observed
quantum-squeezing effects. Extensions required to treat
polarization-dependent Raman scattering are given
elsewhere.14

7. CONCLUSIONS
Our major conclusion is that quantum-noise effects that
are due to the intrinsic finite-temperature phonon reser-
voirs and finite-bandwidth amplification or absorption
can be readily modeled with stochastic equations. The
equations themselves have the usual classical form, to-
gether with correction terms that we can describe as
quantum-noise terms. The precise form of the correction
terms depends in detail on the representation employed
(although this difference is purely due to operator order-
ing) as well as on the physical origin of the reservoir cou-
plings. These correction terms can be non-Markovian or
nonuniform in space. The generation of the correspond-
ing stochastic noises is a straightforward numerical pro-
cedure and generally is much simpler than the use of non-
commuting operators. By contrast, the original operator
equations have no practical numerical solution in most
cases because of the exponential growth of the dimension
of the underlying Hilbert space with the number of modes
and photons involved.

Detailed applications to short-pulse soliton communica-
tions will be given in a subsequent paper.6 In general,
the increasing bandwidth, reduced pulse energies, and
greater demands placed on fiber communications and sen-
sors mean that these quantum limits are becoming in-
creasingly important. Already, limits set by quantum
amplifiers are known to have great significance in long-
distance laser-amplified communications systems. We
note that the quantum theory given here also establishes
the levels of quantum noise in silica fibers in more-
general situations, for example, for dispersion-managed
fiber communications36,37 and for fiber ring lasers with
relatively low gain.38 Similarly, these equations set the
limits for experiments that use spectral filtering and re-
lated techniques to generate sub-shot-noise pulses39,40 in
optical fibers.
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