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Abstract
We extend the earlier model of condensate growth of Davis et al (Davis M J,
Gardiner C W and Ballagh R J 2000 Phys. Rev. A 62 063608) to include
the effect of gravity in a magnetic trap. We carry out calculations to model the
experiment reported by Köhl et al (Köhl M, Davis M J, Gardiner C W, Hänsch T
and Esslinger T 2001 Preprint cond-mat/0106642) who study the formation
of a rubidium Bose–Einstein condensate for a range of evaporative cooling
parameters. We find that, in the regime where our model is valid, the theoretical
curves agree with all the experimental data with no fitting parameters. However,
for the slowest cooling of the gas the theoretical curve deviates significantly
from the experimental curves. It is possible that this discrepancy may be related
to the formation of a quasicondensate.

1. Introduction

The process by which a Bose–Einstein condensate (BEC) forms from a non-equilibrium
thermal vapour is an important question in finite-temperature field theory. Before the first
observations of condensates [1–3], estimates for the characteristic time of formation varied
dramatically (e.g. see the discussion in [4]). However, more recently the quantum kinetic
theory of Gardiner and Zoller [5] has resulted in quantitative predictions that can be compared
with experimental data.

Until recently the only experimental study of the process of condensate formation was that
performed by Miesner et al [6] in the group of Ketterle at MIT. In these experiments a cloud
of sodium atoms was cooled to just above the BEC transition temperature, before the high-
energy tail of the distribution was quickly removed by a rapid sweep of the rf field frequency.
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The resulting dynamics lead to the formation of a condensate, with the observation of
characteristic S-shaped growth curves.

Before the first measurements of condensate growth, a quantitative prediction of the growth
rate was presented in [7], in which a condensate was assumed to form from contact with a
thermal bath below the transition temperature. In order to give a simple estimate of the rate
constant, the approach was greatly simplified and had several limitations—the most important
being the use of a Maxwell–Boltzmann rather than a Bose–Einstein distribution function for
the thermal bath. However, it gave a good qualitative prediction of the general shape and order
of magnitude of the growth rate later observed.

This model was soon extended to include both Bose–Einstein statistics for the thermal bath
of atoms, and the dynamics of the lowest lying quasiparticle levels above the condensate [8,9].
The picture was of a condensate band in contact with a ‘supersaturated’ thermal cloud, and the
assumptions of the model quite closely matched the experimental conditions realized at MIT.
A comparison of the theoretical predictions with experimental data was in good agreement
at higher temperatures; however, at lower temperatures there was some discrepancy—the
experimental growth rate appeared to be about three times too fast.

In further development, this model was again extended to include the dynamics of the
evaporative cooling in [10]. While this predicted faster growth in some circumstances as
compared to the simpler model, it did not occur in the parameter regime of the MIT experiment
and thus the discrepancy remained. In addition, the necessary experimental data for a proper
theoretical treatment was not available. It was concluded that for a rigorous comparison with
theory it was necessary for further experiments to be carried out with all relevant data recorded.
The same conclusion was reached in a similar calculation by Bijlsma et al [11].

Recently a carefully controlled study of condensate formation in a rubidium vapour was
carried out by Köhl et al [12] in Munich. They used a different cooling scheme from that
used in the MIT experiment—instead of a rapid rf sweep after cooling to near the transition
temperature, they turned on a constant frequency rf field. This allowed them to vary the rate of
evaporative cooling by changing the rf frequency between experiments, and they report their
growth curves, initiation times and growth rates in [12]. Most importantly, the Munich group
measured all the relevant theoretical parameters, so that calculations with no free parameters
can be carried out.

This paper is organized as follows. In section 2 we summarize the theoretical model
of [10], before describing the extensions necessary to model the experiments of Köhl et al [12]
and discussing the validity of the approximations made. In section 3 we investigate the effect of
the model extensions on condensate growth as compared to the earlier calculations in [10], and
then compare the results of the model to the experimental data and discuss their implications.
Finally, our conclusions are presented in section 4.

