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The dynamics of a soliton propagating in a single-mode optical fiber with gain, loss, and Raman coupling to
thermal phonons is analyzed. Using both soliton perturbation theory and exact numerical techniques, we
propose that intrinsic thermal quantum noise from the phonon reservoirs is a larger source of jitter and other
perturbations than the gain-related Gordon—Haus noise for short pulses (<1 ps), assuming typical fiber pa-
rameters. The size of the Raman timing jitter is evaluated for both bright and dark (topological) solitons and
is larger for bright solitons. Because Raman thermal quantum noise is a nonlinear, multiplicative noise
source, these effects are stronger for the more intense pulses that are needed to propagate as solitons in the

Vol. 18, No. 2/February 2001/J. Opt. Soc. Am. B

153

short-pulse regime. Thus Raman noise may place additional limitations on fiber-optical communications and

networking by use of ultrafast (subpicosecond) pulses.
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1. INTRODUCTION

In this paper we analyze in some detail the effects of Ra-
man noise on solitons. In particular, we derive approxi-
mate analytic expressions and provide further details of
the precise numerical results published earlier.! The
motivation for this study is essentially the finding that
coupling to phonons is one property of a solid medium
that definitely does not obey the nonlinear Schrodinger
(NLS) equation. The presence of Raman interactions
plays a major role in perturbing the fundamental soliton
behavior of the NLS equation in optical fibers. This per-
turbation is in addition to the more straightforward gain
and loss effects that produce the well-known Gordon—
Haus effect.?

The complete derivation of the quantum theory for op-
tical fibers was given in an earlier paper,? denoted QNT.
In QNI a detailed derivation of the quantum Hamiltonian
was presented that included quantum-noise effects owing
to nonlinearities, gain, loss, Raman reservoirs, and Bril-
louin scattering. Phase-space techniques allowed the
quantum Heisenberg equations of motion to be mapped
onto stochastic partial differential equations. The result
was a generalized NLS equation that can be solved nu-
merically or with perturbative analytical techniques.

The starting point for this paper is the phase-space
equation for the case of a single polarization mode, ob-
tained with a truncated Wigner representation, which is
accurate in the limit of large photon number. We use
both soliton perturbation theory and numerical integra-
tion of the phase-space equation to calculate effects on
soliton propagation of all known quantum-noise sources,
with good agreement between the two methods.

Our main result is that the Raman noise that is due to
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thermal phonon reservoirs is strongly dependent on both
temperature and pulse intensity. This means that at
room temperature, Raman jitter and phase noise become
steadily more important as the pulse intensity is in-
creased, which occurs when a shorter soliton pulse is re-
quired for a given fiber dispersion. Using typical fiber
parameters, we estimate that Raman-induced jitter is
more important than the well-known Gordon—Haus jitter
for pulses shorter than approximately 1 ps. Although we
do not analyze them in detail here, we note that similar
perturbations may occur during the collision of short
pulses in a frequency-multiplexed environment.

2. RAMAN-SCHRODINGER MODEL

We begin with the Raman-modified stochastic NLS equa-
tion [Eq. (6.3) of QNI], obtained with the Wigner repre-
sentation, for simplicity:

(7 o0
—¢(1,{) = —f dr'g(r — 7)) (7', §) + (7,0
g 0

; 1 (?Zd) - ! ’ ! *
ity ot f dr'h(r — ) é(7',0)]

0

X ¢(r', &) + TR (7, O | B( 7, O). (2.1

Here ¢ = ¥ \vt,/n is a dimensionless photon field ampli-
tude and 7= (¢t — x/v)/ty and { = x/xq, where ¢y is a
typical pulse duration used for scaling purposes and x,
= to2/|k"| is a characteristic dispersion length. Group
velocity v and dispersion relation £” are calculated at car-
rier frequency w.
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Apart from a cutoff-dependent vacuum noise, the pho-
ton flux is J = |¢|?A/ty, where 7 = |k"|Ac/(nohwy?ty)
= v2ty/xx, is the typical number of photons in a soliton
pulse of width ¢,, again for scaling purposes. In this
definition, the fiber is assumed to have a modal cross-
sectional area A and a change in refractive index per unit
intensity of ny,. The positive sign in front of the second
derivative term applies for anomalous dispersion (k"
< 0), and the negative sign applies for normal dispersion
(k" > 0). The functions g and & are gain—loss and Ra-
man scattering response functions, respectively, and I’
and I'? are stochastic terms, discussed below.

