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Abstract
Cold atoms in optical potentials provide an ideal test bed to explore quantum
nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a
dilute Bose–Einstein condensate and subjected to a far detuned optical
standing wave that is modulated. They exhibit a wide range of dynamics,
some of which can be explained by classical theory while other aspects
show the underlying quantum nature of the system. The atoms have a mixed
phase space containing regions of regular motion which appear as distinct
peaks in the atomic momentum distribution embedded in a sea of chaos.
The action of the atoms is of the order of Planck’s constant, making
quantum effects significant. This tutorial presents a detailed description of
experiments measuring the evolution of atoms in time-dependent optical
potentials. Experimental methods are developed providing means for the
observation and selective loading of regions of regular motion. The
dependence of the atomic dynamics on the system parameters is explored
and distinct changes in the atomic momentum distribution are observed
which are explained by the applicable quantum and classical theory. The
observation of a bifurcation sequence is reported and explained using
classical perturbation theory. Experimental methods for the accurate control
of the momentum of an ensemble of atoms are developed. They use phase
space resonances and chaotic transients providing novel ensemble atomic
beamsplitters. The divergence between quantum and classical nonlinear
dynamics is manifest in the experimental observation of dynamical
tunnelling. It involves no potential barrier. However a constant of motion
other than energy still forbids classically this quantum allowed motion.
Atoms coherently tunnel back and forth between their initial state of
oscillatory motion and the state 180◦ out of phase with the initial state.

Keywords: Mechanical effects of light on atoms, optical cooling of atoms,
trapping, quantum chaos, tunnelling, Bose–Einstein condensate

1. Introduction

1.1. Quantum nonlinear dynamics and quantum chaos

Quantum nonlinear dynamics is an exciting field of modern
physics investigating the quantum nature of dynamical

systems. One of the key questions is what happens to classical
motion in the quantum world. In fact the quantum–classical
correspondence for dynamical systems is still unclear and a
subject of discussion. Part of quantum nonlinear dynamics
is the study of ‘quantum chaos’ [1]. It is the desire to
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understand the quantum mechanical origin of the observed
chaos which drives this area of research. The field of
quantum chaos was born in 1917 when Albert Einstein tried
to unravel which mechanical systems could be subjected to
the Bohr–Sommerfeld–Epstein quantization rules [2]. He
concluded that, in the absence of invariant tori in phase space,
these quantization rules cannot be used and that, moreover,
this absence applies to most systems. Chaos is associated
with a rapid divergence of arbitrarily close points in phase
space [3]. Classical chaos can be described as the emergence
of complexity on infinitely fine scales in classical phase space.
Until recently it was argued that there could be no such
thing as chaos in quantum physics as an infinitely fine level
of detail is needed to describe the trajectories of a classical
chaotic system and it was thought that quantum mechanics
structure is smoothed away in an area below the size of h̄ [3, 4]
as Heisenberg’s uncertainty relation requires the product of
position and momentum uncertainties in a measurement of
both these quantities to be larger than Planck’s constant1.
However, only very recently it has been shown that even
features in the phase space of a system that are distinctly
smaller than Planck’s constant can have an effect on the
dynamics of a system [5]. During the years since the birth
of quantum chaos, significant amounts of theory have been
created to give a better description of chaotic physical systems
in a quantum dynamical context. In 1970 Gutzwiller succeeded
in semiclassically quantizing a classical chaotic system using
his approach, known as periodic orbit theory [6]. Bohigas was
able to obtain a universal relationship between the statistical
properties of the spectra of a quantum system and the dynamics
of the corresponding classical chaotic system using random
matrix theory [7, 8], which was originally developed for
nuclear physics [9, 10].

The key question in quantum chaos is, what happens
to classical chaos in the quantum world? One approach is
to seek generic features of quantum dynamics for a system
whose classical description exhibits chaotic dynamics. An
example of such features is dynamical localization, a quantum
suppression of classical diffusion, which was discovered by
Fishman et al [11] in numerical studies of the periodically
kicked quantum rotor. Conductance fluctuations in ballistic
micro-structures associated with complex electron trajectories
constitute another example of the occurrence of quantum
chaos [12]. Finally, molecular excitation experiments can
show interesting quantum features (e.g. Anderson localization,
an effect related to dynamical localization) if the scaled
Planck’s constant −k (see section 2.4) is kept finite but exhibit
chaotic dynamics in the classical limit (−k = 0) [13]. To gain a
different perspective on the quantum nature of classical chaos
some experiments look at the manifestations of classical chaos
in wave propagation. Chaotic systems are often so complicated
that they defy intuitive understanding. Therefore it is helpful
to choose relatively simple systems which exhibit chaos. One
example is billiards. A ball on a pool-hall table does not
exhibit chaotic motion. However, if one adds a circular
rail which is placed at the centre of the table the dynamics
become chaotic. This can be illustrated by the fact that two

1 It has also been argued that there cannot be chaos in quantum mechanics
because the Schrödinger equation is linear. This argument is misleading as
the corresponding classical equation, the Liouville equation, is also linear.

trajectories with different initial conditions diverge at a rate that
is exponential. Using a microwave cavity one can simulate
a quantum billiard system because the time-independent
wave equation, the Helmholtz equation, is mathematically
equivalent to the time-independent Schrödinger equation for
a particle trapped inside a two-dimensional potential with
infinitely high walls, a billiard [14]. In billiard-shaped
cavities eigenfrequencies and eigenfunctions can be measured
by microwave absorption. In 1991 quantum scars, which
are concentrations of probability along periodic orbits, were
experimentally observed by Sridhar [15]. The idea of chaos
participating in tunnelling phenomena was first introduced
by Lin and Ballentine in 1990 [16] and further developed
by Tomsovic and Ullmo [17], who termed it ‘chaos-assisted
tunnelling’. The first experimental evidence for chaos-assisted
tunnelling in a microwave annular billiard was observed by
Dembowski et al [18] utilizing a superconducting cavity. This
observation was predicted earlier by Frischat and Doron [19].
In chaos-assisted tunnelling a state which is localized on the
classical chaotic phase space region can interact with the
tunnelling doublet (two states of opposite parity) resulting
in an enhanced tunnelling rate. Chaos-assisted tunnelling
for the driven pendulum was studied by Latka et al [20]
and later for a cold-atom-driven pendulum implementation
by Mouchet et al [21]. Experiments to study the quantum
dynamics of classically chaotic systems have been carried
out on Rydberg atoms, measuring microwave ionization of
highly excited hydrogen atoms [22, 23]. The potentials
involved in the Rydberg-atom ionization experiments are
hard to approximate by one-dimensional potentials. At
present the three-dimensional quantum simulations needed for
these highly excited atoms are not feasible without severe
approximations [23]. In the Rydberg-atom experiments the
Coulomb potential dictates the dynamics and the system is
complicated due to electron–electron interactions (the chaotic
trajectory of the outer electron in a Rydberg atom can closely
approach the shell of inner electrons). One result of these
experiments is the recognition of different regimes determined
by how well classical and quantum mechanics agree with
each other. These regimes are characterized by the scaled
microwave frequency given by �0 = n0�, where n0 is the
principal quantum number of the initial state and � is the
microwave frequency.

1.2. Cold atom experiments

1.2.1. Cold atoms in optical lattices. This tutorial shows how
experiments on cold atoms in optical lattices can be used to
study quantum nonlinear dynamics. There are many different
effects that can occur when atoms are subjected to a standing
wave of light. A standing wave can be used to diffract atoms
to act as a coherent beamsplitter [24]. This interaction is
similar to Bragg diffraction of light by a crystal [25] and is
used for interferometry applications. Anderson et al [26] have
used cold atoms in a standing wave to demonstrate an effect
similar to the AC Josephson effect. In this experiment the
interference of atoms tunnelling through light potentials was
observed. To observe a Wannier–Stark ladder Raizen’s group
has subjected cold atoms to a phase modulated accelerating
standing wave [27]. Distinct peaks in the spectrum of the
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first excited state population as a function of the modulation
frequency correspond to resonant excitation of atoms to the
first excited (unbound) band of the standing wave wells. An
accelerating standing wave was utilized to separate bound
and unbound atoms. Quantum state preparation and a one-
dimensional optical lattice of double wells were proposed
and experimentally implemented by Deutsch, Jessen and his
group [28, 29]. Most recently quantum computing using
a neutral atom optical lattice has been proposed [30] and
evaluated [31]. Only very recently the transition from
superfluidity to the Mott insulator phase was observed using a
Bose–Einstein condensate which is held in a three-dimensional
optical lattice [32]. In the insulating phase exact numbers of
atoms are localized at individual lattice sites with no phase
coherence across the lattice.

1.2.2. Quantum nonlinear dynamics with cold atoms. It was
first proposed by Graham et al [33] to use atom manipulation
experiments to experimentally investigate quantum nonlinear
dynamics and quantum chaos. Atoms in optical potentials
provide an ideal test bed to explore quantum nonlinear
dynamics and the effects of decoherence. The de Broglie
wavelength of cold atoms is sufficiently large that the wave
nature of atoms needs to be taken into consideration when
analysing their dynamics. There are many advantages of using
cold atoms to study quantum nonlinear dynamics. Firstly,
the potentials that are used are extremely well approximated
as one-dimensional potentials, which makes an accurate
theoretical description feasible. Secondly, in atom optics there
is considerable control over the potentials. One can tailor the
potentials to match the theoretical description and, indeed,
achieve simple nonlinear potentials such as the nonlinear
pendulum which will be considered in more detail in this
tutorial. One can also achieve a considerable variety of
modulation dynamics. Finally, dissipation and noise can
be made insignificant by operating at low temperatures and
operating far from the atomic resonance frequency. Hence
atom optical systems can be well approximated by Hamiltonian
dynamics. The system can be isolated from the environment
providing a good approximation of a closed quantum system.
This enables the observation of quantum effects and provides
the exciting possibility to learn about controlling decoherence
by introducing it in a defined way into the system.

Laser-cooled atoms moving in far-off-resonant optical
dipole potentials have provided a clean and versatile
experimental context for the investigation of the quantum
dynamics of nonlinear Hamiltonian systems. Previous
work [34–37] has demonstrated the ability to achieve non-
dissipative dynamics in the quantum domain with well
controlled time-dependent potentials. Sinusoidal potentials
with a periodically modulated phase were used [33, 34] to
achieve quantum localization of the momentum, a quantum
suppression of chaotic diffusion. Trajectories of atoms
can interfere destructively hindering the atomic diffusion.
Dynamical localization can be observed by measuring the
kinetic energy of atoms as a function of the number of kicks
(periods of the phase modulation). While classically one
would expect to observe linear growth proportional to the
classical diffusion constant, it is observed in the experiment
that, after the ‘quantum break time’, the measured energy

stops growing, in agreement with the quantum prediction.
In this system decoherence was applied in a controlled way
using amplitude noise and spontaneous emission which was
induced using near-resonant optical molasses [38, 39]. It was
found that both factors led to the destruction of dynamical
localization. Therefore decoherence might be the link between
the classical and quantum worlds, validating the quantum–
classical correspondence principle. A detailed comparison
was made of the classical phase space structure and quantum
dynamics with experiments, as a function of the driving
strength, in the work of Robinson et al [36] for cold atoms
in a phase modulated standing wave. In particular, momentum
distributions were observed that are due to atoms being
trapped in a central region of regular motion at the origin
of momentum–position phase space. Experiments to test
the resonance overlap criteria where atoms were subjected to
an amplitude modulated standing wave for one modulation
period [37] showed that the phase space changed from globally
stable to chaotic. This could be concluded from an analysis
of the atomic momentum distribution. Subsequently a close
approximation to the δ-kicked rotor was implemented by using
an amplitude modulated standing wave [35, 38]. The atoms
were subjected to a periodic sequence of short pulses of a
standing wave, with the pulse width much shorter than the
repetition period. Effectively this corresponds to broadband
amplitude modulation centred on the pulse frequency. Ghose
et al [40] proposed atomic motion in magneto-optic double-
well potentials as a testing ground for quantum chaos.
Preliminary evidence for coherent tunnelling in a double
well was reported by Deutsch et al [29]. Entanglement
between the internal and motional degrees of freedom provided
means to access the tunnelling dynamics by Stern–Gerlach
measurements of the ground state magnetic population.

1.3. Rationale and structure

This tutorial presents an investigation into the dynamics of
cold atoms moving in a sinusoidal optical dipole potential with
amplitude modulation at a single frequency. This corresponds
to the classical driven pendulum, a paradigm for the study
of quantum nonlinear dynamics and quantum chaos. One of
the most fascinating phenomena considered in this tutorial is
the experimental observation of dynamical tunnelling. Both
experimental and theoretical results are presented, illustrating
the dynamics of the driven pendulum. One of the key
questions considered here is whether classical physics can
accurately describe the experiments and to what extent
quantum mechanics is required to understand and explain
the dynamics of the driven pendulum in atom optics. By
conducting experiments and analysing them in the framework
of quantum and classical physics this question will be
addressed. To gain a better insight into the correspondence of
quantum and classical nonlinear dynamics, it is of considerable
interest to conduct an experiment where one can vary and
control the effective Planck’s constant of the system, taking
the system from the classical to the quantum regime. As
will be shown in section 2.4 the effective Planck’s constant −k
provides a measure of how ‘quantum’ the system behaves on
a given timescale. The classical limit is given by −k = 0.
As will be explained in section 2.4, the effective Planck’s
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constant for the driven pendulum is inversely proportional to
the modulation frequency of the standing wave, which can be
varied to investigate the transition from the classical to the
quantum regime. This is one of the reasons for using the
atom-optics-driven pendulum to investigate the divergence of
quantum and classical physics.

Distinct quantum features of the driven pendulum are
known. Dyrting and co-workers [41] made a theoretical
study of cold atoms that are subjected to a single-frequency
amplitude modulated standing wave. They predicted quantum
tunnelling between two phase space resonances for this system,
(in this case two oscillatory regular motions), a process referred
to as dynamical tunnelling (for a detailed description of phase
space resonances see section 2.3). Atoms can coherently
tunnel from one region of regular motion to another. To
do this the atoms have to cross Kolmogorov, Arnold and
Moser (KAM) surfaces (see section 2.3), a process that is
forbidden classically [42, 43]. Atoms tunnel from one kind
of oscillatory motion to an oscillatory motion which is 180◦
out of phase with their initial motion. Dynamical tunnelling
was accomplished and will be discussed in section 9. The
experimental realization of dynamical tunnelling opens up a
fundamental test bed for quantum nonlinear dynamics. It is
not energy but a different constant of motion which classically
forbids dynamical tunnelling. For most tunnelling phenomena
which have been observed in the past, for example α-particle
decay, conservation of energy forbids the process classically.
Furthermore, Hug and Milburn [44] showed that quantum
mechanical velocity predictions for phase space resonances
disagree by up to 20% with classical predictions in the atom-
optics-driven pendulum. Experimental results which may
possibly be linked to this phenomenon will be discussed in
section 5.

Section 2 introduces the set-up for the experiments
with a rubidium magneto-optic trap (MOT) and provides
an overview of important concepts which are needed to
understand the fundamental aspects of the system. Section 3
provides the theoretical framework for the experiments. In
particular, quantum trajectory and master equation simulations
are introduced. The work described in this tutorial
investigates whether classical Hamiltonian perturbation theory
can accurately describe the dynamics qualitatively when the
scaled Planck’s constant and the timescales are sufficiently
small. To do that, atomic momentum distributions which
result from phase space resonances are analysed and
theoretical predictions are presented. An overview of the
resonance dynamics is given for different parameter regimes
in order to characterize the atomic dynamics qualitatively and
quantitatively. A surprising range of dynamics arises which
will be described in detail in section 4. In section 5 an
experimental and theoretical study of the classical phase space
structure, and its bifurcations, is carried out as a function of
the system parameters, providing another test of quantum and
classical nonlinear dynamics. In the experiments, a bifurcation
sequence is observed as distinct peaks in the atomic momentum
distribution which appear and disappear when one of the
control parameters of the system is changed. It will be shown
that the observation of multiple bifurcations can be explained
by classical Hamiltonian theory.

Quantum dynamics can be applied to develop new
methods to manipulate cold atoms. An optical standing wave

can be used to manipulate atoms and prepare them to have a
certain momentum and momentum spread or to produce an
atomic beamsplitter. Experimental implementations using the
driven pendulum dynamics or chaotic transients resulting in
efficient momentum phase space preparation and ensemble
beamsplitting methods will be introduced in section 6.

In order to observe dynamical tunnelling experimentally,
methods needed to be developed to load regions of regular
motion selectively and to observe long term dynamics. Details
of the set-up along with experimental results are shown in
section 7. Most of the experiments which are presented in this
tutorial were carried out at the University of Queensland using
a rubidium MOT. However, to observe dynamical tunnelling
unambiguously it is important to be able to access lower
temperatures than possible with a standard MOT. Therefore
some of the experiments were carried out using a sodium Bose–
Einstein condensate (at the National Institute of Standards and
Technology in Gaithersburg, MD, USA). The experimental
set-up for these measurements is described in section 8 and
results are presented in section 9.

2. The driven pendulum in atom optics

2.1. Experimental set-up for the experiments with cold Rb
atoms

In order to explore the dynamics of cold atoms in an optical
standing wave a standard MOT is utilized. A more detailed
description of the set-up can be found in [45]. In the
experiments rubidium atoms are cooled down to a temperature
of around 8 µK (corresponding to a 1/e momentum spread of
13 recoil momenta). The pressure in the vacuum chamber
is around 10−9 Torr. The magnetic field coils produce a
magnetic field gradient of 10−1 T m−1 in an anti-Helmholtz
configuration.

An injection locking scheme is utilized to decrease the
linewidth of the trapping diode laser down to 100 kHz, while
allowing all the power of the laser to be used in the trapping
experiment [46, 47].

Around 106 rubidium atoms are polarization gradient
cooled [48, 49] for 10 ms. Then the MOT is turned off but
the repumping beam is left on so that the atoms accumulate in
the F = 3 ground state. A period of 500 µs is implemented
to allow for effective repumping. After the repumping has
occurred the standing wave (to be described in detail below)
is turned on for a precise duration and is intensity modulated
using an acousto-optic modulator. Both the beginning and
end phases of the amplitude modulation have to be carefully
chosen as will be discussed in section 2.5. After the standing
wave is switched off, the atoms undergo a period of ballistic
expansion (between 3 and 20 ms). Following this, an image of
the cloud is taken using a freezing molasses technique [35, 50].
In this technique the optical molasses is turned on again with
the magnetic field still turned off. As a result of this, the
atomic distribution is frozen at its current position and the
fluorescence resulting from the ‘frozen’ atoms is viewed with
a 16-bit charge coupled device (CCD) camera (Apogee AP7,
512 × 512). The CCD array of the camera is cooled, leading
to a quantum efficiency of around 80% and a RMS read noise
of 6.7 electrons. The experiment is repeated multiple times
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2

1

Figure 1. Set-up which is used to produce the optical standing
wave. A titanium:sapphire laser beam is fed through a single-mode
polarization preserving fibre which is used to optimize the pointing
stability and to improve the quality of the laser beam. The
acousto-optic modulator AOM1 and the photodetector PD are used
to stabilize the light intensity of the standing wave. The polarizing
beamsplitter cube PBSC is used to keep the direction of linear
polarization in the standing wave constant. AOM2 provides the light
intensity modulation.

with different ballistic expansion times to allow a statistical
measurement of the velocity of the atoms with high precision.