2. Theoretical model

The model we use to simulate the experiments of Köhl et al is described fully in [10]. The
description is based on quantum kinetic theory [5], but essentially reduces to solving a modified
ergodic quantum Boltzmann equation (MQBE) that assumes the distribution function depends
only on energy. Our method makes the additional assumptions that:

(i) The condensate wavefunction and energy eigenvalue (the condensate chemical potential
µC(n0)) are given by the solution of the time-independent Gross–Pitaevskii equation with
n0 atoms. We assume that the growth of the condensate is adiabatic and that its shape is
always well described by the Thomas–Fermi wavefunction.



Growth of a Bose–Einstein condensate: comparison of theory and experiment 735

(ii) The excited states above the condensate are the quasiparticle levels appropriate to the con-
densate wavefunction, leading to a density of states for the system that is substantially mod-
ified from the non-interacting case. We use a particle-like density of states, thus neglecting
any specifically quasiparticle behaviour, whose effects are expected to be minor [13].

To model the MIT experiments, the simulations were begun with an initial distribution
truncated at an energy εcut and so the process of atom loss during evaporative cooling did not
need to be included. However, as the Munich experiment involves continuous evaporative
cooling, it must be included in the simulation. To do so we solve the effective MQBE:

gn
∂fn

∂t
= 8ma2

πh̄3

∑
pqm

gminδ(εp + εq − εm − εn)

×{βnfpfq(1 + fm)(1 + fn)− fmfn(1 + fq)(1 + fq)} (1)

where a is the s-wave scattering length, m is the atomic mass, fn ≡ f (εn) is the distribution
function, gn ≡ g(εn) is the density of states and gmin is the density of states of the minimum
energy particle participating in the collision. The quantity βn takes account of the evaporative
cooling—it is one if the energy εn � εcut, and zero otherwise.

There is, however, another effect that must be taken into account at low temperatures. The
trapping potential that the atoms experience is due not only to the applied magnetic field, but
also to the gravitational potential. While gravity does not change the shape of the trapping
potential, it shifts the minimum of the trap away from the minimum of the magnetic field. This
has important consequences for the evaporative cooling of the cloud. Before we describe this
further, however, we summarize the initial parameters of the experiment we are modelling so
we can quantitatively discuss the magnitude of the effect.

2.1. Experimental summary

The magnetic trap used by Köhl et al is well approximated by a cigar-shaped harmonic potential
with trapping frequencies ωx = ωz = 2π × 110 Hz, ωy = 14 Hz, with a geometric mean
frequency of ω̄ = (ωxωyωz)

1/3 = 2π × 55.3 Hz. They begin their growth experiments with
a cloud of Ni = 4.2 ± 0.2 × 106 atoms of 87Rb trapped in the |F = 1,mF = −1〉 hyperfine
ground state, cooled to a temperature of 640 ± 30 nK, giving an initial chemical potential of
µinit ≈ −300h̄ω̄. The rf fields they applied to their cloud for which a condensate was observed
to form were between 2000–2090 kHz, corresponding to 0.92 � η ≡ εcut/kBTi � 4.62.

2.2. Gravitational sag of the trapped atomic cloud

By including the effect of gravity, we find that the trapping potential the atoms experience is
given by

V (r) = m

2

[
ω2
xx

2 + ω2
yy

2 + ω2
z (z + A)2

]
(2)

where the origin is defined as the minimum of the magnetic field and A = g/ω2
z = 20.5 µm

is the sag of the atom cloud below the origin. This situation is illustrated in figure 1.
The sag of the atomic cloud has important consequences for evaporative cooling at low

temperatures. In figure 1 the full dot represents the centre of the atomic cloud, while the
broken curves represent magnetic field equipotentials. The innermost corresponds to an rf
field frequency of 1955 kHz, which was determined to be the minimum of the trap by atom
laser output coupling [12]. The outermost broken curve represents an rf field frequency of
2090 kHz applied to the system, and all atoms that cross this surface will be quickly ejected
from the trap.
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Figure 1. An indication of the sag of the trapping potential as compared to the magnetic field
equipotentials. The broken curves indicate the magnetic equipotentials corresponding to an rf field
frequency of 1955 kHz (inner) and 2090 kHz (outer). The full dot indicates the centre of the atomic
cloud. The full curves represent the spatial bounds of atoms with an energy of 4.62kBTi (inner)
and 8kBTi (outer). The cross marks the innermost intersection of the rf field with atomic cloud
equipotentials, determining the quantity η = 4.62. However, as can be seen there can be atoms
with energy 8kBTi in orbits that will not be ejected from the trap via spin flips.

