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Abstract

We provide a derivation of a more accurate version of the stochastic Gross—
Pitaevskii equation, as introduced by Gardiner er al (2002 J. Phys. B:
At. Mol. Opt. Phys. 35 1555). This derivation does not rely on the concept
of local energy and momentum conservation and is based on a quasiclassical
Wigner function representation of a ‘high temperature’ master equation for
a Bose gas, which includes only modes below an energy cut-off Ex that are
sufficiently highly occupied (the condensate band). The modes above this cut-
off (the non-condensate band) are treated as being essentially thermalized. The
interaction between these two bands, known as growth and scattering processes,
provides noise and damping terms in the equation of motion for the condensate
band, which we call the stochastic Gross—Pitaevskii equation. This approach
is distinguished by the control of the approximations made in its derivation and
by the feasibility of its numerical implementation.

1. Introduction

Notwithstanding the large body of work done on the kinetics and dynamics of Bose—Einstein
condensates [2-9], there is still a need for a method of treating these aspects which is both
accurately related to fundamental theory and, at the same time, able to be implemented
practically and reliably. Problems for which this would be particularly useful are those
of condensate growth, nucleation of vortices and the treatment of heating by mechanical
disturbance.

In this paper we will develop the theoretical basis for a description based on a
stochastic differential equation for a quasiclassical field, which arises from a Wigner function
representation of the quantum field. Descriptions of this kind have been presented previously
by Stoof [10] and ourselves [1]. Related phase space methods have been presented, which
use the Wigner function either explicitly [11-14] or implicitly [15-20] with random initial
conditions to simulate quantum noise, and all have shown that a significant proportion of
experimental reality can be reproduced.
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The method used here can be seen as a unification of the ideas of quantum kinetic theory
as presented in [21-23] with those of the finite temperature Gross—Pitaevskii equation, as
developed by Davis and co-workers [15—17]. The main idea is that the higher energy modes of a
Bose gas are largely thermalized and can be eliminated to produce a quantum mechanical master
equation. This is also the central concept in Stoof’s work—we compare our methodology with
his in section 5.4.

We do the elimination in two stages:

(a) We first eliminate modes with a wavenumber k such that |k| > A, where 277/ A is of the
order of magnitude of the range of the interatomic potential. Under conditions normally
met in Bose—Einstein condensates, these modes have no occupation and the effect is to
remove from consideration the high momentum components which occur during an actual
collision. This leads to a ‘coarse-grained’ quantum field theory which contains no high
momentum components and which can quite accurately be described by a simple Fermi
delta function pseudopotential [24, 26, 27]. For this kind of elimination there is no need to
use the many-body 7 -matrix formulation, as there would be if A were much smaller, and
we were required to eliminate thermally occupied states: neither is it necessary to introduce
the Huang—Yang pseudopotential [28] involving the derivative of a delta function.

(b) We then separate the remaining momentum range into a low momentum component (the
condensate band), and a high momentum component (the non-condensate band). We
treat the condensate band fully quantum mechanically, while the non-condensate band is
treated as a bath of thermalized atoms which, in this paper and [22], is considered to be
unchanging or, in [23], is treated by a kind of quantum Boltzmann equation.

(c) The condensate band contains much more than simply the condensate. Typically it spans
an energy range of the order of magnitude of twice the chemical potential. In this paper, our
criterion will be that all modes in the condensate band should have sufficient occupation
(which we take to be more than ten atoms) for us to be able to make the approximations
necessary for a Wigner function stochastic differential equation to be valid.

(d) The resulting stochastic differential equation is very similar to Stoof’s in its general
appearance, but has extra noise terms and no reference to the many-body 7 -matrix or
self-energy functions. These effects are provided by solving the stochastic differential
equation itself. It also explicitly contains the projector into the condensate band,
which ensures that the solutions of the stochastic differential equation remain within
the condensate band.

The organization of this paper is as follows. We outline our description of the system in
section 2 and present the derivation of the corresponding master equation in section 3. We
then consider two simplifications of the master equation in section 4 which we call:

(a) the ‘quantum optical’ master equation, which corresponds to the methodology of our
earlier quantum kinetic theory papers [21-23];

(b) the ‘high temperature’ master equation, whose validity requires kg7 to be significantly
larger than the particle or quasiparticle energies described.