The experimental set-up for the optical standing wave
is shown in figure 1. The standing wave is produced
using a frequency stabilized titanium:sapphire ring laser (Ti:S,
Coherent 899-21). This laser produces up to 2.7 W of light at
780 nm with a linewidth of less than 1 MHz and a frequency
drift of approximately 50 MHz h−1. To reduce the intensity
noise, polarization noise and pointing instability to less than
1% the following technique is implemented. The Ti:S beam
is first passed through an 80 MHz acousto-optic modulator
(denoted AOM1 in figure 1) and the zeroth-order beam is fed
into a polarization preserving single-mode optical fibre. Part
of the output beam from the fibre is leaked through a mirror
and through a polarizer to a photodetector, which gives an
electronic feedback signal to acousto-optic modulator AOM1

on the other end of the fibre to compensate for light intensity
fluctuations. In the experiments the intensity of the optical
standing wave is modulated. Acousto-optic modulator AOM2

(as seen in figure 1) produces an intensity modulation of the
form I0(1−2ε sin(ωt +φ)), where ε is the depth of modulation,
ω is the modulation angular frequency, I0 is the unmodulated
intensity and φ determines the start phase of the amplitude
modulation. After the light has passed through acousto-optic
modulator AOM2 and the vacuum chamber the beam quality
is regularly monitored in the far field utilizing a lens to expand
the beam to ensure that a clean Gaussian profile is maintained.
To test the spectral purity of the modulated standing wave the
modulated light wave was observed on a fast photodetector and
subsequent Fourier analysis of this signal indicated a spectral
impurity of about 1 part in a thousand. The light after AOM2

was collimated to a 1/e width of 2.85 mm (in some experiments
3.25 mm). The width was chosen so it would be maximized,
but also sufficiently small so that the resulting light intensity
was large enough to provide the required value of the scaled

well depth κ (well depth of the standing wave, see section 2.2)
when the detuning from the atomic resonance is sufficiently
large for the adiabatic elimination (see section 3.1) to hold.
The beam passes through the vacuum chamber and through the
atomic cloud and is retroreflected to form the one-dimensional
periodic optical potential.

There are several procedures to centre the beam on the
cloud. In one method the light frequency is tuned close to the
spectral resonance of the trapped atoms. The beam is then
moved until it blows the trapped atoms out of the centre of
the trap, which can be observed on a CCD camera. This is
good for rough alignment. The light is then further detuned
and the alignment is improved by ensuring that all the atoms
are blown out of the trap again. Subsequent iterations of this
procedure lead to a precise alignment of the incoming beam.
The retroreflection is aligned using an aperture located far away
from the retro mirror just before the output of the single-mode
polarization preserving fibre. A beamsplitter, located right
between the aperture and fibre output, reflects light only if the
retroreflection passes through the aperture. The alignment of
the retroreflection was measured to be good to approximately
0.02◦. The variation of the scaled well depth κ over the extent
of the atomic cloud was determined to be approximately 2%
by measuring the 1/e beam diameter of the standing wave and
the size of the atomic cloud. The final maximum irradiance
of the standing wave in the region of the atomic cloud is
of the order of 12 W cm−2. A telescope before acousto-
optic modulator AOM2 is used to decrease the beam diameter
and therefore to increase the efficiency of the modulator.
Using another telescope after acousto-optic modulator AOM2,
the beam diameter is controlled and the beam is carefully
collimated. The whole experiment is computer controlled
using the LabVIEW programming environment and a GPIB
interface.

2.2. The fundamental Hamiltonian

As described above the experiments are carried out using cold
rubidium atoms (or sodium atoms, see section 8) which are
positioned in a far detuned optical standing wave. The one-
dimensional system can be described in the corresponding
two-dimensional phase space which is spanned by momentum
and position coordinates along the standing wave. Single-
frequency modulation of the intensity of the standing wave
leads to an effective Hamiltonian for the centre-of-mass motion
(a thorough derivation will be given in section 3) given by

H = p2
x

2m
+

h̄�eff

4
(1 − 2ε sin(ωt + φ)) sin2(kx) (1)

where the effective Rabi frequency is �eff = �2/δ,
� = �

√
I/Isat is the resonant Rabi frequency, ε is the

modulation parameter, ω is the modulation angular frequency,
� is the inverse spontaneous lifetime, δ is the detuning of the
standing wave, t is the time, px is the momentum component
of the atom along the standing wave and k is the wavenumber.
Here I is the spatial mean of the intensity of the unmodulated
standing wave (which is half of the peak intensity) so � =
�

√
Ipeak/2Isat and Isat = hc�/λ3 is the saturation intensity. λ

is the wavelength of the standing wave. φ determines the start
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θ
L

Figure 2. Classical pendulum, consisting of a point mass m
suspended at the end of a rigid (but massless) rod of length L . θ is
the angle relative to the stable equilibrium position.

phase of the amplitude modulation. Using scaled variables [35]
the Hamiltonian is given by

H = p2/2 + 2κ(1 − 2ε sin(τ + φ)) sin2(q/2) (2)

where H = (4k2/mω2)H , q = 2kx and p = (2k/mω)px .
The driving amplitude is given by

κ = ωr�eff/ω
2 = h̄k2�eff

2ω2m
= 4U0ω

2
r

ω2
, (3)

where ωr = h̄k2/2m is the recoil frequency, τ = tω is the
scaled time variable and U0 is the well depth in units of h̄ωr .
The commutator of scaled position and momentum is given by

[p, q] = i−k, (4)

where the scaled Planck’s constant is −k = 8ωr/ω. The first
term in equation (2) corresponds to the kinetic energy and
the second one corresponds to the potential energy whose
amplitude is modulated in time, hence H is not conserved.

To see the connection of this Hamiltonian to a classical
pendulum one can consider a point mass m suspended at the end
of a rigid (but massless) rod of length L as shown in figure 2.
The rod is free to pivot about an axis at the other end of the
rod. The Hamiltonian of this classical pendulum is given by

H = p2

2m
+ mgL(1 − cos θ) (5)

where θ is the angle relative to the stable equilibrium position
and g is the acceleration due to gravity. The first term is the
kinetic energy and the second term is the potential energy.
Using a trigonometric identity this can be rewritten as

H = p2

2m
+ 2mgL sin2 θ

2
. (6)

It can be easily seen from the above equation that the effective
Hamiltonian for the centre-of-mass motion of cold atoms in an
modulated standing wave given in equation (2) is equivalent
to that of a classical driven pendulum where the length of the
pendulum L or the acceleration due to gravity g is modulated
in time.

2.3. The classical picture

Jules Henri Poincaré invented a very convenient means to
analyse the phase space of a driven dynamical system utilizing

Figure 3. Poincaré section for a classical particle in an
amplitude-modulated optical standing wave. Momentum and
position (one well of the standing wave) of the particle along the
standing wave are plotted stroboscopically, with the stroboscopic
period being equal to the modulation period. The central region near
the origin consists of small amplitude motion. Chaos (dotted region)
separates this region from two period-1 regions of regular motion
(represented in the Poincaré section as sets of closed curves) located
left and right of the centre along position q = 0. Further out in
momentum are two stable regions of motion known as librations. At
the edges are bands of regular motion corresponding to above
barrier motion.

classical equations, known as a Poincaré section [43]. This
classical picture treats atoms as point objects without the
inherent position and momentum width that is required in
quantum mechanics by Heisenberg’s uncertainty relation.
Momentum and position of a particle inside each well in the
direction of the standing wave are plotted stroboscopically,
with the stroboscopic period being equal to the modulation
period for different initial position and momentum coordinates
(randomly spread initial conditions). The dynamics are
calculated using Hamilton’s equations:

dq

dt
= ∂H

∂p
(7)

d p

dt
= −∂H

∂q
. (8)

Figure 3 shows a Poincaré section for the driven pendulum.
A particle can exhibit either chaotic or regular motion. Which
type of motion applies depends on the particle’s initial position
in phase space. The presence of closed curves in the Poincaré
section indicates the existence of KAM surfaces [42, 43, 51].
The KAM theorem states that, if a previously integrable
system is made slightly non-integrable by inclusion of a small
perturbation, then some phase space tori (in particular those
where the ratio of the natural nonlinear frequency of the
unperturbed system to the modulation frequency is irrational)
survive but may be deformed. The crossing of these surfaces
by an atom is forbidden by classical mechanics [43]. Two
islands of regular motion appear in the Poincaré section as a
set of closed curves right and left of the centre of the section
and correspond to atoms which oscillate in phase with the
standing wave modulation. The period of a region of regular
motion determines how many modulation periods it takes for
the atoms to complete one oscillation period and return to their
initial position. In this case they are period-1 regions of regular
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Figure 4. Diagram of period-1 resonances for atoms in an
amplitude modulated sinusoidal potential. The black and the grey
ball each corresponds to an atom contained in one of the two
period-1 resonances. The position of these atoms is shown for
fractions of one modulation period. The resonances correspond to
atomic motion that remains in phase with the modulation frequency.
The period-1 character of motion becomes apparent as the atoms
take one modulation period to return to their initial position. The
anharmonicity of the sinusoidal potential is compensated by the
amplitude modulation for atoms around these resonances, creating
the regions of regular period-1 motion shown in figure 3. T is the
modulation period and t is the time.

motion, because a particle located inside takes one modulation
period to complete one oscillation period inside the well. Each
of the two period-1 regions of regular motion corresponds to a
group of atoms oscillating in phase with the standing wave but
they differ in that they oscillate 180◦ out of phase relative to
each other. A graphic representation of this motion is shown
in figure 4. In the Poincaré section the closed rings making
up the islands of regular motion are centred around a point
known as the phase space resonance. A particle positioned
on a phase space resonance will return to exactly the same
phase space coordinate after one oscillation period. Particles
that are part of the island of regular motion will return after
one oscillation period to phase space coordinates located on
the same closed curve from which they had started (a closed
curve in the Poincaré section represents a KAM surface). The
inner island of regular motion corresponds to atoms that are
approximately stationary at the bottom of the well. The sea of
chaotic motion (dotted region) corresponds to atoms bouncing
chaotically inside the well and it is bounded in momentum by
the region of regular unbound motion that consists of atoms
having enough kinetic energy to travel from one well of the
standing wave to the next. The islands of regular motion near
the region of unbound regular motion are librations: atoms
which take multiples of one modulation period to hop from
one well to another, constantly moving in the same direction.
The size and position of the islands of regular motion depend
very strongly on the system parameters. Using scaled variables
the phase space depends only on the scaled well depth κ and
the modulation parameter ε.

Phase space resonances and regions of regular motion
are distinct features of the dynamics of the driven pendulum.
They are the origin of distinct peaks in the atomic momentum
distribution, as will be discussed in section 2.5. Resonances
and their associated islands of regular motion have also been
seen in other physical systems. For example, they have been
reported in plasma physics. Sinclair, Hosea and Sheffield [52]
mapped a toroidal magnetic field in a stellarator using phase
stabilized electrons. Islands of stability emerged in the phase
space dynamics of the electrons. In fluid flow experiments
particle motion in the fluid was shown to have chaotic and
regular phase space regions [53]. In experiments on microwave
ionization of Rydberg atoms strong classical resonance effects
in the final-bound-state quantum number distribution were
found by Bayfield and Sokol [54].

2.4. The scaled Planck’s constant

To understand the nature of the atomic dynamics it is best
to estimate first when they can be explained classically and
when one has to use a full quantum simulation to successfully
predict the experiments. How ‘quantum’ the system behaves
on a given timescale depends on the magnitude of the scaled
Planck’s constant −k [33] for the system. The scaled Planck’s
constant can be rewritten as

−k = 4h̄k2

ωm
= 4h̄

4π2

λ2ωm
= 2h̄π

(
1

λ
2

(
λ

2T m
)
)

= 2h̄π

2π I0
= h̄

I0

(9)
where T is the modulation period, h̄ is Planck‘s constant, λ

is the wavelength and I0 is the action of a free particle over
the distance λ/2 in the time T . The action of the system,
multiplied by 2π , is given by the area in phase space that
is encircled by the trajectory of a particle. −k can therefore
be interpreted as the ratio of Planck’s constant to the action
of a particle in the system described. If the phase space
area of a region of regular motion is of the same order as
h̄ we know that Heisenberg’s uncertainty relation forbids
simulation of the dynamics using classical trajectories but it
rather requires the atoms to be treated as wavepackets. Thus
−k will indicate in which regime the experiment is carried out.
Therefore there is some minimum order of magnitude of −k
which must be exceeded before one expects to see significant
differences between quantum and classical dynamics on a
given timescale. The timescales τQ where the expectation
value of some observable begins to show noticeable deviation
from the classical evolution scale with the inverse logarithm of
the scaled Planck’s constant in classical chaotic systems (τQ ∝
ln(1/−k)) while classically regular systems scale as an inverse
polynomial of the scaled Planck’s constant (τQ ∝ (1/−k)α , with
α being an integer) [55]. Quantum effects are therefore much
easier to observe in classical chaotic systems as they occur on
much shorter timescales.

Decoherence is the mechanism where a closed quantum
system is coupled to the environment [55, 56]. It has been
argued that decoherence can produce a smooth quantum-
to-classical transition in nonlinear dynamical systems [57].
Quantum effects can be observed only if decoherence is kept
to a minimum. The magnitude of the detuning of the standing
wave from the atomic transition will determine the amount
of decoherence introduced into the system because the less
the standing wave is detuned the more incoherent transitions
(e.g. spontaneous emission) will occur. Other sources of
decoherence (or mechanisms that act like decoherence) include
spectral, phase and amplitude noise of the standing wave but
have been found to be negligible or will be discussed in later
sections.

2.5. Loading and observation of atoms in a region of regular
motion

The concept of loading atoms into a region of regular motion
and subsequently observing them is of key importance for
the experimental realization of the driven pendulum in atom
optics. The fundamental ideas will be illustrated utilizing the
example of period-2 regions of regular motion. Atoms inside
such a region take two modulation periods to complete one
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Figure 5. Diagram of period-2 resonances for atoms in an amplitude modulated sinusoidal potential. Groups 1 and 2 correspond to atoms
contained in the period-2 regions of regular motion (located left and right of the island of regular motion at the origin in the Poincaré section
in figure 3). The position of these two groups as well as the potential is shown for four phases of the modulation. Atoms that are part of the
regions of regular motion start with zero velocity at the top of the potential well. After half of the modulation period they have reached the
bottom of the well and have reached their maximum velocity.

Phase space position of
the resonances when 
they are loaded

Phase space position of
the resonances when 
they are observed

Figure 6. Part (a) shows the initial distribution of the atoms in phase space. The pictures illustrates that the resonances need to be placed on
the position axis for effective loading to occur. The position of the resonances for loading and observation in phase space can be seen in (b).
To be able to resolve the regions of regular motion using a CCD camera it is important that the resonances have maximum velocity.
Therefore they should be located on the momentum axis for observation.

oscillation and return to their initial position. The sinusoidal
well does not constitute a harmonic potential. Therefore the
oscillation frequency is a function of the initial position of the
particle. Atoms whose position inside the well corresponds
to an oscillation frequency in the unmodulated well equal to
half of the modulation frequency are contained in a resonance.
Figure 5 shows the optical potential for four different phases
(fractions of a modulation period) of the intensity modulation.
The two balls correspond to atoms contained in each of the two
period-2 resonances. Atoms are randomly spaced inside the
potential well with zero mean momentum when the standing
wave is turned on (figure 6(a)). To load the two period-2
regions of regular motion the start phase of the amplitude
modulation is chosen so that the regions of regular motion are
located on the position axis, as shown at t = 0 in figure 5 and in
the corresponding Poincaré section in figure 6(b). The initial
atomic distribution shown in figure 6(a) has maximum overlap
with the regions of regular motion for the appropriate starting
phase. For period-2 resonances the appropriate starting phase
is maximum modulation amplitude. (For period-1 resonances
the appropriate starting phase is zero modulation amplitude,
with the amplitude either increasing or decreasing.) Atoms
that were loaded into either region of regular motion oscillate
inside the well (groups 1 and 2 in figure 5 correspond to

atoms contained in the region of regular motion). After one
modulation period atom groups 1 and 2 have exchanged
their positions (after half a modulation period for period-1
resonances). Atoms whose initial position corresponds to
an oscillation frequency which vastly differs from half the
modulation frequency will not be part of this regular motion
but will be part of a different phase space feature, e.g. they
will bounce chaotically inside the potential well and will form
the chaotic background of atoms in the atomic momentum
distribution. After the atoms have interacted with the
modulated standing wave for a selected number of modulation
periods, the standing wave is turned off at such a time that
the atoms inside the region of regular motion are at the
bottom of the well having maximum velocity. The appropriate
interaction time is n + 1

2 periods of the modulation (n is an
integer) for a period-2 region of regular motion (and n + 1

4

or n + 3
4 periods of the modulation for a period-1 region of

regular motion). The atomic position distribution is imaged
after sufficient time of free flight. At that time atoms belonging
to different islands of regular motion will have spatially
separated. In fact the position distribution after sufficient
free evolution corresponds approximately to the momentum
distribution before the evolution. This has been observed
when conducting theoretical simulations (see section 3.2.4).

R90



PhD Tutorial

Figure 7. Spatial distributions of the atoms obtained after a 10 ms ballistic expansion interval. The upper distribution results when no
interaction potential is applied. The lower distribution shows three distinct peaks in the atomic position distribution in which the atoms have
interacted for 7.5 modulation periods with a ω/2π = 500 kHz, ε = 0.13, κ ≈ 0.5 modulated standing wave (scaled Planck’s constant
−k = 0.06). The peaks result from two period-2 islands of regular motion and the central island of stability.

Figure 8. Phase space resonances as a function of the interaction time with the modulated standing wave measured in modulation periods.
Resonances start to emerge after 4.5 modulation periods (cycles). These data were obtained at modulation frequency ω/2π = 500 kHz,
modulation parameter ε = 0.13 and scaled well depth κ ≈ 0.5. The resonances move with approximately 22 recoil momenta.

Ballistic expansion is applied to resolve the dynamics of the
atoms as it is impossible to observe the spatial position of the
atoms in each individual well. Exact velocity measurements
can be made by taking pictures of the distribution after different
times and calculating the distance the resonances have moved
during that time.