By considering the intersection of the equipotentials of the atomic cloud with the
evaporative cooling surface, we find that all atoms with an energy less than εcut = 4.62kBTi
will remain trapped. However, not all atoms with higher energy will be ejected—as can be
seen by considering the equipotential corresponding to ε = 8kBTi . Atoms with this energy in
a horizontal orbit will not cross the evaporative cooling surface, and hence will remain trapped
at least until they suffer another collision.

2.2.1. Inclusion of sag in model. One of the limitations of our theoretical model is that the
distribution function of the gas is assumed to be ergodic—that is, all states of the gas with the
same energy are assumed to have the same occupation. This obviously cannot hold rigorously
in this situation, where the orientation of the orbit of atoms with the same energy will determine
whether or not they are ejected. However, the effect of the sag of the cloud can be included in
the model, if not entirely rigorously.

We proceed to calculate the fraction of atoms of a given energy that will remain trapped
during the application of a fixed frequency rf field, and use this as our function β(εn) in
equation (1). As the hottest atoms are ejected from the trap it is reasonable to assume that
they can be treated as being non-interacting. Indeed, we found in [10] that the density of
states we use is not greatly altered from the non-interacting case for energies larger than about
three times the condensate eigenvalue, which in these calculations never exceeds 45h̄ω̄. In
comparison the minimum energy for ejection is about kBTi ≈ 240h̄ω̄ so this approximation
does seem reasonable.

While it is possible to write down an integral describing the total number of states of a
given energy in phase space that will remain trapped, it is not possible to give an analytic
expression for this quantity. Instead we proceed by using a Monte Carlo simulation of non-
interacting particles in the trap. For each energy we populate the initial states at random and
then follow the trajectories in time, removing each that crosses the evaporative cooling surface.
After a sufficiently long period we determine the proportion that remain trapped.

The curves we have calculated are illustrated in figure 2 for the different values of the
applied rf field frequency. For comparison we also plot the initial distribution function of the
cloud. We can see that, for all applied fields, the region where a finite fraction of atoms is trapped
is quite wide, and therefore this effect is important for the experiment we are considering here.
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Figure 2. Curves showing the fraction of trapped atoms for a given energy with the application of
rf fields: from left to right ν = 2000, 2015, 2030, 2045, 2060, 2070, 2080, 2090 kHz. The thick
curve is a plot of the initial distribution function of the gas g(ε)f (ε) at Ti = 640 nK.

2.2.2. Validity of the model of the sag. The inclusion of the function β(εn) in equation (1)
relies on two approximations. The first is that an atom gaining an energy higher than εcut is
equally likely to enter any region of phase space available to it. This should be reasonable, as
most collisions that result in one particle entering this region will occur between two atoms
with energies less than εcut, where the distribution function should be ergodic. The second
assumption is that non-ergodicity of the levels above εcut will not have a significant effect on the
calculation. This remains unproven: however, it could be tested via Monte Carlo simulations
of evaporative cooling well above the BEC transition.

2.3. Other effects

A further measurement reported by Köhl et al is a drift in the magnetic field due to heating in
the coils in the experiment, equivalent to a linear decrease in the rf field frequency of 5 kHz s−1.
This is easily included in our model by making the function β(εn) time dependent.

Another factor that we include in our simulations is the loss of condensate atoms due to
three-body processes, via the rate

dn0

dt
= −K3

∫
d3x [n(x)]3 (3)

where n(x) is the condensate density and K3 is the three-body loss coefficient. Using the
Thomas–Fermi profile for the condensate density we find [14]

dn0

dt
= −K3

154/5

168π2

(
mω̄

h̄
√
a

)12/5

n
9/5
0 (4)

where loss processes involving thermal cloud atoms have been neglected. This should be a
reasonable approximation, as although such losses are enhanced by a factor of 3!, the density
of the thermal cloud is significantly less than that of the condensate. We use a value of
K3 = 5.8×10−30 cm6 s−1 for the hyperfine state |F = 1,mF = −1〉 as reported by JILA [15].
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Figure 3. Growth curves from an initial condition of Ni = 4.2 × 106, Ti = 640 nK,
µinit = −300h̄ω̄, with an applied rf field of 2015 kHz. The chain curve indicates the predicted
condensate formation if all atoms above an energy of εcut/(kBTi) = 1.43 are removed from the
trap. The broken curve takes into account the trap sag, and the proportion of atoms lost at each
energy is displayed in figure 2. The dotted curve also includes the effect of the drift of the magnetic
field, and finally the full curve additionally includes three-body loss from the condensate.