Similar, but more accurate, equations occur with the
positive-P representation, although in this case the
phase-space dimension is doubled. To simplify the calcu-
lations further, we assume that gain and loss in the fiber
are broadband relative to the soliton bandwidth and bal-
ance exactly. This requires that the amplifier sections in
the fiber be sufficiently close together (of the order of the
soliton scaling length or less) that the soliton can propa-
gate without distortion.*

For the analytic calculations we also assume that the
Raman nonlinear response function is instantaneous on
the time scale of the soliton width. This is equivalent to
assuming that the phonon modes are heavily damped and
means that the Raman coupling leads only to incoherent
scattering of the propagating radiation. Although this
approximation neglects the well-known self-frequency
shift,>~” we find that the self-frequency shift by itself is
not a major cause of jitter for the distance scales that we
consider here. This assumption can be improved at the
expense of more-complicated analytic calculations. How-
ever, the full equations are used in the numerical simula-
tions, which agree quite well with our analytical predic-
tions.

The Raman-modified equation then reduces to

J i
a—gqﬁ(T,{)— 5o + i¢*(7, ) P(1, 0)
X ¢(r,0) + T, 0), (2.2)

where the term in brackets represents the usual NLS
equation in normalized, propagative form. The combined
noise sources have been grouped together as

I(r,0) =T(r, 0 +il*(r, O (7, 0). (2.3)

A. Initial Conditions and Quantum Evolution

Equation (2.2) is a complex-number equation that can ac-
curately represent quantum-operator evolution through
the inclusion of various noise sources. In the absence of
any noise sources, Eq. (2.2) reduces to the classical NLS
equation. This deterministic limit corresponds to taking
n — . As well as the noise sources that explicitly ap-
pear in Eq. (2.2), there must be noise in the initial condi-
tions to properly represent a quantum state in the Wigner
representation. Regardless of the initial quantum state
chosen, there must be at least a minimal level of initial
fluctuations in ¢ to satisfy Heisenberg’s uncertainty prin-
ciple. We choose to begin with a multimode coherent
state, which contains this minimal level of initial quan-
tum noise and which is an accurate model of mode-locked
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laser output. This is also the simplest model for the out-
put of mode-locked lasers, and we note that, in general,
there could be extra technical noise. For coherent in-
puts, the Wigner vacuum fluctuations are Gaussian and
are correlated as

1
(Ag(7,0)Ap*(7',0)) = %5(7— 7). (2.4)

Physical quantities can be calculated from this phase-
space simulation by averaging of the products of ¢ and ¢*
over many stochastic trajectories. In this Wigner repre-
sentation these stochastic averages correspond to the en-
semble averages of symmetrically ordered products of
quantum operators, such as those that represent homo-
dyne measurements and other measurements of phase.

B. Wigner Noise

Both fiber loss and the presence of a gain medium contrib-
ute quantum noise to the equations in the symmetrically
ordered Wigner representation. The complex gain—
absorption noise enters the NLS equation through an ad-
ditive stochastic term I', whose correlations are

(af + a?)
——0({ = {)o(Q + Q),
2n

(2.5)

where I'(Q, ¢) is the Fourier transform of the noise
source:

(K, Or=Q’, ) =

I'Q, ) = drl'(7, Hexp(iQd7).  (2.6)

1 f@
V2 J -
The dimensionless intensity gain and loss are given by «¢
and a4, respectively.

Similarly, the real Raman noise, which appears as a
multiplicative stochastic variable I'%, has correlations

1
(PR, prk@’, o)) = —8(£- )8+ Q)

X afQ), @7

1
nm(Q) + 2

where the thermal Bose distribution is given by ny,(Q)
= [exp(h|Q)/kg Tty) — 1171 and where of(Q) is the Ra-
man gain, whose profile is given in Fig. 1 of QNI. Thus
the Raman noise is strongly temperature dependent, but
it also contains a spontaneous component that provides
vacuum fluctuations even at 7' = 0.

As the n dependence of all the noise correlations shows,
the classical limit of these quantum calculations is the de-
terministic NLS equation. The problem of jitter in soli-
ton communications is an example of ways in which in-
trinsic quantum features can have a direct macroscopic
consequence, even in a way that impinges on current de-
velopments of applied technology. There are, of course,
classical contributions to jitter, such as noise that arises
from technical sources. However, it is the jitter contribu-
tions from essentially quantum processes, namely, spon-
taneous emission in fiber amplifiers, that are the current
limiting factor in soliton-based communications systems.
Other jitter calculations rely on a classical formulation
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with an empirical addition of amplifier noise, and impor-
tant predictions of the Gordon—Haus effect have been ob-
tained. Nevertheless, the quantum treatment presented
here of all known noise sources is necessary for determin-
ing the limiting effects of other intrinsic noise sources,
which become important for shorter pulses and longer
dispersion lengths.