Figure 7 shows spatial distributions obtained after a 10 ms
ballistic expansion interval. The upper distribution results
when no interaction potential is applied. The lower distri-
bution shows peaks in the atomic momentum distribution that
correspond to period-2 regions of regular motion. Here the

atoms interact for 7.5 modulation periods with the standing
wave (using modulation frequency ω/2π = 500 kHz, modu-
lation parameter ε = 0.13 and scaled well depth κ ≈ 0.5).

Why do regions of regular motion constitute peaks in the
atomic momentum distribution? Immediately after the loading
phase, when the atomic density inside the chaotic region is
equal to the density inside the islands of regular motion (both
equal to the initial atomic density), regions of regular motion do
not constitute a feature in the atomic momentum distribution.
However, after sufficient time, atoms in the chaotic region can
spread over a larger volume (filling the entire chaotic region)
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which leads to a smaller atomic density in the chaotic region.
This results in a significant atomic-number signal-to-noise
ratio between the regions of regular motion and the chaotic
region in the atomic momentum distribution. One needs to
wait for approximately 4.25 cycles for the atoms to distribute
so that the resonances can be observed. This is apparent in
both the experiment and the theoretical simulations. When
this has occurred resonances can emerge from the background
of the chaotic region. Figure 8 shows the emergence of
peaks in the atomic momentum distribution corresponding
to the resonances as a function of the interaction time with
the standing wave measured in modulation periods. These
data were taken for modulation frequency ω/2π = 500 kHz,
modulation parameter ε = 0.13 and scaled well depth κ ≈ 0.5.
One can see that the resonances start to emerge at 4.5 cycles
and then remain stable.

3. Theoretical description of the driven pendulum in
atom optics

3.1. The quantum master equation

Quantum mechanically, the state of the system is described by a
density operator ρ. In order to describe spontaneous emission
as well as the motion induced by the standing wave it is
necessary to use a quantum master equation [58]. Considering
only motion in the direction of the standing wave, and working
in the interaction picture, it is given by

ρ̇ = − i

h̄
[H, ρ] + �L1ρ. (10)

Here H is the Hamiltonian for the centre-of-mass and internal
state of the atom, given by

H = p2
x

2m
+ h̄δσ †σ +

h̄

2
[�(x, t)σ † + �†(x, t)σ ]. (11)

Here �(x, t) is the position- and time-dependent Rabi
frequency operator for the atom in the standing wave and δ

is the detuning of the standing wave. The atomic operators are
defined in terms of σ = |a〉〈b|, where |a〉 and |b〉 correspond
to ground and excited states, respectively.

The superoperator L1 describes the incoherent evolution
due to the coupling to the vacuum field modes at rate � and is
given by

L1 =
∫

d2�n φ(�n)D[eiknx xσ ]. (12)

Here k is the wavenumber of the spontaneously emitted light,
�n is a unit vector describing the direction of the spontaneously
emitted photon and φ(�n) is the dipole radiation distribution for
this direction:

φ(�n) = 3

8π

(
1 − ( �d · �n)2

�d · �d
)

, (13)

where �d is the atomic dipole vector. The superoperator D is
defined for arbitrary operators A and B by

D[A]B ≡ AB A† − (A† AB + B A† A)/2. (14)

Only the x component nx appears in the superoperator
in equation (12) because only motion in the x direction is

of importance for the experiments. This is the direction of
propagation of the light beams, so the dipole vector (which is
parallel to the polarization vector of the light) is perpendicular
to the x direction. This enables the integral in equation (12) to
be simplified to

L1 =
∫

du W (u)D[eikux σ ], (15)

where

W (u) =
{

3
8 (1 + u2) for |u| � 1

0 for |u| > 1.
(16)

Note that u can be interpreted as the x component of the
momentum kick to the atom, in units of h̄k.

To derive the equations that are simulated by the quantum
trajectory simulations discussed in section 3.2.2 a technique
is used similar to that introduced by Graham et al [33] for a
similar system, but a more complete derivation is given here,
including justifications for the approximations made using
the parameters of the experiment. The resulting equations
are related to those of Dyrting and Milburn [59], but they
are derived using a different technique and include different
approximations.

The master equation (10) for the two-level atom in a light
field can be written as

ρ̇ = �

(
Bσρσ † − 1

2
{σ †σ, ρ}

)
− i

2
[�(x, t)σ †

+ σ�†(x, t), ρ] − iδ[σ †σ, ρ] − i

2h̄m
[p2, ρ], (17)

where, for an arbitrary operator R,

BR =
∫

d2 �nφ(�n)eiknx x Re−iknx x . (18)

Explicitly using the internal state basis a, b one obtains

ρ̇aa = �Bρbb − i

2
[�†(x, t)ρba − ρab�(x, t)]

− i

2h̄m
[p2, ρaa], (19)

ρ̇ab = −�

2
ρab − i

2
[�†(x, t)ρbb − ρaa�

†(x, t)]

+ iδρab − i

2h̄m
[p2, ρab], (20)

ρ̇bb = −�ρbb − i

2
[�(x, t)ρab − ρba�

†(x, t)]

− i

2h̄m
[p2, ρbb]. (21)

In a typical experiment |�(x, t)| � � ≈ 4.65 × 109 s−1

and δ ≈ 44×109 s−1 (δ/2π ≈ 7 GHz). Thus the experiment is
in the well-detuned regime where � 	 δ. As a result, most of
the time the atom will be in the ground state with ρbb ∼ (�/δ)2,
as will be shown. As long as one is not interested in evolution
faster than on the timescale �−1, one can slave ρab and ρbb to
ρaa . Specifically, it can be seen from equation (20) that ρab

will quickly come to equilibrium (at a rate �/2) with respect
to the value of ρaa , which evolves slowly. Setting ρ̇ab = 0 thus
gives

ρab � i[ρaa�
†(x, t) − �†(x, t)ρbb]

� − 2iδ
. (22)
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Since �(x, t) is time-dependent, this expression can be
valid only if the rate of decay, �/2, is much greater than
the rate of variation of �(x, t). In a typical experiment
�/2 � 19 × 106 s−1 while the angular modulation frequency
is typically an order of magnitude smaller and the recoil
frequency is 3.8 × 103 s−1. In deriving equation (22) it is
also assumed that the kinetic energy is much less than h̄δ and
h̄� and so can be ignored compared to them. Since the 1/e
momentum half-width is of the order of seven recoil momenta,
the kinetic energy divided by h̄ is of the order of 105 s−1. Thus
the above assumptions are justified.

Substituting equations (22) into (21) and (19) gives the
following coupled equations:

ρ̇aa = 1

�2 + 4δ2
{iδ[�†(x, t)�(x, t), ρaa ]

− �{�†(x, t)�(x, t), ρaa }/2 + ��†(x, t)ρbb�(x, t)}
− i

2h̄m
[p2, ρaa] + �Bρbb (23)

ρ̇bb = 1

�2 + 4δ2
{−iδ[�(x, t)�†(x, t), ρbb]

− �{�(x, t)�†(x, t), ρbb}/2 + ��(x, t)ρaa�
†(x, t)}

− i

2h̄m
[p2, ρbb] − �ρbb. (24)

These are the equations which are simulated by the quantum
trajectories in section 3.2.2.

The evolution described by the master equation (10) is
not obviously related to that generated by the Hamiltonian (1).
Most importantly, the real particle is an atom with two internal
states whereas the ideal particle has no internal states. To
see the relation between the two models it is necessary to
adiabatically eliminate the upper level of the atom [60, 61].
It is most convenient to move into the interaction picture with
respect to the ground-state potential H0 = h̄

4δ
�(x, t)�†(x, t)

by defining the unitary transformation operator

U0(t) = e−iH0t (25)

such that
ρ̃ = U †

0 (t)ρU0(t). (26)

This transformation is applied to the master equation (10).
Using the same approximations as above one obtains after
some calculation [61]

ρ̇ = �

�2 + 4δ2
(B�†(x, t)ρ�(x, t) − 1

2 {�(x, t)�†(x, t), ρ})

− i
δ

�2 + 4δ2
[�(x, t)�†(x, t), ρ]

− i

16δ3
[�4(x), ρ] − i

2h̄m
[p2, ρ]. (27)

For the experimental parameters, the second-to-last term is
only about 1% as large as the dominant Hamiltonian term that
scales as �2/δ, and can thus be safely ignored. For δ � � this
equation is identical to equation (29).

The adiabatic elimination is valid only if the detuning δ is
much greater than the maximum of the Rabi frequency �(x, t)
which is valid for most of the experiments. In the experiment
the modulated standing wave Rabi frequency has the form

�(x, t) = �
√

1 − 2ε sin ωt sin kx, (28)

which gives the master equation

ρ̇ = − i

h̄
[H, ρ] + λL2ρ. (29)

Here the Hamiltonian is

H = p2
x

2m
+

h̄�eff

4
(1 − 2ε sin ωt) sin2(kx), (30)

which is the same as in equation (1), with �eff = �2/δ. The
effective damping rate is λ = �(�/2δ)2 and the superoperator
L2 is

λL2 = λ

∫
du W (u)D

[
eikux

√
1 − 2ε sin ωt sin kx

]
(31)

= �

δ

�eff

4
(1 − 2ε sin ωt)

∫
du W (u)D[eik(u+1)x − eik(u−1)x ].

(32)

3.2. Simulation methods

To obtain reliable quantum simulations two different methods
were developed. The atomic dynamics can be modelled using
either the master equation or quantum trajectories. Quantum
trajectories and the master equation are closely connected. In
quantum trajectories an ensemble of states |ψi〉 is found using
a stochastic Schrödinger equation (for example equation (45)).
The resulting approximate density matrix ρapp is given by

ρapp = 1

n

n∑

i=1

|ψi〉〈ψi |. (33)

where

ρ = ρapp + O

(
1√
n

)
. (34)

Both methods have been tested and found to give essentially
identical results, strengthening the validity of the presented
theory. Although this tutorial only contains simulations for
the dynamics of cold atoms using quantum trajectories, a short
summary of the master equation method is also presented.
To allow a comparison with classical physics a method to
obtain classical simulations is also presented. An introduction
into simulation methods for the evolution of a Bose–Einstein
condensate using the Gross–Pitaevskii equation will be given
in [62].

3.2.1. Simulations using the master equation. Since the
Hamiltonian given by equation (30) is periodic in x , it
would be natural to consider using the momentum states
as a basis for simulating the evolution. However, as the
final expression (32) for L2 indicates, spontaneous emission
following the absorption of a photon from the standing wave
enables a transfer of momentum of any amount between −2h̄k
and +2h̄k (because the momentum kick is projected onto the x
axis). This means that an exact one-dimensional simulation of
the master equation would require a dense set of momentum
states.

In practice, this dense set is not necessary as the initial
conditions have a finite momentum spread which will smear
out any fine structure. In fact, the initial conditions in
the experimental set-up (rubidium MOT) have a momentum
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spread of order 7h̄k which means that features of order h̄k are
not resolvable. It therefore makes sense to approximate the
continuous momentum transfer due to spontaneous emission
by discrete momentum transfer in units of h̄k in order to
take advantage of the symmetry of the Hamiltonian. This is
achieved by replacing L2 by

L3 = (1 − 2ε sin ωt)
∑

u=−1,0,1

V (u)D[eik(u+1)x − eik(u−1)x ],

(35)
where V (u) is a discrete approximation to W (u). This is
similar to the approach of [63] but is more rigorous.

Approximating W (u) by V (u) is not a unique procedure.
Here the method of choosing V (u) such that the zeroth, first,
and second moments agree is adopted. That is,

∫
W (u) du = 1 = V (−1) + V (0) + V (1), (36)

∫
W (u)u du = 0 = −V (−1) + V (1), (37)

∫
W (u)u2 du = 2

5 = V (−1) + V (1). (38)

The first condition here is just that V is normalized. The
second is that V reproduces the correct mean momentum
kick 〈�p〉 in spontaneous emission (i.e. zero). The third is
that V reproduces the correct mean squared momentum kick
〈(�p)2〉 = (2/5)(h̄k)2. The three conditions imply

V (−1) = 1
5 , V (0) = 3

5 , V (1) = 1
5 . (39)

Under this approximation, the master equation in the
momentum basis can be written as

ρ̇ = − i

h̄
[H, ρ] + λL3ρ, (40)

where

H = 1

2m

∑

n

(p0 + h̄kn)2|n〉〈n|

+
h̄�eff

16
(1 − 2ε sin ωt)(R2 + L2 − 2I ), (41)

where |n〉 is the momentum state |p0 + h̄kn〉 (where p0 is an
arbitrary momentum) and

L3 = 1
5 (1 − 2ε sin ωt){D[R2 − I ]

+ 2D[R − L] + D[I − L2]}. (42)

Here R is a unitary operator (corresponding to e−ikx ) which
raises the momentum by h̄k, and L (corresponding to eikx )
similarly lowers it by h̄k,

R = L−1 = L† =
∑

n

|n + 1〉〈n| (43)

and I = ∑
n |n〉〈n|.

Since all of the operators in the master equation (40) can
be represented by matrices in the |n〉 basis, it is a simple matter
to solve the equation using a suitable numerical environment
such as MATLAB. The initial-state matrix 〈n|ρ(0)|n〉 is found
by assuming a Gaussian initial momentum distribution of 1/e
half-width of 6.5h̄k which forms the diagonal elements of ρ(0).
The different density matrices are evolved and the results are

combined to gain a more accurate result. The final momentum
distribution after an interaction time t is obtained by calculating

〈n|ρ(t)|n〉 (44)

which is equal to the number of atoms having momentum
p0 + h̄kn. To obtain smoother results a new set of momentum
states is chosen, still spaced by h̄k, but shifted in momentum
by fractions of h̄k compared to the original set.

3.2.2. Simulations using quantum trajectories. Without
making the approximations of adiabatic elimination of the
upper level of the atom, and discretizing the spontaneous-
emission recoil, it would be numerically intractable to solve the
initial master equation (10). That is because of the size of the
state matrix. However, it is possible to simulate the evolution
of that equation stochastically, by taking a large ensemble of
quantum trajectories for the state vector. This can be done as
the number of elements of the state vector is roughly equal to
the square root of the number of elements of the state matrix.

The theory of quantum trajectories [64] shows that it is
possible to simulate incoherent transitions using Monte Carlo
methods [59], so this was done to obtain the second quantum
mechanical simulations. A stochastic Schrödinger equation
developed for atom optics by Dum et al [65] and Mølmer et al
[66] is used to include incoherent transitions.

Rather than simulate the exact dynamics of the original
master equation (10) the approach introduced here follows
Dyrting and Milburn [59] in simulating an approximate master
equation. The approximate master equation (equations (23)
and (24)) is similar to that of equation (29) in that the atom
experiences a potential. However, it is potentially a better
approximation than that equation because the excited state of
the atom |b〉 is retained.

In the quantum jump simulations the atom is always in
state |b〉 or |a〉, and the potential it sees depends on which state
it is in. Thus the atom has a quantum centre-of-mass state
|ψ〉 and an internal state which can be either a or b but not a
superposition of both. One advantage of this approximation
over the full master equation (10) is that it has a clear classical
analogue, as will be discussed in section 3.2.3.

In the scaled units of equation (2), the stochastic equation
for the state vector |ψ〉 is

d|ψ〉 = − i
−k

dτ K |ψ〉 + dN1(τ)

×
( √

(1 − 2ε sin τ) sin(q/2)

〈ψ |[√(1 − 2ε sin τ) sin(q/2)]2|ψ〉 − 1

)

|ψ〉

+ dN2 (τ)

(
exp(i p̄q/−k)√〈ψ |ψ〉 − 1

)
|ψ〉. (45)

Here the non-Hermitian effective Hamiltonian K depends on
the internal state σ = a, b of the atom:

K =
{

p2/2 + 2κ(1 − 2ε sin τ) sin2(q/2)/ν∗ for σ = a

p2/2 − 2κ(1 − 2ε sin τ) sin2(q/2)/ν for σ = b
(46)

with

ν = 1 − i�

2δ
. (47)
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The imaginary part of ν makes K non-Hermitian. The non-
Hermitian part corresponds exactly to the anticommutator (the
second term in the curly brackets) in equations (23) and (24).
It causes the modulus of the wavefunction to decay. This is
because the smooth evolution takes into account only what
happens when there are no jumps. The Hermitian part of K
corresponds exactly to the commutator (the first term in the
curly brackets) in equations (23) and (24). The Hermitian
part of Ka (for the ground state) also corresponds exactly to
the Hamiltonian which appears in section 3.1, equation (27),
which corresponds to the Hamiltonian of equation (29) in the
experimentally relevant limit of � 	 δ (ν ≈ 1).

The point process increments dN1(t) and dN2(t) are, in
any infinitesimal time increment dτ , equal to either zero or
one. The probabilities for the latter are equal to the expectation
values of these stochastic processes and are, respectively,

E[dN1] = η
〈ψ |(1 − 2ε sin τ) sin2(q/2)|ψ〉

〈ψ |ψ〉 dτ (48)

E[dN2] = (�/ω) dτ (49)

with

η = ��2

4ωδ2|ν|2 = λ

ω|ν|2 = 2 × Im
2κ

−kν∗ . (50)

The jumps (when dN1 = 1 or dN2 = 1) cause a
discontinuous change in |ψ〉 given by equation (45), and are
accompanied by a change in the internal state of the atom as
follows:

a
dN1=1→ b absorption,

b
dN1=1→ a stimulated emission,

b
dN2=1→ a spontaneous emission.

(51)

In the absence of these jump processes the modulus of the
wavefunction decays smoothly as a result of the non-Hermitian
part of the effective Hamiltonian K . From equation (50) it
is clear that the rate of these jumps is related to the non-
Hermitian part of the effective Hamiltonian K . When the
modulus squared drops below a preset random number, a jump
is assumed to occur and dN1(τ) = 1. This is explained in detail
in [65]. These jumps correspond to the third term in the curly
brackets in equations (23) and (24).

The second jump process (spontaneous emission) can
occur only when the atom is in the excited state b. For as long
as the atom is in the excited state, the time until a spontaneous
emission has an exponential waiting time distribution with
mean ω/�. This is explained in detail in [59]. These
jumps correspond to the first term in equations (23) and (24),
proportional simply to �.

When a spontaneous emission occurs, the atom receives a
random momentum kick represented by p̄ in equation (45). It
is given by [59]

p̄ =−k sin φ sin θ, (52)

where φ and θ are the Euler angles for the direction of
spontaneous emission relative to the atomic dipole moment
(which is orthogonal to the direction of motion x). They are
generated as follows: φ ∈ [0, 2π) is a random angle with
uniform distribution and θ is given by

θ = arccos
[

2 cos
(

arccos(2y − 1) + 4π

3

)]
, (53)

where y ∈ [0, 1] is a random number with uniform distribution.