3. Results

In this section we begin our simulations with the initial conditions as reported by Köhl et al
and summarized in section 2.1, and use a scattering length for 87Rb of a = 110 a0. Note that
this value is subject to an uncertainty of a few percent and this could have an effect on the
results, mainly through a scaling of the time axis.

3.1. Consequences of the trap sag and magnetic field drift

The offset of the atomic trap from the mininum of the magnetic field has a significant
quantitative effect on the resulting growth curves, and this is illustrated in figure 3 for the
initial condition Ni = 4.2 × 106, Ti = 640 nK and an applied rf field of 2015 kHz. This gives
a minimum energy of atoms to be lost from the trap of εcut/(kBTi) = 1.43 at t = 0 s.

If all atoms above the energy εcut are continuously removed from the trap (chain curve)
(as if both the trap and magnetic field equipotentials were concentric), then the resulting
condensate is much smaller than is predicted if we include the effects of the trap sag (broken
curve). This is because such a heavy cut into the cloud removes a large proportion of the
initial number of atoms; however, the final condensate fractions for both curves are similar.
The further inclusion of the magnetic field drift (dotted curve) only has the effect of making
the final condensate slightly larger—easily understood as this evaporatively cools the cloud
further. Finally, including three-body loss from the condensate makes the growth curve start
to level off once n0 ≈ 3 × 105. The same qualitative behaviour is observed for all values of
the rf field.

If a similar experiment to those carried out by Miesner et al [6] at MIT was performed
with this initial condition—all atoms above εcut/(kBTi) = 1.43 are removed but with the rf
field turned off at t = 0 s—then no condensate is observed to form. This is because the initial
cloud is sufficiently far from the transition point that this single truncation cools the cloud from
µinit = −300h̄ω̄ to µinit ≈ 0, just before condensation occurs.
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Figure 4. Growth curves from an initial condition of Ni = 4.2 × 106, Ti = 640 nK,
µinit = −300h̄ω̄, for rf fields of (a) 2000, (b) 2015, (c) 2030, (d) 2045, (e) 2060, (f) 2070,
(g) 2080, (h) 2090 kHz.

3.2. Trends in the theoretical data

We now present the theoretical predictions for all experimental rf frequencies in figure 4,
including the effects of all of: trap sag, magnetic field drift and three-body loss from
the condensate. We show these on the same figure for comparison of timescales—in the
comparison with experimental data below we show only single curves on each graph.

These curves show the expected behaviour—the fastest evaporative cooling generally re-
sults in a shorter initiation time and more rapid initial growth. However, because the fastest
evaporative cooling initially loses a large number of atoms without any collisions (the cloud is
simply truncated, rather than collisions causing atoms to be evaporated), this results in smaller
condensates. This is the behaviour that was observed in the MIT-style simulations performed
in [11].

3.3. Comparison with experimental data

In this section we compare the results of our simulations as described above with the
experimental data provided by the Munich group. In figures 5 and 6 we show the condensate
growth data for all experimental runs, along with four corresponding theoretical curves for each
run. The full curves are for the initial conditions reported by Köhl et al and the others are within
the statistical error with a chemical potential slightly closer to zero (i.e. lower temperatures
and larger number of atoms). Thus we do not present curves within the statistical error that
begin further from the transition than the central value. We do not include background loss in
the simulations, as the trap lifetime was more than 40 s [12].

Considering the fact that there are no free parameters in these calculations, the fits of the
theoretical curves to the experimental data are impressive. For the rf frequencies 2000–80 kHz
the initiation times for condensate growth are predicted extremely well, along with the initial
rates of condensate growth. It does seem for the slower growth curves with rf frequencies
2060–80 kHz that the condensate occupation curve levels off somewhat faster than the model
predicts. Unfortunately there is no experimental data at later times to determine whether the
condensate continues to grow.