In the absence of the noise sources, the phase-space
equations have stationary solutions in the form of bright
(+) or dark (—) solitons. Solitons are solitary waves in
which the effects of dispersion are balanced by nonlinear
effects to produce a stationary pulse that is robust in the
presence of perturbations. We note here that, in reality,
the Raman response function is noninstantaneous, which
causes a redshift in the soliton frequency. This soliton
self-frequency shift is a deterministic effect and so can be
neglected in the treatment of noise effects to a first ap-
proximation. The accuracy of this approximation will be
evident in the subsequent comparison of analytic with nu-
merical results. The numerical results all include the
complete nonlinear response function rather than the ap-
proximate instantaneous form given above.

Excessive self-frequency shift may cause problems
when finite bandwidth elements are used. However, it
has been shown® that bandwidth-limited gain can in fact
cancel the effect of the Raman redshift by pulling the soli-
ton back toward the center of the spectral band. In the
simulations that we show in this paper, the total redshift
is estimated to be Af = 0.02 THz, which is small com-
pared with the total width of the gain spectrum in typical
fiber laser amplifiers (Av = 3 THz).®

3. PERTURBATION THEORY

We now proceed to derive the approximate analytic ex-
pressions for the effects of noise on soliton jitter, using
soliton perturbation theory,'®1? for both bright and dark
solitons.

A. Bright Solitons
The stationary soliton of Eq. (2.2) for anomalous disper-
sion is
Pbright( 7, {) = A sech[A7 — q({)]exp[iVT + 16({)],
(3.1)

where dg/9¢ = VA and 96/9¢; = (A% — V?)/2, with ampli-
tude A and velocity V. Following the method presented
by Haus et al.,'51? we treat the effects of the noise terms
as perturbations about a soliton solution whose param-
eters vary slowly with ¢:

d(1,0) = ¢(7,0) + Ag(7, {), (3.2)

where the unperturbed-soliton solution is given by

$(7,§) = A(Dsech[A()T — q)lexp[iV()T + i6(0)]
(3.3)

for a bright soliton. Substituting Eq. (3.2) into Eq. (2.2)
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gives the following linearized equation [first order in
Ad(r, DI:
i 9

J _ _
&—é,Atﬁ(T, {) = iiﬁ +124%(7,0) &(7, 0)

X AT, O) + id(r, O?A¢*(r, O) + (7, 0),
(3.4)

where the linearized noise source I'(7, ¢) is defined as

T(1,{) = T(7,0) + iTB(7, O (7, 0). (3.5)

Now we wish to determine the evolution of the soliton
parameters as a function of propagation distance {. To
do this, we expand the perturbation in terms of the soli-
ton parameters plus a continuum term:

I(7, {)
Ap(r,0) = 2 —o—

APL' + A¢c(75 é’)
= D fpAP; + Ag(7, 0), (3.6)

where P; € {V,q,A, 6}.
these parameters are

The projection functions for

fa = [(VA) — rtanh(A7 — q)]4,

f, = tanh(A7 — q),
fv= iT(E,
fo=1i¢. (3.7

Inasmuch as linearized equation (3.4) is not self-adjoint,
these eigenfunctions are not orthogonal. To select out
the evolution of particular parameters, we therefore
choose an alternative set of functions:

fa= ¢,
fo = 18,
f_V: i tanh(A7 — q)a),

f, = irtanh(Ar — q)d. (3.8)

These are the eigenfunctions of the adjoint equation to
Eq. (3.4) and obey the orthogonality condition

m( f, drfp, f_PJ*) = 5. (3.9)

Substituting the Taylor expansion [Eq. (3.6)] into the lin-
earized equation [Eq. (3.4)] and using the functions }? to
project out particular parameters show that the growth of
fluctuations in position Aq is governed by

Jd

—Aq({) = AAV(Q) + T',(D),

4

i A r

P V() = T'y(D), (3.10)

where we have taken the unperturbed velocity to be zero:
V = 0. The stochastic terms are defined as
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Tp(0) = m{ f dof, M (OT(n ) . (3.11)

Here we have assumed that the perturbations in the con-
tinuum ¢, are orthogonal to f p , a condition that depends
on such perturbations’ dispersing sufficiently rapidly
away from the region about the soliton. In fact, any non-
soliton perturbation will disperse and will also move
away from the soliton, because the group velocity for any
linear perturbations will be different from the propaga-
tion velocity of the soliton.