In section 5 a Fokker—Planck equation is derived from the latter form of the master equation and
this is equivalent to a set of stochastic differential equations that correspond to the stochastic
Gross—Pitaevskii equation of the title. These stochastic differential equations are very similar
to those proposed by Stoof [10] and ourselves [1] but differ in the kind of noise considered
and in the explicit implementation of the projection techniques of Davis ef al [15-17]. Finally
we conclude in section 6 with a discussion of the range of applicability of the methodology
developed and suggest systems that should be investigated within this framework.
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2. Description of the system

2.1. The cold-collision Hamiltonian

A system of Bose atoms interacting via an interatomic potential u#(x) is almost universally
simplified in order to separate the short distance dynamics of pairs of atoms as they proceed
through scattering events from what one normally considers to be the interesting collective
behaviour of the gas itself, which takes place on a relatively slow time scale and over larger
distance scales. There are a number of ways in which one can proceed to an appropriately
‘coarse-grained’ description, in which the details of the interaction are replaced by a single
parameter a, the scattering length for interatomic collisions. All methods, either implicitly or
explicitly, introduce a momentum scale A, above which all degrees of freedom are eliminated.
For the description in terms of the scattering length to be valid, there must be essentially no
occupation of the states eliminated and this requires

ksT < h2A%/2m. (1)

If A does not satisfy this criterion, a description in terms of the many-body T-matrix rather
than simply the scattering length is required, as is done in the approach of Stoof [10].

The criterion that motion of the particles inside the range of the interatomic potential be
eliminated leads to the requirement

A L 27 /ro, (2)

where ry is the effective range of the interatomic potential. These two conditions together
obviously lead to a condition on the temperature

ksT < h?/2mr]. (3)
Under the further condition that
alA L 1, 4

we can describe the dynamics of the modes with momenta below the cut-off ZA by a
field operator v/ (x), which contains modes only with momentum below the cut-off, and a
Hamiltonian

H = Hy, + H,, (5)

in which the single-particle Hamiltonian is

2
Hg = f dxyf(x) (—h—vz - V(x>)w(x>, (6)
2m
and the interaction Hamiltonian is
H = g / Ex v XY Y)Y (x). (7

Effectively, the elimination of the modes above the cut-off has made the replacement with the
interatomic potential u(x) — ud(x), with
u = 4nh*a/m, ®)

and, it must be emphasized, the resulting field theory has the cut-off A, so that the commutation
relations of the field operator are

[V x), ¥ (X)] = Palx —x). ©)
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Figure 1. Schematic view of the condensate band, the non-condensate band and eliminated states
for a harmonic trap.

The function P, plays the role of a kind of coarse-grained delta function; however, it is also a
projector into the subspace of non-eliminated modes. Using the commutation relation (9) the
Heisenberg equation of motion for the field operator takes the form
Iy (x n?
in I'gi ) _ /d3x/ Pa(x — x/){—z—vzw(x/) + V() + uwT(x/)w(x/)w(x/)}. (10)
m
In practical computations a momentum cut-off is selected by the spatial grid used, and on this
scale P, appears like a delta function.
When all of the conditions (1)—(4) are satisfied, this Hamiltonian is well defined and the
Born series is both convergent and accurate at first order.

2.2. Condensate and non-condensate bands

We now divide the states of the system into a condensate band Rc and a non-condensate
band Rync and perform a corresponding resolution of the field operator in the form

¥ (x) = ¢(X) + ¥ne(X). (11
We will describe R¢ fully quantum mechanically, while Ryc will be taken as being essentially
thermalized. The cutbetween Rc and Ryc is setin terms of the single-particle energy E g, which
is such that particles with higher energy than this can be considered to be fully thermalized
with very little effect on their energies from the condensate band.

We want to make clear at this stage that Ex < h*A?/2m and thus the division into
condensate and non-condensate bands is quite independent of the cut at the wavenumber
A treated in the previous section. This is essentially the procedure followed in our work
on the finite temperature Gross—Pitaevskii equation (FTGPE) [15-17] with the use of the
contact potential approximation Uyé (x) in the spatial representation of the equations of motion.
However, in [15] the FTGPE in basis notation is written in terms of the full interatomic potential
and section 5.2 of [15] illustrates how certain terms can upgraded to a 7-matrix description
that is well approximated by a contact potential. The point of view adopted in this paper is
consistent with our use of the delta function potential in quantum kinetic theory [21-23].
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For the purposes of this paper we have to take into account two criteria:

(a) The highest energy states of the condensate band should have an occupation of the order
of magnitude 5-10, so that we can apply Wigner function methods to all modes of the
condensate band. In practice this means that

ksT
Er—n
since this corresponds to the high occupation limit of the Bose—Einstein distribution.