Figure 9. Graphical representation of the quantum trajectory
method. The error scales with the number of trajectories n as 1/

√
n.

For the initial states squeezed minimum uncertainty
wavepackets were used with a momentum width which
corresponds to the experimental spread in momentum of
the initial cloud. The wavepackets are initially equally
spaced inside one well of the standing wave. The smooth
evolution part of the stochastic Schrödinger equation is solved
numerically using the split-operator method [67]. In this
method the nonunitary Schrödinger equation:

i−k
d

dτ
|ψ〉 = K |ψ〉 (54)

has a solution (for δτ short enough to neglect the time
dependence of K ) equal to

|ψ(τ + δτ)〉 = exp

(
− i(T + V )δτ

−k

)
|ψ(τ)〉, (55)

where T = p2/2 depends only on p and V = K − T depends
only on q. Using the approximation

exp

(
− i(T + V )δτ

−k

)
≈ exp(−iT δτ/2−k)

× exp(−iV δτ/−k) exp(−iT δτ/2−k), (56)

which is correct to order (dτ)2, the evolution can be simulated
very fast by using fast Fourier transforms to transform between
the momentum p and position q bases. An adaptive time
stepsize method [68] is used to control the stepsize of the
method. Once every ς steps the relative error, ϕ, is calculated
as

ϕ = ‖ |ψα〉 − |ψβ〉 ‖
‖ |ψ〉 ‖ , (57)

where ‖ |ψ〉 ‖ is the modulus of |ψ〉 and

|ψα〉 = exp(−iT δτ/2−k) exp(−iV δτ/−k) exp(−iT δτ/2−k)|ψ〉,
|ψβ〉 = exp(−iV δτ/2−k) exp(−iT δτ/−k) exp(−iV δτ/2−k)|ψ〉.

(58)
If the error lies above a specified tolerance the simulation is
restarted ς steps before and the step size is decreased. A value
of ς = 30 was found to work well. This method is used to
prevent unphysical behaviour due to a too large relative error.

Figure 9 shows a graphic representation of the method of
quantum trajectories which is used to simulate the experiments.
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3.2.3. Classical simulations. In the classical regime one can
use Hamilton’s equations (equations (7) and (8)) to calculate
the dynamics of the system. The Hamiltonian evolution of
a system preserves the Poisson bracket relation between the
position variable q and the momentum variable p [69]:

{q(t), p(t)}q,p = 1. (59)

To prevent unphysical behaviour when using a numerical
integration routine a symplectic integrator method is
used which intrinsically preserves the Poisson bracket
relation [70]. It was slightly changed to include time-
dependent systems [71]. The Hamiltonian (which depends
on the internal state of the atom) is given by

Hσ =
{

p2/2 + 2κ(1 − 2ε sin τ) sin2(q/2) for σ = a

p2/2 − 2κ(1 − 2ε sin τ) sin2(q/2) for σ = b.
(60)

This is identical to the non-Hermitian Hamiltonian K from
equation (46) with ν set to unity.

To gain a realistic model incoherent transitions have
been included in the classical simulation. This can be done
analogously to the quantum trajectory simulations described
above using a Monte Carlo simulation. The atom swaps
internal states a and b when a jump occurs, as described
in equations (51). The probabilities for the point process
increments dN1 and dN2 are now given by

E[dN1] = η(1 − 2ε cos τ) sin2(q/2) dτ, (61)

E[dN2] = (�/ω) dτ. (62)

When a transition takes place the position of the atom
remains unchanged and the momentum is changed. When an
absorption or stimulated emission takes place (dN1 = 1) the
momentum of the atom changes by ±1 recoil. In the case of a
spontaneous emission the atom receives a random momentum
kick p̄, calculated in exactly the same way as the quantum case.

3.2.4. Other theoretical considerations. The methods
presented above lead to an atomic momentum distribution
resulting from the interaction of atoms with a modulated optical
standing wave which is turned off and on instantaneously. To
obtain more accurate results the interaction caused by a finite
turn-on and turn-off time of the standing wave is added into the
numerical simulations. This finite turn-on/turn-off time is due
to using an acousto-optic modulator in the experiments. The
shape and length of the turn-on and turn-off were measured
using a 280 MHz bandwidth photodetector. It was found that
it is important to match the beginning and end phase of the
standing wave in the theoretical simulations closely with the
experimental conditions. This was also accomplished using
the photodetector mentioned above. An example of a measured
modulation signal is shown in figure 10 illustrating the finite
turn-on time due to the acousto-optic modulator.

The experimentally measured data consist of atomic
position distributions after 10 ms ballistic expansion time,
as described in section 2.1. To obtain a theoretical position
distribution after 10 ms, the theoretical position distribution
is evolved after the standing wave interaction for 10 ms using

Figure 10. Example of a measured modulation signal using a
280 MHz bandwidth photodetector. The start of the modulated
signal is shown illustrating the finite turn-on time of the
acousto-optic modulator. The noise which can be seen is not part of
the real modulation signal but is due to the low light intensity that
enters the photodetector. The light intensity should rise
instantaneously to 4κε and then follow the functional form of
2κ(1 − 2ε sin(ωt)).

a propagator method. The position distribution ψ(q, t) after
free evolution of length t is given by

ψ(q, t) = 〈q|ψ(p, t)〉 = 〈q| exp
[−ip2t

2−k

]
|ψ(p, 0)〉

=
∫

〈q|p〉〈p| exp
[−ip2t

2−k

]
|ψ(p, 0)〉 d p

= 1√
2π−k

∫
d p exp

[−ip2t

2−k

]
exp

[−ipq
−k

]
ψ(p, 0)

= 1

2π−k

∫
d p

∫
dq0 exp

[−ip2t

2−k

]
exp

[−ipq
−k

]

× exp

[
ipq0

−k

]
ψ(q0, 0)

=
∫

dq0G(q, q0, t)ψ(q0, 0) (63)

where G(q, q0, t) is the free evolution propagator which is
given by

G(q, q0, t) = 1

2π−k

∫
d p exp

[−ip2t

2−k
+

ip(q0 − q)

−k

]

= (−2itπ−k)−1/2 exp

[−(q − q0)
2

2it−k

]
(64)

using

∫
dx exp(−ax2 + bx) =

(
π

a

)1/2

exp

[
b2

4a

]
. (65)

The position distribution after 10 ms turns out to be very
similar to the momentum distribution straight after the standing
wave interaction as the free evolution effectively transfers all
the momentum features into the position distribution. Because
of this the experimental results are sometimes referred to as
momentum distributions, although they are, strictly speaking,
position distributions.

Finally one needs to consider the finite position width
of the initial cloud, which will contribute to the final
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position distribution. Therefore the final theoretical position
probability distribution |ψ(q, t)|2 is convoluted with the initial
Gaussian position probability distribution P0(q) (before the
standing wave interaction) to obtain the final theoretical
prediction P(q, t):

P(q, t) =
∫

dq0 |ψ(q − q0, t)|2 P0(q0). (66)

This is valid only if the initial density operator is an incoherent
mixture of wavepackets, which is true for a thermal atomic
cloud.

4. Phase space characterization of the driven
pendulum in atom optics

4.1. Dependence on the modulation parameter ε and the
scaled well depth κ

Using the techniques described in section 2, experimental
analysis of size, position and momentum of the regions
of regular motion surrounding the phase space resonances
and other phase space features was carried out and the
experimental results are compared with the applicable theory.
This discussion concentrates on experiments with −k = 0.1
(modulation frequency ω/2π = 300 kHz) and an interaction
time of 7.25 modulation periods, when the modulation
parameter ε is varied and the scaled well depth κ is held
constant (κ = 1.15). Figure 11 shows experimental results
(black curve) as well as quantum trajectory simulations (grey
curve) for the resulting atomic momentum distributions for
different values of the modulation parameter ε. Distinct peaks
in the momentum distribution correspond to period-1 phase
space resonances. Below the experimental data, Poincaré
sections (see section 2.3) illustrate the classical phase space.
To obtain these Poincaré sections the modulation phase for the
classical stroboscopic evolution is chosen such that the period-
1 regions of regular motion are located on the momentum
axis (modulation phase is maximum modulation amplitude).
Two regions of regular motion can be seen which result from
period-1 resonances that bifurcate from the origin at κ ≈ 1
(meaning that the resonances start to emerge at that value
of κ: a detailed description of the bifurcation sequence will
be given in section 5). The islands are encircled by a sea
of chaos. It can be seen that the size and the shape of the
centre resonance and the two period-1 resonances are strongly
dependent on the modulation parameter ε. Figure 11(a) shows
the unmodulated case. The central region of bound motion is
bound by the classical separatrix. All atoms exhibit regular
motion classically. In figure 11(b) two period-1 resonances
have emerged for modulation parameter ε = 0.22. Chaotic
motion can be seen in the Poincaré section. With increasing
values of ε the regions of regular motion surrounding period-1
resonances become more pronounced, as can be seen in the
experimental data and the quantum simulations. The region
of regular motion centred at zero momentum becomes smaller
and eventually disappears in the sea of chaos, as can be seen
in figures 11(d)–(f). The small regions of regular motion
positioned close to the region of unbound motion (librations)
are never (for no phase of the standing wave modulation)
located on the position axis. This means that they cannot be

Figure 11. The upper section shows the experimental atomic
momentum distributions (black curve) together with a quantum
simulation (grey curve) using the trajectory method of section 3.2.2
for different values of the modulation amplitude ε. The lower part
contains the corresponding Poincaré sections. The size of the
resonances is strongly dependent on the modulation amplitude ε.

observed in the experiment as they need to cross the position
axis to be loaded, as explained in section 2.5 (see figure 6(b)).
Due to the small initial momentum width, atoms are not loaded
into the region of regular unbound motion. Chaos leads to
a homogeneous spread which is confined by the region of
regular unbound motion. The small shoulders visible in both
experimental data and quantum simulations presumably result
from this chaotic redistribution. One can see that there is good
agreement with both the quantum trajectory simulations and
the classical prediction.

Furthermore the phase space was examined for different
values of the scaled driving amplitude κ . Figure 12 shows
experimental results (black curve) for a range ofκ between 1.11
and 1.36 with the scaled Planck’s constant −k kept constant at
0.1 (modulation frequency ω/2π = 300 kHz), the modulation
amplitude ε kept constant at 0.32 and an interaction time of 7.25
modulation periods. These data were obtained by adjusting
the detuning δ of the modulated standing wave. Alternatively
an adjustment of the modulation frequency (with constant
detuning) or a change of the intensity of the standing wave
can be used to vary the scaled well depth κ which would give
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Figure 12. Experimental data (black curve) and quantum trajectory simulation (grey curve) showing resonances and other phase space
features as a function of the scaled driving amplitude κ . The velocity of the resonances changes with κ . The corresponding Poincaré
sections are shown below.

similar results to that of figure 12. However, a change of the
modulation frequency will also change the scaled Planck’s
constant −k of the system. Theoretical predictions from the
quantum mechanical calculations are also shown (grey curve).
The lower section of figure 12 contains the corresponding
Poincaré sections. One can see that, with changing values of
κ , the velocity of the resonances is changed as is the size of the
regions of regular motion. With increasing κ the resonances
become faster. A small κ step size between figure 12(a) and
(b) was chosen to illustrate this increase in velocity without
introducing a significant qualitative change of phase space.
Figure 12(c) features the emergence of a centre island. With
κ increasing even further the period-1 resonances move out,
become smaller as shown in figure 12(d) and will eventually
disappear in the sea of chaos.

Slight discrepancies between quantum trajectory simu-
lations and the experimental data could result from non-
uniformities in the initial experimental position and momen-
tum distribution and the uncertainty in the determination of
the scaled well depth κ and the modulation parameter ε. Fur-
thermore, small errors in the alignment of the optical standing
wave relative to the atomic cloud can possibly lead to dis-
crepancies between theory and experiment. In spite of such
potential problems the agreement between the experiment and
both quantum and classical theories is very good.

Nonlinear dynamics theory predicts that, for every value of
κ , there will be a resonance if the ratio of modulation frequency
and nonlinear natural frequency is rational. When this occurs
the system exhibits a resonance. However, the size of the
islands of regular motion resulting from these resonances is
very sensitive to system parameters ε and κ . In some cases
islands of regular motion are infinitely small, while in others
they form stable islands. The quantum simulations predict the
formation of observable regions of regular motion for driving
amplitudes in the range κ = 1.0–1.5. In the experiment a
maximum size of the regions of regular motion was found for
the scaled driving amplitude κ in a range between 1.1 and 1.3

for modulation parameter ε = 0.32, as predicted by theory. It
should be noted that the variation of the scaled well depth κ

and ε can sometimes result in the occurrence of bifurcations,
an example of which is the emergence of the central island in
figure 12(c). A full bifurcation sequence was mapped and will
be discussed in section 5.

4.2. Resonance momentum

While period-1 resonances were discussed in the preceding
section, here the dynamics of period-2 resonances are
discussed that occur at lower values of scaled well depth κ .
Utilizing period-2 resonances one can obtain a wider range
of the momentum of the regions of regular motion because
period-2 resonances occur for a smaller value of κ , allowing a
larger detuning at a given modulation frequency2. Effectively
this means higher modulation frequencies are accessible in the
experiments, resulting in higher momenta of the resonances
as will be explained below. Momentum measurements of the
resonances were made for a range of modulation frequencies
while keeping scaled well depth κ and modulation parameter
ε constant. As long as κ and ε are kept constant, the
resonances will appear at the same scaled momentum. The
measured momentum px of the resonances is proportional
to the scaled momentum p multiplied by the modulation
frequency ω. Therefore the momentum of the resonances
should scale linearly with modulation frequency.

For different values of the modulation frequency ω, the
detuning δ was adjusted to obtain the same value of the mod-
ulation parameter κ . Then the momentum of the peaks in the
atomic momentum distribution resulting from the period-2
regions of regular motion was measured using ballistic expan-
sion. A graph of the experimental results is shown in figure 13.
The resonance momenta and their errors shown are obtained

2 If the detuning becomes too small the adiabatic elimination of the
excited state breaks down and the centre-of-mass dynamics become far more
complicated.
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Figure 13. Momentum of the resonances for different values of the
modulation frequency ω/2π . The modulation parameter ε and the
scaled well depth κ are held constant. Results for modulation
parameter ε = 0.32, scaled well depth κ ≈ 0.3 and an interaction
time of 6.5 modulation periods are shown. A linear fit is well within
the error bars. This mechanism could be used for effective
momentum preparation of an ensemble of atoms.

from a least-squares analysis of time-of-flight data. The error
bars also include the momentum error resulting from the finite
width of the peaks in the momentum distribution as well as
slight asymmetries in their shape. There is a linear relation
between the modulation frequency and the momentum of the
resonances as predicted by theory.

In fact these results can be interpreted as the experimental
proof for the mapping of several different physical experiments
into one unique theoretical case using scaled variables. The
scaled quantum and classical theories produce a unique result
for ε and κ kept constant, while the resonance momentum
can be varied experimentally from 0 to many recoils by
adjusting the modulation frequency ω and compensating with
the detuning δ.

For future studies it would be of interest to carry out a
more comprehensive range of momentum measurements and
compare that to the appropriate classical and quantum theory.
Some introductory results will be shown in section 5.3.

4.3. Location of the resonances in the experimental
parameter space

The meaning of the scaled well depth becomes clear when
conducting an experiment where the modulation frequency is
varied and the appropriate detuning δ is found, so that the shape
of the atomic momentum distribution remains unchanged
(note, however, that the momentum of the resonances changes
as explained above). The scaled well depth κ is inversely
proportional to the detuning δ and the square of the modulation
frequency ω (κ ∼ (ω2δ)−1). Therefore if there is a linear
relationship between 1/ω2 and the detuning δ it is some
indication that κ determines the qualitative behaviour (or
shape) of the momentum distribution. In figure 14 the inverse
squared modulation frequency 1/ω2 is plotted as a function
of the detuning δ for the same experiment, as described in
figure 13. The error bars result from the visual uncertainty
in determining that the shape of the atomic momentum
distribution remains unchanged. Note that, although the scaled
well depth κ is held constant in this experiment, the scaled
Planck’s constant −k is varied. This measurement is only meant

Figure 14. Parameters for the observation of phase space
resonances when the modulation parameter ε and the scaled well
depth κ are kept constant. The plot confirms that κ is a good
qualitative indicator for the atomic momentum distributions.

as a rough guide as it includes the subjective judgment of the
author in determining whether there is a significant change in
the shape of the momentum distribution.

4.4. The effects of small-amplitude noise

Exploring the effects of noise on an atom–optical system
is of importance as the mechanisms involved are closely
related to decoherence. This is an intense area of study
due to its importance in the development of new quantum
technologies. Goetsch and Graham [72] have undertaken
a theoretical study where they analysed the influence of
spontaneous emission on the dynamical localization in atomic
momentum transfer experiments. Experiments on the effects
of noise and dissipation on dynamical localization were carried
out by Klappauf et al [39], Steck et al [73] and by Christensen’s
group [38, 63]. A short introduction is presented here on how
intensity noise affects the atomic momentum distribution of
the driven pendulum. To implement this, noise was added
to the modulated standing wave by adding a random number
between −1 and 1 multiplied by both the full modulation
amplitude κ and the noise factor between 0 and 1 to every point
of the modulation signal. The random number sequence was
generated using the random number generator of the LabView
programming environment. This corresponds approximately
to adding white noise to the modulation signal limited by the
bandwidth of the acousto-optic modulator.

Figure 15 shows an example of experimental results
with small noise amplitudes. Figure 15(a) shows the atomic
distribution with no added noise. In figure 15(b), 10%
amplitude noise (noise factor: 0.1) was added to the standing
wave. Although the ratio between the height of the centre
resonance and the period-1 resonances changes slightly,
the difference between the two cases is nearly negligible.
It is remarkable that the peaks in the atomic momentum
distribution corresponding to resonances are fairly stable
even with quite significant amounts of noise. It was tested
that this behaviour is reproducible with different random
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Figure 15. Amplitude noise is introduced to the system. The atomic
momentum distribution is remarkably stable. While there was no
noise added in part (a), 10% amplitude noise was added to obtain
part (b). The data were obtained using an interaction time of 7.25
modulation periods, modulation parameter ε = 0.26, modulation
frequency ω/2π = 300 kHz and scaled well depth κ ≈ 1.20.

number sequences. A similar behaviour was also observed
in experiments with different scaled well depth κ , modulation
parameter ε and modulation frequency ω. It can be concluded
that small amounts of noise in the modulation amplitude do
not significantly change the dynamics of the driven pendulum
in atom optics. The effects of large noise amplitudes have
not been thoroughly explored yet and could be the subject
of further study. Initial experiments have shown interesting
features. Different types of noise, for example phase noise
and spontaneous emission leading to random kicks, could be
investigated.