We wish to find the growth of fluctuations in position
q({). Because the position depends on soliton frequency
V, the contributions that arise from both I'; and I'y must
be considered. First,

r,(9) = %{fx drA7sech(At — q)
X exp(—iVr — i0)I(7, {)

=j dr7Arsech(A7 — q)

X Rlexp(—iVr — i)}, (3.12)

J'w d7A(—i)sech(AT — q)

Cy(o) =R

X tanh(A7 — q)exp(—iVr — i)[(, )

= J’ d7A sech(A7 — q)tanh(A7 — q)

X {A sech(Ar — q)I'®
+ Jlexp(—iVr — i0)']}. (3.13)

From this we can calculate the growth of the fluctuations
in velocity:

¢
AV({) = AV(0) + f dZ'T'v(Z")

0

» — 4
%U_ Ag(r, Ofvidr| + fodé'Fv(Z’)-

(3.14)

Using the noise correlations calculated above, we can now
calculate the correlations in the velocity fluctuations:

(AV(HAV*(L")
(e
= (AV(0)AV*(0)) + fo fo dg"d"(Ty(Z"Ty* (L")

A
= — +
6n

a®A  2A%I(t)

— + - }z, <y, (3.15)
3n n

where the overlap integral Z(¢) is defined as
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I(tg) = Jx fw drdr' tanh(r)sech?(7)

X tanh(7')sech?(7)F(r/A — 7'/A). (3.16)

Here F(7) is the inverse Fourier transform of the fluores-
cence F(Q) = 1/2[ngu(Q) + 1/2]a5(Q).

The correlations in position fluctuations correspond to
the jitter in arrival times, because we have chosen a
propagative reference frame. The jitter therefore feeds
off position fluctuations as well as off noise entering
through the velocity:

(Aq(D)AG* (L") = ((Ag(0)Ag*(0))
g ’
+ L\foé‘dg//dg///[A2<AV(§//)AV*(g//’))

{<?.
(3.17)

+ (T (I (L"),

Thus the timing jitter is
(IAT(OT?) = (Aq(HAg* (D))

2 m2aC A3
=t —+ 2
24n 12n 6n

a®A3  2A%(¢)
+ 3

+ , 3.18
In 3n ¢ ( )

which contains cubic terms that are due to the gain and
Raman couplings and also slower-growing terms that are
due to the initial vacuum fluctuations and amplifier noise.

We note that an alternative method that exploits con-
served quantities in the NLS equation is often used®!41®
for deriving the timing jitter. The linearized approach
that we have presented has the advantage that deriva-
tives of products of stochastic variables do not appear.
With such derivatives, the normal rules of calculus do not
apply. Rather, the rules of Ito stochastic calculus must
be observed, leading to extra drift terms.

B. Dark Solitons

Fibers in the normal dispersion regime can support dark-
soliton solutions, so called because they correspond to a
dip in the background intensity!®:

baark(T, ) = po{1l — A%sech’[ pyAr
— q() 1 explib({)Jexplio(L, 7)1,

A tanh[ AT — q({)]
{1 — A%sech’[ ¢poAT — q(OI2)
3.1

o({, ) = arcsin

where d6/d¢ = ¢y2, dq/dl = AN1 — A%¢,2, and ¢, is
the amplitude of the background field. The size of the in-
tensity dip at the center of the soliton is given by A, with
the intensity going to zero in a black tanh(7) soliton, for
which A = 1. Dark solitons are classed as topological
solitons, because they connect two background pulses of
different phases. The total phase difference between the
boundaries is ¢ = 2 arcsin(A).
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The nonvanishing boundary conditions of the dark
pulse complicate the perturbation calculation of jitter
variance. To ensure that all relevant integrals take on
finite values, we impose periodic boundary conditions at
7 = *1,, which are taken to infinity at the end of the cal-
culation. This situation is equivalent to choosing antipe-
riodic boundary conditions in a comoving frame, whose
velocity is then taken to zero. It requires a soliton solu-
tion of the form

&
Daark( T, §) = doexplif({) — iKT](COSE

(3.20)

with a wave number offset k= (1/7)
arctan{tan(/2)tanh[ ¢y7; sin(/2)]}.  The perturbation
theory now proceeds in a similar fashion to the bright-
soliton case, except that we can greatly simplify the cal-
culation if the unperturbed solution is taken to be a black
soliton, i.e., ¢y = .