(b) The single-particle energy levels of the non-condensate band should be essentially those
of the trapping potential V (x), which is usually a harmonic potential. In [22] we showed
that this is true to about 3%, provided that

<5, (12)

Er/uc = 3. (13)
The two criteria together lead to the requirement (assuming the maximum value of uc ~ )
that

kgT/pn =10, (14)

and this condition is usually satisfied in practice.

2.2.1. Definition of condensate band field operators. To effect the division between the
two bands in the many-particle Hamiltonian we first note that the effective potential in the
non-condensate band is considered to be little different from the trap potential. Thus we
can expand 1 (x) in trap eigenfunctions and define ¥nc(x) to be that component which is
expressible entirely in terms of eigenfunctions with energy eigenvalues larger than Eg. This
means that ¢ (x) is automatically defined through (11) and that it can be expressed in terms of
trap eigenfunctions with energy eigenvalues less than E.

The division can be expressed in terms of projectors, whose form will be important in
numerical implementations, as

Pre(x,X) = ) Vi)Y, X), (15)

Pe(x,x) = ‘lgniE;ch(X, X). (16)
Here the ¥, (x) are a complete set of trap eigenfunctions. Thus

e = / X Prc(x, X)P(X) = Paclt ), (17)

b0 = [ @ Pex X)) = Pelv ). (18)

2.2.2. Separation of condensate and non-condensate parts of the full Hamiltonian. The
Hamiltonian is written in a form which separates it into three components; namely, those
which act within Rnc only, those which act within Rc only and those which cause transfers of
energy and/or population between Rc and Rxc. Thus we write

H:HNc+H0+H],C, (19)

in which Hyc is the part of H which depends only on ¥/nc, H is the part which depends only
on ¢ and that part of the interaction Hamiltonian which involves both condensate band and
non-condensate band operators is called H;c. Substituting ¥ (x) — ¢(X) + ¥nc(X) in the
Hamiltonian, we get

Hyc=H{}+H+ H, (20)
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where the individual terms in H; ¢ are the terms involving operators from both bands, which
cause transfer of energy and/or particles between Rc and Rnc. We call the parts involving one
¢ operator

HY = f EX (P OV RN NPX) + f X6 () (P YN X Une (X)),

21
The parts involving two ¢ operators are called -
H? =2u / Ex Yl ) Pne®) (9T () (x)) + g / Ex Yl ()Y () (P () (x))
+3 / ExYne () Pne ) (@ ()¢ (x)). (22)
The parts involving three ¢ operators are called
Hid=u / Ex (@' X" (X)p (X)) ¥nc(X) +u / EX Y@ P X)P (X)) (23)

2.2.3. Connection to the notation of Davis et al. Here we briefly make a link between
the notation of this paper, which corresponds largely to that of the quantum kinetic theory
papers [21-23], and that of the FTGPE papers [15-17].

(i) The condensate band R¢ of quantum kinetic theory roughly corresponds to the coherent
region C of the FTGPE papers, although there is the additional requirement in the latter
that the mode occupations must be large. However, this is also a necessary condition for
the condensate band in this paper.

(i) The non-condensate band Rnc was called the incoherent region / in the FTGPE papers.
(iii) For the field operators we have the correspondences

M) <V, Yne® < ). 24)
(iv) The notations for the projectors are connected by
Pex.x) <P, Pacxx) < Q. (25)

3. Derivation of the master equation

The description assumes that Ryc is at least locally thermalized and thus the atoms in these
levels are treated simply as a heat bath and source of atoms for the levels in Rc. This is defined
by requiring the field operator correlation functions to have a thermal form locally and to have
factorization properties like those which pertain in equilibrium. The precise nature of these
local equilibrium requirements is specified in section 3.2.3.

3.1. Formal derivation of the master equation

The derivation of the master equation follows a rather standard methodology, formulated in [29]
and as previously introduced in [21-23]. We project out the dependence on the non-condensate
band by defining the condensate density operator as

pc = Trne(p), (26)

and a projector P on the space of density operators by

Pp = pnc ® Trne(p) = pne ® oc, (27)
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and we also use the notation
Q=1-7P. (28)

The equation of motion for the full density operator p is the von Neumann equation:

;
P=—5[HNc+H0+HI,P], (29)
= (,CNc+,C0+,C1),O. (30)
We use the Laplace transform notation for any function f(¢)
oo
o= [ e 31)
0

We then use standard methods to write the master equation for the Laplace transform of
v(t) = Pp(t) as

sT(s) — v(0) = Lob(s) + PLID(s) + PL[s — Lnc — Lo — QL1 QLD(s). (32)

In this form the master equation is basically exact. We shall make the approximation that the
kernel of the second part, the [ ]! term, can be approximated by keeping only the terms which
describe the basic Hamiltonians within Rc or Ryc, namely the terms Lyc and £y. We then
invert the Laplace transform and make a Markov approximation to get

V() = (Lo+PLHV() + {PE; / dzexp{(Lo + ﬁl)t}Q,Cl}v(t). (33)
0

There are now a number of different terms to consider.