5. Phase space bifurcations

5.1. Introduction

In this section it will be shown that most of the qualitative
aspects of the dynamics of the system can be described using
classical perturbation theory if the scaled Planck’s constant
and the experimental times scales are sufficiently small (in this
section −k = 0.1, t ∼ 7 modulation periods). An exception may
occur for the resonance momentum as explained in section 5.3.
However, if the scaled Planck’s constant is sufficiently large
quantum effects are significant, even on small timescales. This
will be shown in section 9. Classical physics predicts the
occurrence of a bifurcation sequence in the dynamics of the
driven pendulum. This section illustrates that this bifurcation
sequence can be found in the dynamics of ultra-cold atoms
in a modulated optical lattice. To illustrate this bifurcation
sequence the scaled well depth κ is used as the control
parameter. For further discussion of bifurcation theory, see for
example [43, 74]. Bifurcations have been observed in other
Hamiltonian systems such as the absorption spectra of atoms
in electric and magnetic fields. Experimental measurements
showed that stable periodic electron orbits bifurcated to new
orbits of longer period [75, 76].

The scaled well depth κ (for definition see section 2.2)
and the momentum coordinate p are scaled with modulation
frequency ω. For the experiments which are presented here the
modulation frequency was kept constant (ω/2π = 300 kHz),

so that experiments with different values of κ can be compared
using real momentum coordinates. To change the value of κ the
detuning δ of the modulated standing wave is adjusted while
the intensity I is held constant. The intensity measurement
error is +8/–5% and it is a systematic error which is the same
for all data presented in this section. The error in the detuning
of the standing wave is smaller than 3% and it is a random error
given by the accuracy of the wavemeter which was used.

5.2. The bifurcation sequence

Figure 16 shows the bifurcation sequence in terms of Poincaré
sections along with corresponding experimental momentum
distributions. All the observed resonances bifurcate from the
origin, where the oscillation frequency is

√
κ . Since a period-

( n
m ) resonance occurs when the period of the oscillation is

n
m times the period of the driving, a period-( n

m ) resonance

bifurcates when κ = m2

n2 +O(ε), where n and m are integers and
ε is the modulation parameter. Detailed analysis shows that
the particular perturbation term implies that only resonances
with n � 2, and even m � 1, occur. Those with n = 2
can be easily seen in Poincaré sections in figure 16, appearing
as two symmetrically placed resonance islands. They are
also of particular interest experimentally as they can be easily
identified in the experimental momentum distribution as two
peaks on either side of the centre.

To obtain the dependence of the bifurcation on the
modulation parameter ε classical perturbation theory about the
origin is used. The state variables (p, q) are assumed to be of
order

√
ε. For κ close to resonance (κ ≈ m2

n2 ), one can use
canonical perturbation theory [1, 43] to give a fairly accurate
picture of the emerging resonances. The scaled well depth κ

is expanded as a series in ε about the resonance:

κ = κ0 + εκ1 + ε2κ2 + · · · , (67)

where κ0 is the value at resonance with κ0 = 1
4 , 1 and 9

4 for the
resonances that are observed experimentally. Near the origin
q is small and of the order of

√
ε, so that (sin(

q
2 ))2 may be

approximated by the first few terms in its Taylor series about
zero.

Then to zeroth order in ε

H = H0 = p2

2
+ κ0

q2

2
, (68)

which has action-angle variables (I, θ) where

p = κ
1
4

0

√
2I cos(θ), q =

√
2I

κ
1
4

0

sin(θ). (69)

Hence the Hamiltonian becomes

H(I, θ, τ) = √
κ0 I + H1(I, θ, τ) + H2(I, θ, τ) + · · · ; (70)

where Hm is (m + 1)th order in ε. Hm has resonant oscillatory
terms cos(mτ − nθ), where n is even, implying mth-order
resonances at the origin when n

√
κ0 = m.

To investigate the resonance at κ0 = 1
4 two canonical

transformations are used. The first is a near-identity
transformation I ′ = I + O(ε), θ ′ = θ + O(ε) [1, 43] that
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Figure 16. Bifurcation sequence. The upper pictures are the experimentally measured momentum distributions for modulation parameter
ε = 0.20 and modulation frequency ω/2π = 300 kHz. The corresponding classical Poincaré sections are shown below where the x axis is
the momentum coordinate and the y axis is the position coordinate along the standing wave. The resonances appear as distinct peaks in the
momentum distribution. When the scaled well depth κ is increased several bifurcations occur in this mixed phase space.

removes all the oscillating terms, except those that are resonant.
The transformed Hamiltonian is then

H = √
κ0 I ′ − I ′2

16
+ ε

√
κ0

2
I ′ cos(τ − 2θ ′) − ε

κ1

2
√

κ0
I ′ + · · · .

(71)
The second transformation consists of moving to a rotating
frame I ′ = J , φ = θ ′ − τ

2 . In this rotating frame the
Hamiltonian is

K = εκ1 J − 1

16
J 2 +

ε

4
J cos(2φ) + · · · . (72)

Using p̄ = √
J sin(φ) and q̄ = 2

√
J cos(φ), the system

of equations for p̄ and q̄ has stable fixed points on the
(transformed) momentum axis that correspond to period-2
resonances of the original system. Since at a fixed point φ is a
constant, so that θ = τ/2 + constant, the period of θ is twice
the forcing period (φ = τ − 2θ implies a period-2 resonance).
Thus they rotate with half the modulation frequency. By
including higher-order terms in the Hamiltonian one can show
that these fixed points only exist for κ > 1

4 (1 − ε + ε2 − ε3)

and that they destabilize the origin. They are just apparent in
the Poincaré map in figure 16(a). As κ is increased the islands
move apart and become separated by a sea of chaos as shown
in figure 16(b). Then for κ > 1

4 (1 + ε + ε2 + ε3) two unstable
fixed points bifurcate into the (transformed) position axis,
stabilizing the origin once again. Figure 17 shows a bifurcation

diagram where the values of the scaled depth κ for which a
bifurcation occurs are plotted as a function of the modulation
parameter ε. Between the two curves mentioned above, which
are shown in figure 17, the momentum distribution is clearly
depressed in the centre, as shown in figure 16(b), whereas for
κ > 1

4 (1 + ε + ε2 + ε3), at (c) the three distinct islands of
regular motion appear clearly as three peaks in the momentum
distribution. As κ increases further, the period-2 islands
move out, breaking up as they do so, and eventually become
indistinguishable from the chaotic sea (figures 16(d) and (e)).
In figure 16 many of the Poincaré sections also show librational
resonances. As they do not rotate they will not cross the
position axis and therefore they are not loaded by the initial
atomic momentum distribution in the current experimental set-
up. Thus they do not appear in the experimentally measured
momentum distribution.

The resonance at κ0 = 1 is of second order, meaning
that it is only apparent once the first-order oscillatory terms
have been removed. These are removed via a near-identity
transformation similar to the one described earlier except
now κ0 �= 1/4 so that the transformation can be chosen to
remove all the first-order oscillatory terms. This introduces
further resonant terms of the form cos(2τ − 2θ), giving
rise to period-1 resonances as shown in figure 16 parts (f)
and (g). Once again to investigate them further two canonical
transformations must be made. The second, as before,
transforms to a rotating frame, but here φ = θ ′ − τ . What
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Figure 17. The bifurcation diagram for the driven pendulum in atom optics. When the scaled well depth κ is changed the system undergoes
multiple bifurcations. The values of κ where bifurcations occur depend on the modulation parameter ε. Three Poincaré sections are plotted.
The arrows indicate to which part of the bifurcation diagram they correspond. The x axis in the Poincaré sections is the position coordinate
and the y axis is the momentum coordinate. Symbols illustrating the corresponding parts of figure 16 are shown.

follows is similar to the κ = 1
4 case. Two similar bifurcations

stabilizing, and then destabilizing, the origin take place for

κ = 1 +
5ε2

3
and κ = 1 − 5ε2

3
. (73)

They are now of the order of ε2 apart, which makes the
individual bifurcations difficult to see experimentally.

The pattern is repeated again for the third-order resonance
at κ = 9

4 , due to the presence of cos(3τ − 2θ) terms. The
bifurcation curves are of the order of ε3 apart and they are
given by

κ = 9

4
+

81ε2

64
+

81ε3

256
and κ = 9

4
+

81ε2

64
− 81ε3

256
(74)

(φ = 3τ − 2θ implies a period-2/3 resonance). As
one expects the momentum separation between regions of
unbound regular motion becomes larger when the value of
κ is increased. This is due to the wells becoming effectively
deeper. Figure 17 represents the experimental regime where it
was possible to map the bifurcation sequence. The bifurcation
curves shown, for κ ≈ 1/4, 1 and 9/4, are to order ε3.
For a deeper understanding of the bifurcation diagram three
Poincaré sections for the κ = 1 bifurcation are plotted. The
arrows indicate the part of the bifurcation diagram which they
represent. The symbols in figure 17 indicate the corresponding
parts of figure 16.

The lower experimental limit of the scaled well depth κ

for this sequence is determined by the momentum width of
the initial atomic cloud. The kinetic temperature of the cloud
was approximately 10 µK. If the initial momentum spread of
the atomic cloud is much wider than the momentum width
of the resonances, resonances cannot be resolved anymore
in the experimentally measured position distribution. This
is because the resonance features then become submerged in

the chaotic background. Immediately after the loading phase,
when the atomic density inside the chaotic region is equal to
the density inside the islands of regular motion (both equal
to the initial atomic density), resonances do not constitute a
feature in the atomic momentum distribution. However, after
sufficient time, atoms in the chaotic region can spread over a
larger volume (filling the entire chaotic region) that leads to a
smaller atomic density in the chaotic region. This results in
a significant atomic-number signal-to-noise ratio between the
regular region and the chaotic region in the atomic momentum
distribution. For values of κ far below 0.2 the initial atomic
momentum distribution extends past the resonances, over the
chaotic region and into the region of regular unbound motion.
This problem could be overcome by preparing atoms with a
lower kinetic temperature as that would imply a decrease in
the momentum width. Alternatively one could increase the
modulation frequency.

The upper limit of κ is determined by the laser intensity
and the detuning of the standing wave. When the detuning of
the standing wave becomes too small, incoherent transitions
need to be considered and the adiabatic elimination of the
excited state in the theory breaks down. The dynamics can no
longer be described by the Hamiltonian given in equation (1).
Furthermore spontaneous emission will act as a source of
dissipation.

To perform an alternative mapping of the experimental
results to the bifurcation sequence the rotation frequency of
the resonances is measured. This measurement determines the
period of the resonances. To conduct these measurements the
length of the interaction with the modulated standing wave is
varied (which is equivalent to a variation of the endphase of
modulation) measured in modulation periods (cycles) and the
resulting atomic momentum distribution is recorded. Figure 18
shows the rotation frequency measurements for the resonances
bifurcating at scaled well depth κ = 0.25 (modulation
parameter ε = 0.20, modulation frequency ω/2π = 300 kHz).
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Figure 18. Verification of the value of the period for the resonances
at the κ = 0.25 bifurcation. Atomic momentum distributions are
shown for different interaction times with the modulated standing
wave measured in cycles. One can see that atoms inside a region of
regular motion return to their initial phase space positions after two
periods of the standing wave modulation.

Figure 19. Verification of the value of the period for the resonances
at the κ = 1 bifurcation. Atomic momentum distributions are shown
for different interaction times with the modulated standing wave
measured in cycles. One can see that atoms inside the region of
regular motion return to their initial phase space positions after one
period of the standing wave modulation. When the resonances have
rotated by 180◦ (7.7 cycles) with respect to their initial phase space
positions (7.2 cycles) the peaks in the momentum distribution have
become wider compared to their initial width at 7.2 cycles.

Resonances can be observed clearly when they are located on
the momentum axis when the standing wave is turned off (they
are at the bottom of the well—see figure 4) and will disappear
when located on the position axis at that time (they are at the
top of the well—see figure 4). At 7.5 modulation periods one
can see two distinct peaks in the atomic momentum distribution
resulting from phase space resonances. These have completely
disappeared after 8 modulation periods. The resonances can
again be seen as distinct peaks in the momentum distribution
after 8.5 periods of the standing wave modulation. Therefore
it follows that the resonances needed one modulation period
to rotate by 180◦ in phase space (atoms inside the resonance
completed half an oscillation period). After two modulation
periods the atoms inside the region of regular motion appear

Figure 20. A Poincaré section is shown for scaled well depth
κ = 1.2. While the left-hand side corresponds to 7.2 cycles, the
right-hand side shows the corresponding phase space after a 180◦
rotation at 7.7 cycles. One can see that the momentum width of the
resonances has significantly decreased.

again at their initial positions. Hence they are period-2 regions
of regular motion.

Figure 19 shows the rotation frequency measurements for
the resonances bifurcating at κ ≈ 1 (modulation parameter ε =
0.20, modulation frequency ω/2π = 300 kHz) which exhibits
different features compared to figure 18. This allows one to
distinguish between different bifurcation regimes. After 7.2
cycles one can see three distinct peaks in the atomic momentum
distribution resulting from regions of regular motion and the
centre island of stability. A quarter period later the resonances
have rotated onto the position axis and therefore are no longer
visible. Another quarter period later atoms inside the region of
regular motion have rotated by 180◦ and are now located on the
momentum axis. Note that the peaks in the atomic momentum
distribution corresponding to the regions of regular motion
have become wider and that their intensity has decreased as
compared to the distribution at 7.2 periods of the standing
wave modulation. To understand this phenomenon one needs
to consider the corresponding Poincaré sections as illustrated
in figure 20. The left-hand side shows the phase space after
7.2 cycles, while the phase space after 7.7 cycles is shown
on the right-hand side. Phase space volume is preserved in
Hamiltonian systems. However, the shape of the resonances
has changed significantly. The momentum width of the
resonance after 7.7 periods is larger compared to the one at 7.2
cycles. This results in the experimentally observed broadening
of the resonances. It can also be seen that the resonance is
slightly faster after 7.7 cycles than after 7.2 cycles. Intuitively
this can be understood when considering that, at 7.7 cycles, the
well depth has its maximum amplitude. Therefore the gradient
is higher for a particle ‘rolling’ down the well, allowing it
to acquire a larger momentum, compared to the situation at
7.2 cycles where the well depth is at minimum. From the
discussion above it follows that these resonances need one
modulation period to return to their initial position at κ ≈ 1,
making them period-1 resonances.

The rotational frequency for the period-(2/3) resonances
that are shown in figure 16(h) was also measured. Their period
was successfully confirmed.
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Figure 21. Momenta of resonances in different bifurcation regimes. The momentum of different resonances is plotted as a function of the
scaled well depth κ . These are compared with predictions from the quantum simulation, momentum of the fixed point in the Poincaré
section (classical numerical simulation) when positioned on the momentum axis and results from classical perturbation theory. Also plotted
is the mean of the minimum and maximum momentum of the island of regular motion when positioned on the momentum axis obtained
from the classical numerical simulation.

5.3. Experimental resonance momenta in the bifurcation
sequence and quantum and classical predictions

Figure 21 compares the experimental results with predictions
from quantum trajectory simulations and the classical
description. The momentum of the centre of the peak in
the atomic momentum distributions was measured both for
the experimental data and the quantum simulations. The
error bars for the experimental data result from the readout
uncertainty due to asymmetries in the experimentally measured
momentum distribution. These asymmetries are most likely
due to non-uniformities in the initial spatial distribution of
the MOT. Other possible error sources include an imperfectly
zeroed magnetic field in the interaction region. The momenta
of resonances in the quantum simulation exhibit some readout
uncertainty because the peaks in the momentum distribution
do not necessarily have a symmetric Gaussian shape. This
readout uncertainty is reflected in the error bars for the quantum
simulations.

These results are compared with the momentum of the
resonances when they are located on the momentum axis,
as calculated from numerical solutions of the equations
describing the classical system and also from classical
perturbation theory. To zeroth order in ε, the momentum p
of the period-( n

m ) resonances is found by setting the nonlinear
frequency ω(H) of the unperturbed system equal to m

n so that
the momentum is given by

ω(p2/2) = m

n
. (75)

Here ω(H) is given by

ω(H) = π
√

κ

2F
(
π/2,

√
H
2κ

) (76)

where F(π/2, κ) is the complete elliptic integral of the first
kind. Canonical perturbation theory, here performed to order

ε2 and including the first three Fourier coefficients of the
perturbation, can be used to refine the result. As can be
seen in figure 21 there is satisfactory agreement between
the experimental results and the quantum simulations. The
results taken from the Poincaré sections (numerical solution
of Hamilton’s equations) and the analytical classical results
from perturbation theory are in good agreement. However, the
classical predictions show a larger resonance momentum than
the quantum simulations and the findings of the experiment.
While the classical theory predicts the momentum of the
fixed point (when positioned on the momentum axis), the
quantum simulations directly predict the full momentum
distribution as measured in the experiment. Part of the above
discrepancy could result from the fact that the fixed points
are positioned asymmetrically towards the faster side of the
region of regular motion which, in turn, gives rise to the
peak in the experimentally measured momentum distribution.
However, if one assumes the mean of maximum and minimum
momenta occupied by the region of regular motion (when
positioned on the momentum axis) as a classical momentum
approximation for the experimentally observed momentum
peak, the classical resonance momenta are still significantly
faster than the experimentally measured values. These results
suggest a possible explanation in terms of the theory of
quantum slow motion [44], but more rigorous and detailed
investigation would be needed to confirm this. The theory
of quantum slow motion shows that the complicated quantum
dynamics of the atomic wavepacket on a classical resonance
given by the quantum Liouville equation can be replaced by the
wavepacket’s (in fact, the corresponding classical probability
distribution’s) classical dynamics with a modified potential
within certain limits. The theory predicts atoms starting near a
classical phase space resonance to move slower than one would
expect classically.
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6. Atomic momentum preparation and ensemble
beamsplitting

6.1. Introduction

The study of quantum nonlinear dynamics can have
some important applications for atom optics experiments.
Sometimes it can be important for experiments to have the
capability to prepare an ensemble of atoms with adjustable
mean momentum and momentum spread. Furthermore an
integral element of many atom optics experiments is an atomic
beamsplitter as it enables atomic coherence effects to be
probed. A typical application is an atom interferometer [77].
A range of experimental methods have been devised to
provide these essential capabilities. Probably the first
atomic beamsplitter was the Stern–Gerlach experiment which
separated atoms according to their spin state in a static
magnetic field [78]. Nanofabrication technology enabled
the production of micro-gratings which were used to diffract
an atomic beam [79]. Furthermore diffraction of atoms
at an optical standing wave was utilized [80–82] and a
reflection light grating was proposed to facilitate atomic
diffraction utilizing a standing evanescent wave [83]. Recently
coherent beamsplitting of a Bose–Einstein condensate was
demonstrated by diffracting atoms at a pulsed optical standing
wave [84] and by optically induced Bragg diffraction [85].
A way to use a time-modulated potential to split an atomic
wavefunction coherently was illustrated by a group led by
Jean Dalibard where atoms are reflected at an intensity
modulated [86] or pulsed [87] evanescent wave.