The projection functions for the soliton parameters
Pi € {lpvq’ ¢0’ 0} are

fo
fs, = iltanh( g7 — q) + ¢o7sech?( gy — q)]

¥
$oTsIng — q(%)

+ ¢ sin —tanh
2

— ¢ tanh( o7 — q)exp(il — ik7),

X exp(if — ikT),
fq = —idgsech?( ¢y — q)exp(i6 — ik7),
fy = dolBigortanh( o7 — q) — (1/2)]exp(i 6 — ikT),

(3.21)

where B = 1/[2¢y7; tanh( ¢y7)]. For the required ad-

joint functions we choose

—  —i3y,
fo= 2 sech?( o7 — q)exp(if — ikT),
fy= R sech?( o — q)exp(i6 — ik7), (3.22)
L
where Yq = 4/(3f?2;éfldt sech*¢t) and ve = (B

- 1)/f‘f‘£éndt(ﬁlt tanhtsech?t — sech?/2).  The or-
thogonality condition is now

T+q/ dg -
m(J drfp, ij*) =6 ;-

—1+ql g

(3.23)

Once again, we can use the adjoint functions in the lin-
earized equation [Eq. (3.4)] to determine how the fluctua-
tions in position evolve:

d

—A )—@A()+F )
ag q(g_ 9 lrlfg q(g’

J

—AY () =Ty, (3.24)
24

where By = ¢y tanh( ¢, 7)) — 1/7;. Here we see how the
fluctuations in phase produce fluctuations in position.
The stochastic term in the equation for ¢ evaluates to
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T1+q/ by - _
I'y(0) 9{[ drf,* (OI(7, {)

—7+q/ g
T+l o Y
= f dr d
—11+q/ bg ﬁl -1
X {R[exp(—i¢ + ik7)]
— ¢ tanh( o7 — Q)FR},

sech?( ¢o7 — q)

(3.25)

from which the correlations of the phase fluctuations can
be calculated:

Ay (DAY (L)

{ ’
<A¢(0)Ad/*(0)> + fo J’Ol dé’!/dg”/(l“iﬁ(gﬂ)l“w*({H/))

Yy 2a%y,? 2%//2171(%)
= — + | — s + = 514,
3n7’q¢o 3n7q(,31 — 1)%¢y n(p;y — 1)
(<, (3.26)

where the overlap integral 7, (¢y) is now defined as

o7 (¢om .
I,l(to) = drd7’ tanh(7)sech®(7)tanh(7’)

oY —do7

X sech®(7') F(1/ by — 7'/ ). (3.27)

The leading order terms for the fluctuations in position
are thus

(Aq(D)AG*(0))

0B (¢ (¢
I f f dg"dg"(Aw (EMAY* (™))
0Jo

a%poBa?y,”
1871 y,(B1 — 1)
Ifl(to)¢o2.3227¢2
—

B boBay,* )

12y,

+ 2. (3.28)

By taking the limit 7, — ©, we find the leading order
terms in the jitter growth for a black soliton:

3

fon
0 _ 2
([A7(D)]%) = 12ﬁ§ +

a%pe®  I(tg) o

+ 3 (8.29
187 67 &, 329

where the overlap integral Z(¢,) is as defined in Eq.
(3.16). As in the anomalous dispersion regime, the
vacuum fluctuations contribute to quadratic growth in the
jitter variance, and gain and Raman fluctuations contrib-
ute to cubic growth. However, the size of the jitter is
smaller than that in the bright-soliton case for the same
propagation distance {. The contribution from the
vacuum and gain terms is one half, and the contribution
from the Raman term is one quarter, of that in Eq. (3.18),
giving dark solitons some advantage over their bright
cousins.
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4. SCALING PROPERTIES

In summary, there are three different sources of noise in
the soliton, all of which must be taken into account for
small pulse widths. These noise sources contribute to
fluctuations in the velocity parameter, which lead to qua-
dratic or cubic growth in the timing-jitter variance for
single-pulse propagation. The noise sources also produce
other effects, such as those that are effected through soli-
ton interactions, but we do not consider these here.

Each of the noise sources has different characteristic
scaling properties, which are summarized as follows:

A. Vacuum Fluctuations
The vacuum fluctuations cause diffusion in position,
which is important for small propagation distances.
There are position fluctuations even at the initial posi-
tion, as the shot noise in the arrival time of individual
coherent-state photons gives an initial fluctuation effect.
After propagation has started, this initial position fluc-
tuation is increased by the additional variance in the soli-
ton velocity, essentially as a result of randomness in the
frequency domain.