The cause of the flattening of these growth curves for these rf frequencies is as yet
undetermined. It was originally suggested that there could be a small amount of heating
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Figure 5. Comparison of theory and experiment for the growth of a 87Rb BEC. The squares with
error bars indicate the experimental data, while each line is the theoretical prediction based on a
slightly different initial condition. Each graph is for a different rf frequency ν. Full:Ni = 4.2×106,
Ti = 640 nK, µinit = −300h̄ω̄. Broken: Ni = 4.4 × 106, Ti = 640 nK, µinit = −289h̄ω̄.
Dotted: Ni = 4.2 × 106, Ti = 610 nK, µinit = −254h̄ω̄. Chain: Ni = 4.4 × 106, Ti = 610 nK,
µinit = −244h̄ω̄. (a) ν = 2000 kHz. (b) ν = 2015 kHz. (c) ν = 2030 kHz. (d) ν = 2045 kHz.

present in the system that only becomes apparent in the longer experiments. However, careful
analysis of the experimental data [12] has ruled out this mechanism as an explanation for the
slowdown of condensate growth. A second possibility is that the three-body loss coefficient
K3 for this experimental set up may be different from that reported in [15]; however, this is
difficult to estimate.

The one instance where theory and experiment differ strongly is for the slowest cooling
experiment with an rf frequency of 2090 kHz, for which the comparison is plotted in figure 6(d).
The experimental data has the peculiar feature that there is an apparent sudden increase in the
growth rate just over 4 s after the beginning of the experiment. In [12] it is suggested that this
jump is due to strong phase fluctuations in the initial elongated condensate [16]. This feature,
also known as quasicondensation, was first suggested as a stage in the growth of a BEC by
Kagan et al [17]. Recently phase fluctuations have been observed experimentally in elongated
condensates [18].

This behaviour can be explained physically as follows. The initially strong phase
fluctuations can be thought of as the condensate having been seeded in several parts, and
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Figure 6. Comparison of theory and experiment for the growth of a 87Rb BEC. The squares with
error bars indicate the experimental data, while each curve is the theoretical prediction based on a
slightly different initial condition. Each graph is for a different rf frequency ν. Full: Ni = 4.2×106,
Ti = 640 nK, µinit = −300h̄ω̄. Broken: Ni = 4.4 × 106, Ti = 640 nK, µinit = −289h̄ω̄.
Dotted: Ni = 4.2 × 106, Ti = 610 nK, µinit = −254h̄ω̄. Chain: Ni = 4.4 × 106, Ti = 610 nK,
µinit = −244h̄ω̄. (a) ν = 2060 kHz. (b) ν = 2070 kHz. (c) ν = 2080 kHz. (d) ν = 2090 kHz.

thus bosonic stimulation occurs for each part separately. Therefore, the initial growth rate
will be slower than would otherwise be predicted theoretically. As the phase coherence length
grows, however, suddenly a true condensate will form from the parts and there will be a
corresponding jump in the growth rate.

The lack of agreement between theory and the experimental data for the rf frequency
of 2090 kHz suggests that an effect not included in our model is becoming important. The
experimentally observed initiation time is close to that predicted by the theory: however, the
initial growth rate is much reduced. Our model of condensate growth makes the assumption
that only a single condensate forms in the system, and this is represented by a single quantum
level. Therefore, the model currently cannot represent slower initial growth due to the presence
of any quasicondensate. However, once the ‘true’ condensate forms the observed growth rate
does appear to be similar to that predicted by the simulations, but at a later time.
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4. Conclusions

We have extended our model of condensate growth [10] to take into account the sag of the
atomic trapping potential due to gravity and the effect this has on evaporative cooling at low
temperature. We have described the effect this has on growth experiments, and carried out
a comparison with all available experimental data taken by the Munich group and presented
in [12]. We have found that, despite the many approximations made, the theoretical model is,
for the most part, in good agreement with the experimental data. It has been suggested for the
one case in which there is a discrepancy that this is due to the effects of quasicondensation—a
hypothesis that is not contradicted by our calculations.
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