In this section solutions are presented that involve the
interaction of atoms with an amplitude modulated standing
wave which operates outside the Raman–Nath regime because
the transverse motion of the atom during its passage through
the standing wave is not negligible. These methods are
carried out with light having large detuning from the
atomic resonance frequency to prevent decoherence due to
incoherent absorption and spontaneous-emission processes
which would add dissipation to the system and destroy existing
atomic coherence. Two experimental methods are presented
using different dynamical features which can be utilized
for momentum preparation and ensemble beamsplitting. It
should be noted that, in contrast to the atomic beamsplitters
presented above, here the beamsplitting is an ensemble
effect, meaning that an atom goes either one way or the
other depending on its initial position (at least for relatively
small values of Planck’s constant for which results are
presented below). The beamsplitter outputs are not due to
atoms being in a superposition of moving in both directions
simultaneously. However, the process is non-dissipative (due
to large detuning from the atomic resonance and the short
experimental timescales) and therefore no random processes
destroy the atomic coherence.

6.2. Momentum preparation and ensemble beamsplitter
using regular dynamics

In section 4.2 it was shown that the momentum of the
resonances is determined by the value of the modulation
frequency when the modulation amplitude ε and the
modulation parameter κ are kept constant. It was also shown

Figure 22. Peaks in the atomic momentum distribution resulting
from atoms loaded into regions of regular motion of the quantum
driven pendulum. Up to around 65% of the atoms can be loaded into
distinct peaks in the atomic momentum distribution. These data
were obtained at modulation parameter ε = 0.27, modulation
frequency ω/2π = 900 kHz and scaled well depth κ ≈ 0.25.

that it is possible to cover a wide momentum range by adjusting
the modulation frequency ω. As an example figure 13 shows
a velocity range from 7–30 recoil momenta. This provides
the opportunity for rough momentum selection. Note that one
disadvantage of this method is the fact that the momentum
spread of the atoms contained in the resonances is proportional
to the modulation frequency.

Furthermore the scaled theory predicts that the momentum
of the resonances is slightly dependent on the modulation
amplitude ε, as shown in figure 11. The resonance momentum
is also strongly dependent on the scaled well depth κ , as can
be seen in figures 12 and 21. The disadvantage of trying
to change the resonance momentum by means of changing
either ε or κ is that the size of the regions of regular motion
(amplitude of the peak in the atomic momentum distribution)
as well as the momentum spread change dramatically when
changing these two parameters. Therefore changing either of
these parameters does not represent an efficient solution to
control the momentum of an atomic ensemble.

A far more efficient way was developed to control the
momentum of an atomic ensemble. The momentum of the
resonances and their associated peaks in the atomic momentum
distribution can be well controlled by changing the interaction
time with the modulated standing wave (endphase of the
modulation). Choosing an appropriate scaled well depth κ

and modulation parameter ε one can load up to 65% of all
atoms into distinct peaks in the atomic momentum distribution.
This determines the efficiency of the method to be presented.
Figure 22 shows an experimental atomic position distribution
after 10 ms ballistic expansion time. Here the two resonances
were measured to move with a momentum of 30.25 recoils.
The method to be introduced here does not rely on changing
any of the parameters κ , ω,−k or ε. In the method the modulated
standing wave is turned off at different times, not necessarily
when the resonances are positioned on the momentum axis.
This corresponds to a rotation of the resonances by up to 45◦
from the observation position on the momentum axis, as can be
seen in figure 23. Each set of equal numbers corresponds to a
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Figure 23. Rather than turning the standing wave off when the
resonances are positioned on the momentum axis (position 3), the
standing wave can be turned off slightly before or after that time.
This corresponds to a rotation of the resonances by up to 45◦
(positions 1, 2, 4, 5) in phase space. Note the symmetry of positions
2 and 4, and 1 and 5.

Figure 24. Experimental data showing the momentum of the
distinct peaks in the atomic momentum distribution for different end
phases of the modulated standing wave. 6.37 cycles correspond to
turning off the standing wave at a modulation minimum. The data
shown here were obtained at modulation frequency
ω/2π = 900 kHz, modulation parameter ε = 0.27 and scaled well
depth κ ≈ 0.25. A sinusoidal fit is within the error bars.

certain rotation of the resonances due to turning off the standing
wave at a different modulation phase. Using this method a
momentum range of 35 recoils was achieved which could be
extended even further by increasing the modulation frequency.
Figure 24 shows the experimentally obtained momenta for
different end phases of the modulation signal. The curve is
approximately symmetric around 6.37 cycles (rather than 6.5
cycles, accounting for the finite turn-on time of the acousto-
optic modulator) at which time the resonances are positioned
on the momentum axis. A sinusoidal fit is included to show

Figure 25. Atomic momentum distribution resulting from the
chaotic transients of the system. The peaks have a momentum of 33
recoils and the data were obtained at modulation frequency
ω/2π = 360 kHz, modulation parameter ε = 0.30, scaled well
depth κ = 0.31 and after an interaction time of 1.75 modulation
periods.

Figure 26. Control of the momentum of the chaotic transients using
the modulation frequency. Momenta between 10–70 recoils can be
achieved. The momentum is approximately a linear function with
respect to the modulation frequency.

that this momentum control mechanism can be explained by the
rotation of the resonances in phase space. Note the two-cycle
symmetry of this experiment, due to the fact that the resonances
which are utilized are period-2 resonances. Figure 18 shows
multiple momentum distributions after different interaction
times, providing an example for this momentum control
mechanism.
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Figure 27. Atomic position distribution after different interaction times with the modulated standing wave. Period-1 regions of regular
motion correspond to peaks in the position distribution after 6.25 modulation periods as shown in (a). (b) shows the position distribution
after 10.25 modulation periods. Period-1 regions of regular motion can still be observed after 99.25 modulation periods, as shown in (c).

6.3. Momentum preparation and ensemble beamsplitter
using transient dynamics

In the discussion of dynamical resonances it is important to
avoid confusion with transient dynamics which are exhibited
in the dynamics of atoms in an amplitude modulated standing
wave in a similar experimental set-up. Such transient dynamics
can also be used to implement momentum preparation and
ensemble beamsplitting. Figure 25 shows a typical momentum
distribution which results from transient dynamics of the
system. Two distinct peaks contain up to approximately 60%
of all atoms. These particular data were taken at a modulation
frequency ω/2π = 360 kHz, modulation parameter ε =
0.30 and scaled well depth κ ≈ 0.31. While phase space
resonances need at least 4.5 cycles to become apparent in
the atomic momentum distribution, the transients occur after
only 1.75 modulation periods (cycles) with an Hamiltonian of
the form I0(1 + 2ε sin ωt) (starting phase of the modulation
zero going up). The dynamics can be explained classically
by following the trajectories of atoms initially equally spaced
inside a potential well [88]. Only considering atoms equally
spaced on one side of the well, e.g. in between the intensity
minimum and the left maximum of one well, a significant
number of atoms climb to the right maximum of the potential
well after one modulation period. While the potential starts
rising again the atoms ‘surf’ down the well for the final 0.75
periods of the modulation. Solving Hamilton’s equations one
can see that these atoms form a narrow velocity band, which
can be observed in the final atomic momentum distribution.
The same applies for atoms initially spaced on the other side
of the well forming the second distinct peak in the atomic
momentum distribution after interacting with the modulated
standing wave. As can be seen from figure 25 these peaks
have a small momentum spread, making them a good means
to prepare atoms with a certain momentum.

It was found experimentally that the transients can be
observed only for certain values of light intensity, detuning
and modulation frequency. An approximate condition is given
by √

I

δ

1

ω
= ς (77)

where I is the light intensity, δ is the detuning of the
standing wave, ω is the modulation frequency and ς is

an atom-specific constant (dependent on saturation intensity,
spontaneous lifetime, wavenumber of the standing wave and
mass of the atom). This relation was obtained by changing the
modulation frequency and detuning of the modulated standing
wave. The condition is the equivalent of requiring the scaled
well depth κ to be constant (κ = 0.3).

The momentum of the transient peaks is a function of
the modulation frequency. One can easily vary the momentum
from 12 to over 60 recoil momenta by adjusting the modulation
frequency (and detuning). Figure 26 shows the momentum
of the transient peaks as a function of the modulation
frequency. A significant momentum range can be covered
by changing the modulation frequency. The momentum is
approximately a linear function with respect to the modulation
frequency. Characterization of the coherence properties of
both momentum preparation methods was outside the scope
of the work presented here and could be a subject of future
studies.

7. Long term dynamics and dynamics due to
selective loading

7.1. Long term dynamics

The observation of resonances for a minimum length of
interaction time with the modulation potential is a prerequisite
to observe dynamical tunnelling (dynamical tunnelling will be
discussed in detail in section 9) as it is necessary to observe at
least a significant part of the tunnelling period to have sufficient
evidence for tunnelling to occur. Tunnelling periods strongly
depend on a number of system parameters. Theoretical
calculations have shown that 100 periods of the modulation
frequency are sufficient to observe at least one tunnelling
period. Figure 27 shows three atomic position distributions
for scaled well depth κ ≈ 1.1, modulation parameter ε = 0.25
and modulation frequency ω/2π = 300 kHz with the two
period-1 regions of regular motion as distinct peaks in the
atomic momentum distribution. In figure 27(a) the atoms
have interacted for 6.25 periods of the modulated standing
wave. After an interaction time of 10.25 modulation periods
the atomic position distribution has already changed shape as
the peaks corresponding to period-1 regions of regular motion
are smaller. This is shown in figure 27(b). There is a smooth
transition between the atomic position distributions shown
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Figure 28. Poincaré section for selective loading of only one region
of regular motion. The required initial atomic momentum
distribution has non-zero mean momentum.

in figures 27(a) and (b). This can be seen for a different
set of parameters in figure 8. Peaks in the atomic position
distribution corresponding to regions of regular motion can
still be observed after 99.25 modulation periods, as shown
in figure 27(c). There is no significant difference between
the position distributions for an interaction time of 10.25
modulation periods and 99.25 modulation periods, indicating
that the dynamics have approximately equilibrated after 10.25
modulation periods and that the system is sufficiently isolated
from noise to experimentally observe regions of regular motion
even after 99.25 modulation periods. The observation of
regions of regular motion for such a long interaction time
is an important step towards the observation of dynamical
tunnelling.

7.2. Experimental set-up for selective loading

In order to observe dynamical tunnelling selective loading of
only one region of regular motion is necessary. To load both
regions of regular motion the starting phase of the standing
wave modulation is chosen in such a way that the resonances
are located on the position axis in the Poincaré section (atom
groups 1 and 2 have zero velocity, see figures 5 and 6). To
selectively load only one resonance, the starting phase of
the standing wave is adjusted such that the resonances are
located on the momentum axis. For a period-1 region of
regular motion the starting phase needs to be either maximum
or minimum modulation amplitude. Atoms can be prepared
with a mean momentum relative to the standing wave equal
to the momentum of one of the regions of regular motion
when it is located on the momentum axis. If the width of
the initial distribution is sufficiently small only one of the
regions of regular motion will be loaded. Figure 28 shows the
required position of the regions of regular motion in a Poincaré
section along with the initial atomic distribution whose mean
momentum is equal to the momentum of one of the regions of
regular motion. The experimental set-up used to achieve this
is shown in figure 29. It is similar to the one shown in figure 1
but differs after the beam has passed through acousto-optic
modulator AOM2. Rather than coupling the beam straight into
the vacuum chamber, a polarizing beamsplitter cube is used
to produce two beams of equal intensity, which are needed
to produce the optical standing wave. A half-wave plate is

1

1

1

1 2

4

3

2

2

Figure 29. Set-up for selective loading of only one region of regular
motion. A polarizing beamsplitter cube is used to produce the two
arms of the standing wave that is produced using a configuration
similar to that of a Sagnac interferometer. Acousto-optic modulators
AOM3 and AOM4 are used to induce a small frequency difference in
the two arms, resulting in a slowly moving standing wave. The
half-wave plate (λ/2) is used to obtain the same polarization in both
arms. Telescopes on both sides of the vacuum chamber ensure the
appropriate beam diameter for both beams.

inserted into one of the beams to obtain the same polarization
in both arms. There are several ways to prepare the atomic
cloud with a non-zero velocity relative to the inertial frame of
the standing wave. Here a method is used giving the standing
wave a constant velocity relative to the initial stationary cloud
of cold atoms. This is achieved by detuning one of the beams
relative to the other. The velocity of the standing wave cst

is given in terms of the detuning (ω1 − ω2) by the following
condition:

cst = ω1 − ω2

2k
(78)

where k is the wavenumber and ω1 and ω2 are the frequencies
of the two counterpropagating beams. For the experiments
ω1 −ω2 ≈ 200 kHz is required, which is achieved by utilizing
an acousto-optic modulator in each counterpropagating beam
(AOM3 and AOM4) and detuning them relative to each other.
The detuning (and therefore the velocity of the standing wave)
is adjusted using an IntraAction dual-frequency-synthesizer
driver (model DFE). The frequency stability is 1 ppm, which is
achieved using a temperature compensated crystal oscillator.
The frequency is set in one channel at 40 MHz and can be

R108



PhD Tutorial

Figure 30. (a) Atomic momentum distribution with three distinct peaks corresponding to two period-1 regions of regular motion (left and
right peak) and the central island of stability (centre peak). (b) Selective loading of one region of regular motion. The pedestal corresponds
to atoms which are loaded into the classical chaotic region.

adjusted in the other from 30–50 MHz in steps of 0.1 kHz.
The two beams are overlapped inside the vacuum chamber
to form a standing wave. The atomic dynamics proved to
be very sensitive to the overlap of the two beams, so great
attention was given to the alignment procedure. There are
two important factors in the procedure. First it is important to
achieve maximum overlap of the atomic cloud and the standing
wave, and second it is important that the standing wave beams
are as parallel as possible and that they have maximum overlap
with each other. Typically the first beam is aligned by blowing
the atoms out of the trap with the same procedure as outlined
in section 2.1. To overlap both laser beams, apertures on both
sides of the vacuum chamber were used for initial alignment.
In the next step a set of two mirrors on the side of the vacuum
chamber where the other beam originates is used for further
alignment. A piece of lens tissue is placed on one of the two
mirrors (M1) and one of the beams is walked with the other
mirror (M2) such that the two spots overlap on M1. Then the
procedure is carried out with the lens tissue on M2 and M1

is used for aligning the other beam, trying to obtain overlap
on M2. Multiple iterations of this procedure lead to a fairly
accurate overlap of the two beams. Light emerging from the
unused port of the polarizing beamsplitter cube forms several
distinct spots in the far field. Overlap of these spots was utilized
as an additional alignment aid. Finally the diffraction spots
of the back-reflected light through acousto-optic modulator
AOM2 are observed just before the single-mode optical fibre
and used for final alignment.

7.3. Selective loading of one region of regular motion

Experimental results illustrating selective loading of one region
of regular motion are shown in figure 30. Figure 30(a) shows
an atomic momentum distribution with three distinct peaks
resulting from two period-1 regions of regular motion and the
central island of stability for scaled well depth κ ≈ 1.25,
modulation parameter ε = 0.31 and modulation frequency
ω/2π = 300 kHz. In figure 30(b) the initial phase of
the standing wave modulation is changed so that the regions
of regular motion are initially located on the momentum
axis and a slowly moving standing wave is used with a
frequency difference ω1 − ω2 = 243 kHz, where ω1 and
ω2 are the frequencies of the two counterpropagating beams.
The momentum distribution has the form of a pedestal with
only one distinct peak at negative momentum. This peak

corresponds to one period-1 region of regular motion. This was
confirmed by changing the interaction time with the modulated
standing wave by half a modulation period so that the peak
rotates in phase space, now having positive momentum. The
way in which selective loading is implemented here also results
in loading of the classical chaotic region of phase space (see
figure 28). The pedestal in the atomic momentum distribution
corresponds to atoms which are part of the classical chaotic
region of phase space.

Extensive experiments were undertaken studying the
dynamics of atoms which were initially loaded into only one
region of regular motion using the method described above.
The purpose was to test whether it is possible to observe
dynamical tunnelling using a thermal Rb cloud with a kinetic
temperature of 8 µK and the loading scheme as described
above. To obtain experimentally accessible timescales for
the observation of one tunnelling period it is important to
maximize the scaled Planck’s constant −k. This can be achieved
by choosing a small value of the modulation frequency ω/2π .
However, the momentum of the resonances scales linearly
with the modulation frequency (as illustrated in section 4.2,
see figure 13), so that there is a limit on how small the
modulation frequency can be chosen before the peaks in the
atomic momentum distribution cannot be resolved anymore.
Using a longer ballistic expansion time (up to 20 ms) the limit
was found to be a modulation frequency of approximately
100 kHz. Figure 31(a) shows two atomic position distributions
for scaled well depth κ ≈ 1.35, modulation parameter ε =
0.32 and modulation frequency ω/2π = 200 kHz. A ballistic
expansion time of 15 ms is used to improve the resolution of
the peaks in the atomic position distribution. The two arms
of the standing wave have a frequency difference ω1 − ω2 =
180 kHz. The black curve is taken for an interaction time of
8 modulation periods and the grey curve is taken after 100
modulation periods. After 100 modulation periods the peak
corresponding to the initially loaded region of regular motion
has a decreased amplitude while the momentum distribution
has a larger amplitude at positive momentum. This could
possibly be a signature of dynamical tunnelling but may also be
due to diffusion processes. In (b) the grey curve is the position
distribution after 100 modulation periods and the black curve
was taken after 100.5 modulation periods. These data were
taken to test the period-1 character of motion which is apparent
as some atoms reverse their momentum.

A few comments should be made about loading
and observation phases of the standing wave modulation.
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Figure 31. Dynamics due to selective loading of one region of
regular motion for scaled well depth κ ≈ 1.35, modulation
parameter ε = 0.32 and modulation frequency ω/2π = 200 kHz.
(a) The black curve is the atomic position distribution measured
after an interaction time of 8 modulation periods and the grey curve
is taken after 100 modulation periods. In (b) the grey curve is the
position distribution after 100 modulation periods and the black
curve was taken after 100.5 modulation periods. Some atoms are
reversing their momentum, confirming the period-1 character of
motion.