For bright solitons the resultant soliton timing vari-
ance is given by'

A o 2 1 > (brich
([A7(D]*)r = on + G_ﬁg (bright). (4.1)

For purposes of comparison, note that N = 27 is the
mean photon number for a sech(7) soliton. Numerical
calculations confirm that, for tanh(7) dark solitons, the
variance was approximately one half of the bright-soliton
value, as predicted by the analysis outlined in Subsection
3.B:

A 2 —W2 L e dark 4.2
([ T(é)])I—EJFEi (dark). (4.2)

This shot-noise effect, which occurs without amplification,
is due simply to the initial quantum-mechanical uncer-
tainty in the position and momentum of the soliton. Be-
cause of the Heisenberg uncertainty principle, the soliton
momentum and position cannot be specified exactly.
This effect dominates the Gordon-Haus effect over propa-
gation distances less than a gain length. However, for
short pulses, this distance can still correspond to many
dispersion lengths, thus generating large position jitter.
We note that there are also initial fluctuations in the
background continuum, which may feed into the soliton
parameters as the soliton propagates. This lesser effect
is included in the numerical calculation; a comparison of
the numerical results with the analytic results confirms
that the initial fluctuations in the soliton parameters ac-
count for almost all the shot-noise contribution to the jit-
ter.

B. Gordon—Haus Noise

As is well known, the noise that is due to gain and loss in
the fiber produces the Gordon—Haus effect, which is cur-
rently considered the major limiting factor in any long-
distance soliton-based communications system that uses
relatively long (>10-ps) pulses. Amplification with mean
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intensity gain «“, chosen to compensate for fiber loss,
produces a diffusion (or jitter) in position. Unless other
measures are taken, for sufficiently small amplifier
spacing? and at large distances this jitter is given by?17

aG
([AT() ) en = 9—_5" (bright),
n

\

oC
3
187 {°  (dark), (4.3)

1

(A7) en

in which the linearly growing terms have been neglected.

Another effect of the amplifier noise is to introduce an
extra noise term by means of the fluctuations in the
Raman-induced soliton self-frequency shift. This term
scales as the fifth power of distance and hence will be-
come important for long propagation distances. This
combined effect of spontaneous emission noise and the
Raman intrapulse scattering has been dealt with by
others.? The full phase-space equation [Eq. (2.1)] models
this effect accurately, as it includes the delayed Raman
nonlinearity, and the effect would be seen in numerical
simulations carried out over long propagation distances.

C. Raman Noise

A lesser-known effect is the fluctuations in velocity that
arise from the Raman phase-noise term I'? in Eq. (2.2).
Like the Gordon—Haus effect, this Raman noise generates
a cubic growth in jitter variance:

27(¢o)
([AT()]P)R = - £*  (bright),
n
(o)
([AT(D]1*)r = e £*  (dark), (4.4)

where Z(¢,) is the integral defined in Eq. (3.16) that indi-
cates the spectral overlap between the pulse spectrum
and the Raman fluorescence. The mean-square Raman-
induced timing jitter has a cubic growth in both cases, but
the dark-soliton variance is one quarter of that of the
bright soliton.

The magnitude of this Raman jitter can be found by
evaluation of Z(¢;) numerically or else by use of an ana-
lytic approximation. An accurate model of the Raman
gain, on which Z(¢) depends, requires a multi-Lorentzian
fit to the experimentally measured spectrum.'’® A fit
with 11 Lorentzians was used in the numerical simula-
tions, including 10 Lorentzians to model the measured
gain and fluorescence accurately. One extra Lorentzian
was used at low frequencies to model guided-wave acous-
tic Brillouin scattering; this has a relatively small effect
on an isolated soliton, except to cause phase noise.

For analytic work, however, a single-Lorentzian
model' can suffice for approximate calculations. A plot
of the Raman gain profile a®(Q) for both models is given
in QNI, along with a table of the fitting parameters for
the multi-Lorentzian model. The spectral features of the
Raman noise correlations are determined directly from
the Raman fluorescence function F(()), which we plot in
Fig. 1. For the single-Lorentzian model, the fluorescence
spectrum is approximately flat at low frequencies:
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Fig. 1. Spectrum of the fluorescence function F(w) for the 11-
Lorentzian model (solid curve) and the single-Lorentzian model
(dashed curve) for a temperature of 7' = 300 K. Also shown is
the spectrum of a £, = 1 ps soliton.

1 1
F(Q) = 2 nm(Q) + Y a®(Q)
2F1Q46:%k5T
F(0), (4.5)

Q% + 8:%)%h
which greatly simplifies the Raman correlations. As Fig.
1 indicates, the spectral overlap of F(Q) with a ¢,
= 1 ps soliton occurs in this low-frequency region. Thus
the white-noise approximation for the Raman correlations
is good for solitons of this pulse width and larger. For
smaller pulse widths, not only is the Raman contribution
to the noise larger because of the greater overlap but the
colored nature of the correlations must be taken into ac-
count.

In the single-Lorentzian
= (4/15)F(0), which gives

8|k"|2n 5k w2 F(0)
45Act 3

8t2F(0)

T am

model,  I(t, — «)

([At(x)P)g =

x\3
( —) (bright),
X0

2|k"12noh w2 F(0)
45.ACt03
2t,2F(0) [ x )3
=——|—]| (dark). (4.6)

45n X0

At a temperature of 300 K, 7(0) = 4.6 X 10”2 when a
single Lorentzian centered at 12 THz with fitting param-
eters F; = 0.7263, &, = 20 X 102 ¢t,, and Q; = 75.4
X 1012 ¢, is used.

3

([At(x)]*)r

1

5. NUMERICAL RESULTS

More-precise results can be obtained by numerical inte-
gration of the original Wigner phase-space equation, Eq.
(2.1), which includes the full time-delayed nonlinear Ra-
man response function. The results for ¢, = 500 fs
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bright and dark solitons are shown in Figs. 2(a) and 2(b),
respectively. The gain and photon number were chosen
to be G = a%xy = 4.6 X 107°m™! (0.2 dB/km) and 7
= 4 X 105, with x, = 440m. These values are based
on A=40(um)?, k"= 0.57(ps)?/km, and n, = 2.6
X 10720 (m)%/W for a dispersion-shifted fiber.?® These
numerical calculations use the multiple-Lorentzian model
of the Raman response function shown in Fig. 1, which ac-
curately represents the detailed experimental response
function.

The numerical method is based on the split-step idea?!
as adapted to Raman propagation.?? Noise is treated
with a central-difference technique that is appropriate to
stochastic equations,?® with the necessary adaptations re-
quired for treating a partial stochastic differential
equation.?* We duplicated all calculations, using two dif-
ferent space steps but with the same underlying noise
sources, to calculate discretization error. Sampling error
was also estimated from the standard central-limit theo-
rem procedure over a large ensemble of noise sources.
Tests on time steps and window sizes were also carried
out to ensure that there were no errors from these
sources.

35 T : T .
o Initial noise
3k = Gordon—-Haus noise (a)* *-
+ Raman noise

Raman noise, analytic
257 « Al three noise sources

— * +
S * 5 2
NA * 0 )
21.5¢ . o2
v * o S +
1+ . o + . X
* O + x X
5 ° b2 < *
0.5+ + x E
. 8 ? x % x
@ x X
G il
0 2 6 8
x (km)
2 . . . .
o Initial noise (b) *
~  Gordon—Haus noise *
+ Raman noise *
1.5} Raman noise, analytic * ~
*  All three noise sources *

«(a 42> (fs)

8

0 2 ;‘( (km)
Fig. 2. Timing jitter in ¢, = 500 fs (a) bright and (b) dark soli-
tons that is due to initial quantum fluctuations, the Gordon-
Haus effect, and Raman noise. The asterisks give the total jit-
ter, and the continuous curve gives the approximate analytic
results for the Raman jitter.
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The initial conditions consist of a coherent laser pulse
injected into the fiber. In the Wigner representation,
this minimum uncertainty state leads to the initial
vacuum fluctuations. The numerical calculation thereby
includes the full effect of these zero-point fluctuations, in-
cluding the noise that appears in the background con-
tinuum and in the soliton parameters. We take the ini-
tial pulse shape in the anomalous dispersion regime to be
a fundamental bright soliton, with A =1 and V = ¢
= g = 0. Such a soliton can be experimentally realized
with a sufficiently intense pulse, which will be reshaped
into a soliton or a soliton train. The nonsoliton part of
the wave will disperse, and any extra solitons will move
away at different velocities from the fundamental soliton.
The numerical simulation in the normal dispersion re-
gime used two black solitons of opposite phase chirp (A
= =1), so the field amplitude at either boundary was the
same. This phase matching ensured the stability of the
numerical algorithm, which assumes periodic boundary
conditions.

We calculated the position jitter at a given propagation
time by combining the waveform with a phase-matched
local-oscillator pulse that had a linear chirp in amplitude,
and integrating the result to give the soliton position.
This homodyne measurement involves symmetrically or-
dered products, so the Wigner representation will give the
correct statistics. The variance in soliton position was
then calculated from a sample of 1000 trajectories. For
this small distance of propagation (=10 km), the jitter
variance that is due to the initial noise is twice the
Gordon—Haus jitter, but, for larger distances, the cubic ef-
fects are expected to dominate.