Especially at small values of the modulation frequency it is
impossible to avoid loading librational motion and unbound
motion along with loading one region of regular motion as
the initial atomic momentum distribution has a large width
compared to distinct phase space features like period-1 regions
of regular motion, and the separation between unbound motion,
librational motion and period-1 regions of regular motion is
small. Especially for large interaction times this leads to an
important effect which needs to be considered carefully when
trying to observe dynamical tunnelling. For short interaction
times the position distribution after the ballistic expansion
time is equivalent to the momentum distribution before the
ballistic expansion period. However, for long interaction
times atoms which are part of the librational and unbound
motion spatially separate from the atoms which are part of the
bound motion in each individual well during the interaction
time with the standing wave. They form a separate peak
in the atomic position distribution. This new peak could
be mistakenly interpreted as the occurrence of dynamical
tunnelling even though it is only the result of the spatial
separation of unbound motion and the convoluted bound single
well motion of the many wells of the standing wave. To
enable the observation of dynamical tunnelling the loading
and observational phase of the standing wave modulation have
to be chosen such that this unbound motion peak moves in
the opposite direction from the peak which would result from
atoms tunnelling into the other region of regular motion. This
was experimentally implemented by starting and ending the
standing wave modulation at minimum and choosing the sign
of the frequency difference between the two standing wave
beams such that a region of regular motion with negative
momentum is loaded initially. Figure 32(a) shows two position
distributions for scaled well depth κ ≈ 1.35, modulation
parameter ε = 0.32, modulation frequency ω/2π = 100 kHz
and a ballistic expansion time of 20 ms. The two arms of

Figure 32. Atomic position distribution after different interaction
times with the modulated standing wave for scaled well depth
κ ≈ 1.35, modulation parameter ε = 0.32 and modulation
frequency ω/2π = 100 kHz. In (a) the grey curve corresponds to an
interaction time of 10 modulation periods and the black curve
corresponds to 100 modulation periods. (b) shows atomic position
distributions for 10 modulation periods (grey curve) and 700
modulation periods (black curve). The emergence of the left peak in
the black curve is due to the atoms which exhibit unbound and
librational motion. For dynamical tunnelling one expects the
emergence of a peak on the right. Therefore this second peak does
not mimic dynamical tunnelling.

the standing wave have a frequency difference ω1 − ω2 =
130 kHz. The grey curve is taken after an interaction time
of 10 modulation periods with the modulated standing wave
and the black curve corresponds to an interaction time of 100
modulation periods. After 100 modulation periods there seem
to be more atoms with positive momentum, which could be
an indication of dynamical tunnelling. Figure 32(b) shows
two position distributions for the same parameters but now
the black curve corresponds to an interaction time of 700
modulation periods. There are two distinct peaks. The one
on the left corresponds to unbound and librational motion
while the right peaks correspond to the convolution of bound
motion in individual wells. The right peak has a smaller width
compared to the distribution after 10.25 modulation periods
(grey curve) because the ballistic expansion time is only 13 ms
compared to a ballistic expansion time of 20 ms for the black
curve. As the beginning and end phase of the standing wave as
well as the sign of the detuning between the two standing wave
arms are appropriately chosen, the emergence of this additional
peak does not mimic dynamical tunnelling as it appears with
opposite momentum compared to the peak that would result
from atoms that tunnel into the other region of regular motion.
The big peak on the right corresponds to the convolution of
bound motion.

8. Experiments utilizing a sodium Bose–Einstein
condensate

8.1. Introduction

Here experiments are described which utilize a sodium Bose–
Einstein condensate. The observation of dynamical tunnelling
is much easier to achieve utilizing a Bose–Einstein condensate
rather than using a thermal cloud of atoms. The condensate can
be prepared in an exact quantum state rather than as a statistical
ensemble of many states, which is the case for a thermal cloud.
This accounts for one of the fundamental differences between
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experiments with a thermal atomic cloud and a Bose–Einstein
condensate.

The quasi-momentum plays a significant role in the
experiments. The quasi-momentum ϑ is approximately equal
to the relative velocity v between the wavepacket (before
the lattice is turned on) and the lattice, v = ϑ/m (modulo
2h̄k/m) [89], if the standing wave is adiabatically turned on.
It was found that it is of importance to populate a state with
quasi-momentum equal to zero and small quasi-momentum
spread to observe dynamical tunnelling. The details of the
relevant Floquet theory are explained in [62]. However, at
this point it should be noted that the presence of two highly
localized Floquet states of opposite parity can explain the
dynamical tunnelling process. As will be discussed in [62]
the quasi-eigenenergies of these two contributing Floquet
states sensitively depend on the quasi-momentum (or Bloch
angle). Therefore the tunnelling period (which is inversely
proportional to the separation between these two quasi-
eigenenergies) sensitively depends on the quasi-momentum.
Using a thermal atomic cloud one obtains a statistical ensemble
of many quasi-momenta. Atoms localized in individual wells
can be described by a wavepacket in the plane wave basis and
therefore they are characterized by a superposition of many
quasi-momenta. The resulting quasi-momentum width washes
out the tunnelling oscillations. In fact, in another experiment
carried out in parallel to the experiments described in this
section, Steck et al [90] found that the amplitude of the mean
momentum oscillations resulting from a tunnelling process
between two librational islands of stability decreased when the
initial momentum width of the atomic cloud was increased.
In that experiment a velocity-selective Raman process was
used [91] to produce the initial atomic wavefunction.

8.2. Experimental procedure

A detailed account of the experimental realization of Bose–
Einstein condensation is presented in the seminal papers by
Anderson et al [92] and Davis et al [93]. Here only a
short overview is presented which contains details relevant
to the tunnelling experiments. The experimental procedure
to prepare atoms to be localized around one of the regions
of regular motion (as a superposition of Floquet states
associated with one of the fixed points as explained in [62])
is implemented as follows: sodium atoms are produced in an
effusive sodium oven inside a low vacuum chamber (P =
10−9 Torr). The atoms are slowed down using a Zeeman slower
and loaded into a magneto-optic dark-spot trap [94] which is
formed inside a ultra-high vacuum Pyrex cell vacuum chamber
(P = 10−11 Torr).

The atoms are transferred into a magnetic quadrupole
field. Atoms in the 3S1/2, F = 1, m F = −1 state are trapped,
compressed and then cooled by rf-induced evaporation. A
time-averaged orbiting potential (TOP) [95] trap is utilized
to prevent Majorana spin flips. After the Bose–Einstein
condensate has formed with approximately 3 × 106 sodium
atoms, the condensate is adiabatically expanded, resulting
in trapping frequencies which are 2ωx = √

2ωy = ωz =
2π × 33 Hz, which, using a scattering length of 2.8 nm,
result in calculated Thomas–Fermi diameters of 83, 57 and
42 µm, respectively. The expansion was performed to ensure

2 1

1
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Figure 33. Set-up for the optical standing wave. A dye laser passes
through a single-mode polarization preserving optical fibre and
through a polarizing beamsplitter cube. A small amount of light is
reflected from the main beam and its intensity is measured using a
photodetector whose signal is connected to a feedback circuit which
controls acousto-optic modulator AOM1, resulting in an
intensity-stabilized laser beam. AOM2 provides the intensity
modulation and AOM3 acts as a beamsplitter. The standing wave
can be shifted using AOM4. Telescopes on both sides of the vacuum
chamber focus the beams into the centre of the vacuum chamber and
produce the desired beam waist.

that the atomic density is low, resulting in negligible mean
field interaction. The mean field energy was calculated to be
approximately 400 Hz compared to a kinetic energy of the
order of 105 Hz.

A schematic diagram of the experimental set-up for the
modulated standing wave is shown in figure 33. The standing
wave is produced by a dye laser operating at a wavelength
λ = 589 nm. The laser beam passes through a single-mode
polarization preserving fibre. After passing through the fibre,
the light is passed through an acousto-optic modulator AOM1

which deflects a small amount of light which is varied in order
to stabilize the light intensity. It is controlled by a feedback
circuit which receives a signal from the photodetector (PD)
measuring the intensity of the light. Intensity fluctuations are
reduced to approximately 5% (of the total intensity). The
light is passed through a second acousto-optic modulator
AOM2 which provides the required intensity modulation. A
third 80 MHz acousto-optic modulator AOM3 is used as
beamsplitter to provide two beams used for the configuration
which makes up the optical standing wave. Finally a fourth
80 MHz modulator AOM4 equates the frequency in both arms
and provides the capability to shift the optical standing wave.
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The condensate is released from the magnetic trap and
a 1D standing wave lattice is adiabatically turned on along
x with a turn-on time of 50 µs. An approximate criterion
for adiabaticity is that the ramping time should be much
longer than the inverse bandgap frequency (separation between
the lowest and the third lowest band) divided by (2π) [89].
Although the turn-on signal is programmed to be a linear
ramp, the start and end part of it are smoothed out due to the
transfer function of the acousto-optic modulator. According
to calculations3 a true 50 µs linear turn-on is significantly
less adiabatic than what was observed in the experiments
presented here. However, when including the transfer function
of the AOM into theoretical simulations the adiabaticity of
the turn-on increases significantly. The atoms are loaded
into the bottom of the lowest band (quasi-momentum equal
to 0) of the optical lattice. It was verified that >99% of the
atomic population is in the lowest band using the following
measurement. The standing wave is turned on adiabatically as
described above and the momentum distribution is measured
as a function of the interaction time with the unmodulated
standing wave. If the atoms are truly loaded into the ground
state the atomic momentum distribution will be independent
of the interaction time as the ground state is an eigenstate
of the system. If the turn-on is not perfectly adiabatic a
small portion of the atoms will be in an excited band (most
likely the second excited band as it has the same parity as
the ground state). Since the excited band has a different
energy, its phase will precess with respect to the ground state
and, depending on when the lattice is turned off, a different
momentum distribution will result. This measurement is very
sensitive to the excited population because it incorporates an
interference effect. Both the ground band (n = 1) and the
excited band (n = 3) have some projection onto the p = 0
plane wave state (the central peak in the diffraction pattern).
Therefore the p = 0 population should scale approximately
as |a1 + a3 exp(i(E1 − E3)t/h̄)|2, where a1 and a3 are the
projections of the n = 1 and 3 band onto the p = 0 plane wave
state and E1 and E3 are the eigenenergies for bands 1 and 3,
respectively. A 10% peak-to-peak variation was detected in
the p = 0 peak, which corresponds to about 0.5% population
in the excited state.

The Gaussian lattice beams are detuned ∼14 GHz above
the atomic D2 resonance (λ = 589 nm) and have a waist
w ≈ 250 µm, leading to an intensity variation of less than
5% across the atomic cloud. The waist of the standing wave
is set by observing the beam profile of one of the (for this
purpose attenuated) standing wave beams using a CCD camera
that is focused halfway between the two opposite chamber
windows. The telescope through which the laser beam passes
is adjusted to obtain the appropriate beam waist. The procedure
is repeated for the other beam.

The scaled well depth κ is determined by measuring the
oscillation frequency of the atoms in the unmodulated standing
wave. To measure the oscillation frequency the standing wave
is adiabatically turned on so that the BEC localizes at the
bottom of each well. Then the standing wave is suddenly
shifted and the resulting oscillations are analysed by measuring
the atomic momentum distribution after various interaction
3 Personal communication: Paul Julienne, National Institute of Standards and
Technology.

times. A one-dimensional band structure calculation [96]
is carried out with the condition to produce a lattice with
the energy separation between the two lowest bands equal
to Planck’s constant times the oscillation frequency of the
atoms in the unmodulated case. From this calculation the
scaled well depth κ is determined. The induced phase shift
is chosen to be very small (0.08 × 2π or 1.02 ns) so as to
involve only the lowest two bands in the oscillation. The
uncertainty in the measurement of the scaled well depth κ

is due to uncertainty in measuring the oscillation frequency
and to variations in the laser intensity and was determined to
be 10% (all reported uncertainties are one standard deviation
combined systematic and statistical uncertainties). For the
parameters which were used in the experiment the standing
wave contains approximately between three and five bound
states, depending on whether the modulation is at minimum or
maximum. Detailed studies of the dynamics of Bose–Einstein
condensates in optical lattices, which study these mechanisms
in more detail, were undertaken by Denschlag et al [89].

Selective loading of one region of regular motion requires
a sudden4 phase shift of the standing wave so that the
wavepacket, which was initially localized at the bottom of the
well, is placed approximately halfway up one side of each
well when the amplitude modulation of the standing wave is
commenced. To induce the phase shift a circuit with switchable
and variable path length is utilized to drive acousto-optic
modulator AOM4, as shown in figure 34. The RF source is
connected to a 50/50 power splitter. The path lengths between
each of the two outputs and the RF amplifier are different. The
pathlength is variable in one arm. The two arms are connected
to RF switches. The switches have two outputs each, one of
them leading to a 50 � dummy load and the other to the RF
amplifier. The TTL control input to the switches C determines
whether the output occurs at output O1 or O2 of each switch.
O1 of the first switch and O2 of the second switch are connected
to the 50 � load and O2 of the first switch and O1 of the second
switch are connected to the RF amplifier. By turning on or off
a TTL pulse at the control input C of each switch one can
therefore choose whether the RF signal travelling through arm
1 or 2 is connected to the RF amplifier and fast switching
between the two arms is possible. The phase shift between the
two signals is visualized on a fast oscilloscope and the variable
path length is adjusted to provide a pathlength difference of
typically 2.68 ns (using an 80 MHz acousto-optic modulator,
this corresponds to a phase shift of 0.21×2π), which will place
the initial wavepacket just below halfway up each standing
wave well. This overlaps it with one region of regular motion.

Each individual well contains a minimum uncertainty
wavepacket with an rms position and momentum spread of
0.6 in scaled units (calculated using the numerical solution
of the Gross–Pitaevskii equation). To load selectively only the
region around one resonance, the position of the standing wave
is suddenly shifted by inducing an appropriate phase shift with
acousto-optical modulator AOM4 (see figure 33) as explained
before. Shortly (100–300 ns) before the phase shift (at t = 0),
modulation of the intensity of the standing wave commenced
at a modulation frequency ω/2π = 220–320 kHz. The start
phase of the modulation of the standing wave is chosen so that

4 Sufficiently fast so that the atoms find themselves stationary halfway up one
side of the well after the phase shift has occurred.
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Figure 34. RF circuit with switchable and adjustable pathlength.
The signal from the RF source is divided equally by a power splitter
into two arms with different pathlengths. The pathlength in one arm
can be adjusted. A digital delay/pulse generator is connected to the
control input C of two RF switches, which are located in both arms.
Output O1 of the first switch and O2 of the second switch are
connected to a 50 � load and O2 of the first switch and O1 of the
second switch are connected to the RF amplifier. By turning on or
off a TTL pulse at the control input C of each switch one can
therefore choose whether the RF signal through arm 1 or 2 is
connected to the RF amplifier and fast switching between the two
arms is possible. The RF amplifier is connected to acousto-optic
modulator (AOM4 in figure 33).

Figure 35. Schematic of period-1 resonances of an atom in an
amplitude modulated sinusoidal potential. These resonances
correspond to atomic motion that remains phased to the modulation
frequency. The anharmonicity of the sinusoidal potential is
compensated by the amplitude modulation for atoms around these
resonances, creating the regions of regular period-1 motion shown.
The appearance of the second ball depicts tunnelling into the
initially empty resonance. T is the modulation period.

the resonances are located on the position axis of the Poincaré
section, as shown in figure 6(b) (start phase of the standing
wave modulation is zero modulation amplitude with amplitude
increasing). Therefore the wavepacket overlaps with one of the
regions of regular motion and selective loading can occur. The
modulation frequency is chosen to optimize both the overlap
between the wavepacket and the region of regular motion, and
to make the typical action of a particle small enough to observe
quantum effects. After the atoms have interacted with the
modulated standing wave for a selected number of modulation
periods, the standing wave is turned off with the modulation
phase chosen so that the resonance lies on the momentum axis
at that time. At that phase (n + 0.25 or 0.75 periods) the
atoms, contained inside the region of regular motion, are at
the bottom of the well, moving with maximum momentum,
±p0 (see figure 4). The atomic momentum distribution is
measured with absorption imaging after 1.5 ms of free flight.
The momentum distribution appears as a set of ‘diffraction’
peaks at integer multiples of 2h̄k due to the atomic coherence
over the multiple wells of the optical lattice.

Figure 36. Poincaré section for position q and momentum p of a
classical particle in an amplitude modulated optical lattice, for a
scaled well depth κ = 1.66 and a modulation parameter ε = 0.29,
showing a mixed phase space. The central region consists of
small-amplitude stable motion. Chaos separates this region from
two period-1 resonances located above and below the centre along
q = 0. The upper region of regular motion is magnified in the inset
at the top left. Further out in momentum are two stable regions of
motion known as librations, which have a period of twice the
modulation period. At the edges are bands of regular motion
corresponding to above-barrier motion.

9. Dynamical tunnelling

9.1. Introduction

The divergence of quantum and classical descriptions of par-
ticle motion is clearly apparent in quantum tunnelling [97, 98]
between two regions of classically stable motion. An archetype
of such nonclassical motion, studied since the earliest days
of quantum mechanics, is tunnelling through an energy bar-
rier. In the 1980s a new kind of tunnelling was predicted.
Called dynamical tunnelling [97–100], it involves no poten-
tial energy barrier, yet a constant of motion other than energy
still classically forbids this quantum-allowed motion. This
process should occur, for example, in periodically driven,
nonlinear, Hamiltonian systems with one degree of free-
dom [41, 101, 102]. Such systems may be chaotic and may
contain phase space regions of stable, regular motion embed-
ded in a sea of chaos. In 1993 Dyrting et al [41] predicted it
to occur between such stable regions in the dynamics of cold
atoms in an amplitude modulated standing wave. Tunnelling
between discrete states is coherent and reversible—that is, the
particle oscillates between the states, which is the process de-
scribed here. Coherent tunnelling oscillations are especially
significant, as the system must pass through states correspond-
ing to superpositions of distinct classical motions.

A more intuitive explanation of dynamical tunnelling is
given by Heller [103] using the thought experiment of a
weightless ball bouncing between two semicircular mirrors.
The two mirrors are positioned so that there are two open gaps
that would allow the ball to escape from the cavity without
it having to tunnel through either of the mirrors (there is
no energy barrier preventing it leaving through one of the
open gaps). When one follows the classical trajectory of
the ball (for example by elementary ray tracing) one finds
that its classical trajectory is confined in between the two
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Figure 37. Three atomic momentum distributions of the Bose–Einstein condensate oscillating within the wells of an optical lattice. The
pictures are taken after 0.25, 2.25 and 5.25 modulation periods. Classically one would expect most of the atoms to remain in a state with
negative momentum, as shown after 0.25 modulation periods. However atoms tunnel into the state with opposite momentum, as shown after
2.25 and 5.25 modulation periods. After 2.25 modulations periods the atoms are in a superposition of two classically distinguishable
motions. The results were obtained with a modulation parameter ε = 0.29, scaled well depth κ = 1.66, modulation frequency
ω/2π = 250 kHz and a phase shift �t = 2.68 ns.