For ultrafast pulses, the Raman jitter dominates the
Gordon—Haus jitter (by a factor of 2 in the 500-fs bright-
soliton case) and will continue to do so even for long
propagation distances. For short propagation distances
the Gordon—Haus effect is not exactly cubic, because of
neglected terms in the perturbation expansion, which
give a linear (as opposed to cubic) growth in the jitter
variance. However, there are no such terms in the Ra-
man case. The analytic Raman results are also shown in
the figures and indicate that our approximate formula
gives a reasonable fit to the numerical data even for sub-
picosecond pulses. With this approximate formula, the
relative size of the two effects scales as

([At(x)>)r  6I(tg)|k"|  6I(t,)  8F(0) ]
= = = (bright),
([At(x)]*)en Gty? Gxg 5Gx,
([At(x)1)r  3T(tg)lk"|  3I(te)  4F(0)
= = = (dark).
([At(x)*)en Gty* Gx, 5Gx,
(5.1)

Expressions (5.1) show why experiments to date,’ which
have used longer pulses (tq > 1ps) and dispersion-
shifted fiber, have not detected the Raman-noise contribu-
tion to the jitter. The Raman jitter exceeds the Gordon—
Haus jitter for bright solitons with periods x, < 1.5 km.
Dark solitons, however, have an enhanced resistance to
the Raman noise, which means that a shorter period is
needed before the Raman jitter will become important.
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The total jitter, which corresponds to the realistic case
in which all three noise sources are active, is also shown
in Fig. 2 and in the bright-soliton case is approximately a
factor of 3 larger than the ordinary Gordon—Haus effect,
over the propagation distance shown. The physical ori-
gin of these quantum-noise sources cannot easily be sup-
pressed. The initial vacuum-induced timing jitter is
caused by the shot-noise variance in the soliton guiding
frequency. The physical origin of the Raman jitter is in
frequency shifts that are due to soliton phase modulation
by the ever-present quantum and thermal phonon fields
in the fiber medium.

The numerical method should give accurate results far
beyond the distance shown in Fig. 2, provided that the
transverse and propagative resolutions are made large
enough. The equations generated in the Wigner method
should remain valid up to { ~ Jr, which corresponds to
~1000 km. When the Wigner equations can no longer be
trusted, the positive-P equations will still give accurate
results. In this paper we have not analyzed any multi-
soliton effects, although the numerical method does simu-
late interactions between solitons. This analysis just re-
quires that the initial conditions and the simulation
window width be set up according to whether interactions
are to be considered. We have not included third-order
dispersion in our model; it would become important for
very small pulses (¢5 = 100fs) but could easily be in-
cluded in the equations for numerical simulation.

The approximate analytic results are most limited
probably by their exclusion of Raman intrapulse effects,
such as the deterministic self-frequency shift and the am-
plifier jitter that feeds through this. Approximate
calculations® of the self-frequency shift jitter variance
show that it grows as the fifth power of distance. With
our parameters and the measured value of the Raman
time constant,® it would become larger than the usual
Gordon—-Haus effect at x = 100km, or ~10 times the
propagation distance shown in Fig. 2. Using standard
techniques,® one could extend the perturbation theory
presented in this paper to include the self-frequency shift
contributions (from both the amplifier noise and Raman
phase noise) to the total jitter.

6. CONCLUSIONS

Our major conclusion is that quantum-noise effects that
are due to the intrinsic finite-temperature phonon reser-
voirs are a dominant source of fluctuations in phase and
arrival time for subpicosecond solitons. For longer soli-
tons, Raman effects are reduced compared with the
Gordon—Haus jitter from the laser gain medium that is
needed to compensate for losses. The reason for this is
the smaller intensity of the pulse and therefore the re-
duced Raman couplings that occur for longer solitons,
which are less intense than shorter solitons with the
same dispersion. The ratio can be calculated simply from
the product Gx,, which gives the gain per soliton length.
A smaller x corresponds to a shorter, more intense soli-
ton and hence to a larger Raman noise, whereas a larger
G corresponds to increased laser gain with larger sponta-
neous noise.
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At a given pulse duration and fiber length, a strategy
for testing this prediction would be to use short pulses
with dispersion-shifted fiber that has an increased disper-
sion, because this increases the relative size of the Raman
jitter. The physical reason for this effect is simple. Soli-
tons have an intensity that increases with dispersion if
everything else is unchanged. At the same time, the
multiplicative phase noise found in Raman propagation is
proportional to intensity and hence becomes relatively
large compared with the additive Gordon—Haus noise
that is due to amplification. For large enough dispersion,
the temperature-dependent Raman jitter should become
readily observable at short enough distances that ampli-
fication is unnecessary. This temperature dependence
would give a completely unambiguous signature of the ef-
fect that we have calculated. A mode-locked fiber soliton
laser would be a suitable pulse source, owing to the very
short (64-fs), quiet pulses?>28 that are obtainable.
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