(This figure is in colour only in the electronic version)

mirrors. However, according to quantum mechanics the ball
will eventually tunnel out of the cavity as its trajectories can
access a classically forbidden region. This is an example of
dynamical tunnelling. Dyrting et al [41] showed that the
system under study here, where particles oscillate in a well,
the depth of which is modulated, should also exhibit dynamical
tunnelling. A particle oscillates inside the well in phase with
the modulation of the well depth and it can tunnel into a motion
180◦ out of phase with its initial motion.

In this section the observation of dynamical tunnelling
of ultra-cold atoms, from a Bose–Einstein condensate, in an
amplitude modulated optical standing wave will be described.
Atoms tunnel coherently back and forth between their initial
state of oscillatory motion (corresponding to an island of
regular motion) and the state oscillating 180◦ out of phase
with the initial state. Figure 35 shows a schematic of period-1
resonances of an atom in an amplitude modulated sinusoidal
potential. Initially only one region of regular motion is loaded.
The appearance of the second ball depicts dynamical tunnelling
into the initially empty resonance. T is the modulation period.

9.2. Experiments illustrating dynamical tunnelling

The Poincaré section in figure 36 is plotted for parameters
κ = 1.66 and ε = 0.29 where some of our experiments
were conducted. Islands of regular motion (boomerang-shaped
rings—see inset) surround period-1 resonances (fixed points)
where the atomic motion remains exactly in phase with the
modulation. Note that, for small changes in scaled well depth
κ and the modulation parameter ε (within the experimental
uncertainties), the period-1 regions of regular motion can
split into two closely spaced period-2 regions. For initial
momentum and position width of the wavepacket reflecting the
Heisenberg uncertainty limit in the experiment, such behaviour
would be indistinguishable from period-1 motion.

Figure 38. Atomic momentum distributions after n + 0.25
modulation periods showing dynamical tunnelling. The parameters
for this experiment are ε = 0.29, κ = 1.66, ω/2π = 250 kHz and
�t = 2.68 ns.

Figure 37 depicts momentum distributions which are taken
after 0.25 (front), 2.25 (middle) and 5.25 (back) modulation
periods for modulation parameter ε = 0.29, scaled well depth
κ = 1.66, modulation frequency ω/2π = 250 kHz and a phase
shift of �t = 2.68 ns (0.21×2π) which was used to selectively
load only one region of regular motion. With this value of
the modulation frequency ω/2π one obtains a scaled Planck’s
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Modulation periods

Figure 39. Mean momentum as a function of the interaction time
with the modulated standing wave measured in modulation periods,
n. The two curves correspond to two different ending phases
(n + 0.25 (diamonds, solid curve), n + 0.75 (circles, dotted curve)) of
the modulation (parameters as in figure 38).

constant −k = 0.8. For a more quantitative comparison two-
dimensional plots showing atomic momentum distributions
for different interaction times with the modulated standing
wave are shown in figure 38. To obtain these plots the
two-dimensional momentum distribution was integrated over
the y coordinate perpendicular to the standing wave. The
momentum distribution after 0.25 modulation periods is
centred at negative momentum and consists mainly of a pair
of diffraction peaks at −4 and −6h̄k. Classically the atoms
should remain in the resonance, leaving the stroboscopically
measured momentum distribution unchanged. On the contrary,
after 2.25 modulation periods about half of the atoms have
appeared with opposite momenta, which corresponds to the
other resonance. By 5.25 modulation periods most of the
atoms are in the other resonance. At 9.25 modulation periods
the atoms have returned to the original resonance, as shown in
figure 38(d). This transfer of atoms back and forth between
the regions of regular motion is dynamical tunnelling.

In figure 39 the mean atomic momentum is plotted after
different interaction times with the modulated standing wave
measured in modulation periods. The solid curve/diamonds
(dotted curve/circles) correspond to turning off the standing
wave at the maximum (minimum) of the amplitude modulation
(see figure 35 at t = 0.25T and 0.75T , respectively). Atoms
inhabiting only one region of regular motion are at the bottom
of the well at both turn-off phases. However, they move
in opposite directions for the two different turn-off phases
if they are part of a single period-1 island. Classically
the mean momentum should approximately remain constant
for a given turn-off phase. However, an oscillation of
the mean momentum can be observed for each set of data
points, indicating the occurrence of dynamical tunnelling.
The tunnelling process is coherent as atoms tunnel back
and forth between the two states of motion. The period-
1 character of the motion is verified by the reversal of the
momentum between the full and dotted curves in figure 39,
which are separated in time by 0.5 modulation periods. By
Fourier transforming the data, the tunnelling period is found
to be 10.3(2) modulation periods where the uncertainty is

statistical. The period of the tunnelling oscillation agrees well
with numerical simulations of the three-dimensional Gross–
Pitaevskii equation and Floquet theory within the experimental
uncertainty (dominated by the uncertainty in κ). This will
be discussed in detail in [62]. Luter and Reichl [104] and
Averbukh et al [105] have also given a theoretical analysis of
the experiments. It should be noted that the mean momenta
of the circle and the diamond data points in figure 39 are
slightly different for the same number of modulation periods.
Classical theory predicts slightly different momenta of the
fixed points when viewed at the phases corresponding to
figure 35 at t = 0.25T and 0.75T . The atoms in the region of
regular motion have experienced a larger gradient just before
the standing wave is turned off at maximum (t = 0.25T ).
Therefore they are slightly faster at that modulation endphase
compared to a turn-off at minimum (t = 0.75T ). This is
explained in more detail in section 5.2 and can be seen in the
Poincaré section in figure 20.

In figure 40 the atomic momentum distributions
corresponding to the solid curve (diamonds) of figure 39 are
displayed as a function of the number of modulation periods.
Because all atoms start on one side of the potential well, at
0.25 modulation periods essentially all atoms have negative
momentum. By 1.25 periods the atoms that were loaded
into the chaotic region have begun to spread out, forming a
broad background, while the other atoms are bound inside
the region of regular motion. For subsequent pictures the
coherent oscillation between the two regions of regular motion
is evident. One should note that there is no significant
(above-background) zero momentum peak even in the case
of approximately zero mean momentum (when the atoms have
tunnelled halfway). This indicates that at half the tunnel period
the system is in a coherent superposition of two distinguishable
classical motions: one with positive momenta and one with
equal but opposite momenta. This is to be expected, because
quantum Floquet analysis shows that atoms tunnel from one
region of regular motion into the other and it is impossible for
them to enter the central island of stability at (p, q) = (0, 0)

(see [62]).
Classical simulations using a Gaussian phase space

distribution corresponding to the experimental wavepacket
(which is always bigger than the classical region of regular
motion) show that, for all experimental conditions, there is
no behaviour similar to the observed oscillatory quantum
tunnelling.

The decay of the tunnelling oscillations (as can be
seen in figure 39) may be due to a number of factors.
One likely cause for the decay is spatial variations of κ ,
which lead to a dephasing of the tunnelling oscillations.
The contribution of multiple Floquet states could lead to
complicated multi-frequency oscillations, with an envelope for
the tunnel oscillations appearing as decay, as observed for some
parameters in our simulations. A significantly large initial
quasi-momentum width of the initial wavepacket could also
explain the decay as the tunnelling frequency is a function of
the quasi-momentum as explained in [62]. Another reason for
the observed decay could be spontaneous emission. However,
the effects of spontaneous emission should be very small on the
timescales of the experiments (160 µs). The photon scattering
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Figure 40. Momentum distributions as a function of the number of
modulation periods (n + 0.25) showing the tunnelling oscillation
between the negative and the positive momentum state. Note that
the zero momentum state remains mostly unpopulated, even when
the mean momentum is zero. The colour map ranges from black to
white for atomic populations ranging from small to large
(parameters as in figure 38).

Figure 41. Stroboscopically measured mean momentum as a
function of the number of modulation periods (n + 0.25) for
ε = 0.30, κ = 1.82, ω/2π = 222 kHz and �t = 2.6 ns. A
tunnelling period of approximately 6 modulation periods is
observed.

rate γp [48] at the spatial standing wave maximum (for ε = 0)
is given by

γp = 1

τ
ρee = 1

2τ

I

I + Isat(1 + 4δ2τ 2)
= 2.32 × 103 Hz (79)

where τ is the spontaneous lifetime in the excited state, ρee

is the excited state element of the density matrix, I is the
light intensity, δ is the detuning and Isat is the saturation
intensity. For this calculation typical experimental parameters
were chosen (κ = 1.66, I = 6.37 × 104 W m−2 and Isat =
110 W m−2). Atom–atom interactions should also be small
(mean field ≈ 400 Hz) on relevant timescales (kinetic energy
∼ 105 Hz).

Quantum theory predicts dynamical tunnelling to occur
for various values of the scaled well depth κ , the modulation
parameter ε and modulation frequency ω and also predicts

Figure 42. Stroboscopically measured mean momentum as a
function of the number of modulation periods (n + 0.25) for two sets
of parameters. The dotted curve (circles) is plotted for ε = 0.28,
κ = 1.66, ω/2π = 250 kHz and �t = 2.8 ns and the solid curve
(diamonds) is plotted for the same parameters but with a scaled well
depth κ = 1.49. When the scaled well depth κ is decreased the
tunnelling period actually increases.

a strong sensitivity of the tunnelling period and amplitude
on these parameters. As shown in figure 41, for ε = 0.30,
κ = 1.82, ω/2π = 222 kHz and �t = 2.6 ns a tunnelling
period of 6 modulation periods with a significantly longer
decay time than in figure 39 is found. With this value of
the modulation frequency ω/2π one obtains a scaled Planck’s
constant −k = 0.9. In figure 42 the dotted curve (circles) is
plotted for ε = 0.28, κ = 1.66 and ω/2π = 250 kHz,
�t = 2.8 ns and the solid curve (diamonds) is plotted for
the same parameters but with the scaled well depth κ = 1.49.
Surprisingly an increase in the tunnelling period is observed
when κ is decreased and when all other parameters are held
constant. This is the opposite of what one would expect for
spatial, barrier tunnelling. Theoretical simulations [62] show
the same result and the physics behind this phenomenon will
be discussed in [62]. To obtain the black curve all parameters
are held constant and the light intensity is reduced.

10. Conclusion and outlook

The driven pendulum in atom optics is an ideal environment
to explore quantum nonlinear dynamics. The dynamics can be
qualitatively well described by classical theory provided that
the experimental timescales and the scaled Planck’s constant
of the system are sufficiently small. This follows from
the thorough experimental investigation of the dynamics of
the driven pendulum in atom optics which was carried out
and described in this tutorial. However, the observation
of dynamical tunnelling illustrates a dramatic divergence of
quantum and classical physics. By varying the Hamiltonian
parameters and the initial conditions dynamical tunnelling was
observed for a variety of mixed phase space configurations.
Due to the ability to control the scaled Planck’s constant the
atom-optics-driven pendulum provides an effective means to
explore the borderland between quantum and classical physics
and the experiments illustrate that one needs to consider
the wave nature of atoms to accurately explain the atomic
dynamics, especially for large experimental timescales and a
large scaled Planck’s constant.
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This tutorial presents experimental results and theoretical
techniques pertaining to the atom-optics-driven pendulum.
The parameter space that determines the observed phase space
dynamics was characterized. The origin of distinct peaks in the
atomic momentum distribution was explained and it was shown
how to obtain these peaks experimentally. Experimental
evidence is presented for how the size and amplitude of
the regions of regular motion depends on the modulation
frequency ω, the scaled well depth κ , the modulation parameter
ε and the scaled Planck’s constant −k of the system. The
experimental system which is described here can be described
by a truly two-dimensional phase space spanned by position
and momentum along the standing wave. Experimental proof
is presented that the atom-optics-driven pendulum can be
accurately modelled by quantum trajectory theory. Chaotic
transients of the driven pendulum are investigated. The
momenta of the resulting peaks in the atomic momentum
distribution scale linearly with the modulation frequency ω.
Phase space resonances and chaotic transients provide new
ways to manipulate atoms. Experimental methods were
developed in which the momentum of an ensemble of atoms
can be controlled very accurately and experimental results
were presented illustrating this. It was shown that the
quantum chaotic mixed phase space provides a range of
possibilities for effective quantum phase space preparation.
It was illustrated that up to approximately 65% of all atoms
can be loaded into distinct peaks in the atomic momentum
distribution, allowing efficient atomic momentum control. The
results presented here could be useful for atom interferometry,
splitting of a Bose–Einstein condensate and other areas of atom
optics. A bifurcation sequence was mapped and explained
using classical perturbation theory for the relevant nonlinear
Hamiltonian. The experimental results are in good agreement
with the theoretical predictions of classical perturbation theory,
highlighting that the dynamics of the driven pendulum can
be described by classical perturbation theory as long as the
experimental timescales and Planck’s constant are sufficiently
small. The mapping of the atomic momentum distributions
to the bifurcation diagram was confirmed by measuring the
rotation frequency of the regions of regular motion from which
the distinct peaks in the atomic momentum distribution result.
The experimentally measured resonance momenta agree well
with the quantum simulations. However, they are significantly
slower than the classical prediction. This behaviour could
be linked to quantum slow motion but more experiments
will be needed to confirm that. When the scaled Planck’s
constant of the system becomes sufficiently large, one can
use the dynamics of the driven pendulum in atom optics to
observe dynamical tunnelling between two macroscopically
distinguishable states of motion. This was illustrated using a
Bose–Einstein condensate. The observed tunnelling process is
coherent and multiple full tunnelling oscillations are observed
which are centred at approximately zero mean momentum.
The tunnelling amplitude and frequency is found to be sensitive
to the scaled well depth κ , the modulation parameter ε and
the scaled Planck’s constant −k of the system as predicted by
quantum theory.

What are the future directions for the experiments
presented in this tutorial? Although the driven pendulum
is found to be not very sensitive to amplitude noise (small

noise amplitudes) the effects of large noise amplitudes have
not been thoroughly explored yet and could be subject of
further study. Different types of noise, for example phase
noise and spontaneous emission leading to random kicks, could
be investigated. A more comprehensive measurement and
analysis of the resonance momenta could test the theory of
quantum slow motion. The experiments could be extended to
include two-dimensional potentials about which little is known
in both the classical and the quantum domain. The observation
of dynamical tunnelling of atoms in a modulated standing
wave opens the door to further studies in quantum nonlinear
dynamics. A thorough scan of the scaled Planck’s constant
in the dynamical tunnelling experiments combined with
detailed theoretical analysis could help to better understand
the quantum–classical transition. By carefully following the
evolution of wavepackets loaded into the chaotic region from
a Bose–Einstein condensate, ‘quantum chaos’ can be probed
with the unprecedented resolution afforded by minimum
uncertainty wavepackets. By introducing decoherence in
a controlled manner, one can systematically investigate the
role of decoherence in dynamical tunnelling and explore
the classical limit of chaotic systems. Decoherence plays
an integral role in the classical behaviour of most systems
and its role in highly nonlinear dynamical systems is still
unclear. It can be introduced in different ways into the driven-
pendulum experiments by the addition of specific noise to
the modulation of the optical standing wave or by changing
the detuning of the standing wave increasing the amount of
spontaneous emission and therefore producing random recoil
kicks on the atoms. Furthermore, when utilizing a Bose–
Einstein condensate decoherence can be introduced using
mean-field interactions and incoherent collisions by using a
denser condensate. Ultimately, it will be possible to test
whether the introduction of decoherence into a system is
equivalent to approaching the limit of Planck’s constant going
to zero (with classical noise) and methods can be developed to
control decoherence in nonlinear quantum systems.
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Browaeys A, Cho D, Helmerson K, Rolston S L and
Phillips W D 2002 A Bose–Einstein condensate in an
optical lattice J. Phys. B: At. Mol. Opt. Phys. 35 3095–110

[90] Steck D A, Oskay W H and Raizen M G 2001 Observation of
chaos-assisted tunneling between islands of stability
Science 293 274–8

[91] Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S and
Chu S 1991 Atomic velocimetry selection using
stimulatedRamantransitions Phys. Rev. Lett. 66 1542–5

[92] Anderson M H, Ensher J R, Matthews M R, Wieman C E and
Cornell E A 1995 Observation of Bose–Einstein
condensation in a dilute atomic vapor Science 269
198–201

[93] Davis K B, Mewes M O, Andrews M R, van Druten N J,
Durfee D S, Kurn D M and Ketterle W 1995
Bose–Einstein condensation in a gas of sodium atoms
Phys. Rev. Lett. 75 3969–73

[94] Ketterle W, Davis K B, Joffe M A, Martin A and
Pritchard D E 1993 High densities of cold atoms in a dark
spontaneous-force optical trap Phys. Rev. Lett. 70
2253–6

[95] Petrich W, Anderson M H, Ensher J R and Cornell E A
1995 Stable, tightly confining magnetic trap for
evaporative cooling of neutral atoms Phys. Rev. Lett. 74
3352–5

[96] Ashcroft N W and Mermin N D 1976 Solid State Physics
(Philadelphia, PA: Saunders)

R119



PhD Tutorial

[97] Caldeira A O and Leggett A J 1983 Quantum tunneling in a
dissipative system Ann. Phys., NY 149 374–456

[98] Tomsovic S 2001 Tunneling and chaos Phys. Scr. T 90 162–5
[99] Davis M J and Heller E J 1981 Quantum dynamical tunneling

in bound states J. Chem. Phys. 75 246–54
[100] Heller E J 1999 The many faces of tunneling J. Phys. Chem.

A 103 10433–44
[101] Haake F, Kus M and Scharf R 1987 Classical and quantum

chaos for a kicked top Z. Phys. B 77 497–510
[102] Sanders B C and Milburn G J 1989 The effect of

measurement on the quantum features of a chaotic system
Z. Phys. B 77 497–510

[103] Heller E J 2001 Air juggling and other tricks Nature 412
33–4

[104] Luter R and Reichl L E 2002 Floquet analysis of atom-optics
tunneling experiments Phys. Rev. A 66 053615

[105] Averbukh V, Osovski S and Moiseyev N 2002 Controlled
tunneling of cold atoms: from full suppression to strong
enhancement Phys. Rev. Lett. 89 253201

[106] Hensinger W K, Truscott A G, Upcroft B, Heckenberg N R
and Rubinsztein-Dunlop H 2000 Atoms in an
amplitude-modulated standing wave—dynamics and
pathsways to quantum chaos J. Opt. B: Quantum
Semiclass. Opt. 2 659–67

[107] Hensinger W K, Upcroft B, Milburn G J, Heckenberg N R
and Rubinsztein-Dunlop H 2001 Multiple bifurcations in
atom optics Phys. Rev. A 64 063408

[108] Hensinger W K, Truscott A G, Upcroft B, Hug M,
Wiseman H M, Heckenberg N R and
Rubinsztein-Dunlop H 2001 Experimental study of the
quantum driven pendulum and its classical analogue in
atom optics Phys. Rev. A 64 033407
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