3.2. Terms in the master equation

3.2.1. Hamiltonian and forward scattering terms. These arise from the term (Lo +PL)v(¢)
and lead to a Hamiltonian term of the form

HC = HO + Hforwarch (34)

where the forward scattering term is defined by

Hiomans = 20 [ @xiine ()6’ (99) (35)
where the non-condensate band particle density is
fine (%) = Trne{ ¥ () ¥ne (®) pxc)- (36)

This represents the condensate band Hamiltonian corrected for the effect of the average non-
condensate density on the condensate. This correction is usually small but can be included
explicitly in our formulation of the master equation. The corresponding master equation term
is

i
Pc|Ham = _;I[HC’ pcl. 37)
3.2.2. Interaction between Rc and Ryc.  We now examine the terms in H ,(1), as defined in
(21), which contain one ¢ (x) or ¢’ (x); explicitly, the term in the Hamiltonian can be written
H" = /d3x Z3(x)¢"(x) + h.c. (38)

In this equation we have defined a notation

Z3(x) = uyrlc () Pnc () Pne (X). (39)
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Substituting into the master equation (33), terms arise of which a typical one is of the form

1 0
— / & / & / At Tr{Z5 (0 Z1 (%, D) pwc)d (0 (X, Dpe(n). (40)

Here we have introduced the notation for an arbitrary non-condensate band operator:

Anc(x, 1) = el Ane (x)e e, (41
and for an arbitrary condensate band operator:

Bc(x, 1) = efc!/h B (x)eHet /| (42)

This notation will be used frequently in the remainder of this section.

3.2.3.  Correlation functions of Rne.  The terms involving Z3, Z; are averaged over pnc,
which is assumed thermalized and is therefore quantum Gaussian. This means that:

(i) We may make the replacement
(Z3()Z](X, 7)) = 2(WNc®) Pl (K, ) (Yne R Pe (X, D) (Yrle O ¥ne (X, ). (43)

(Terms involving <‘ﬁ1§c (xX)¥ne (X)), etc, do arise in principle but give no contribution to
the final result because of energy conservation considerations.)

(ii) The time dependence is needed only for small 7, and in this case we can make appropriate
replacements in terms of the one-particle Wigner function F'(u, K):

f v _y o1 3 —iKev—io(K.u)7
<1//NC (u + 2>¢Nc <u 3 r>> ) /RNC d*K F(u, K)e i (44)
Voo (uY o1 3 IKevtio (K.u)t
<1/ch(u+ 2>¢NC<U 2,T>> ) /I;ch K[F(u,K)+1]e , 45)
where
X +X
u=—- (46)
v=x—X, 47)
2K2
ho(K, u) = +V(u). (48)

Since the range of all the K integrals is restricted to Rnc, it is implicit that in all integrals
ho(K,u) > Eg.

(iii) This approximation is valid in the situation where F (K, u) is a smooth function of its
arguments and can be regarded as a local equilibrium assumption for particles moving in
a potential which is comparatively slowly varying in space.

3.3. Growth terms

Using (43), (44) and (45) we can now write

2
(Z:(x)Z1(X, 1)) = 2:;)9///d3K1d3K2d3K3[1+F(u,K1)][1+F(u,K2)]F(u,K3)

2
X e—i(u)l+u)2—w3)t—i(K1+K2—K3)~V, (49)

where

ha)i = ha)(Ki, ll). (50)
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3.3.1. Master equation terms for growth. We can write

¢(x, 1) = exp(—iLc1)P(x), (1)
with

Lep(x) = —[Hc, ¢ (x)1/n. (52)

This means that (40) can be written as

/d3u/d3v¢T(u+ %){G()(u, v, Lc)¢(u _ %)}p, (53)

with
GO, v, 0) = W///CPK PPK, d°K; [1 + F(u, KDL + F(u, K2)]F (u, K3)
X /0 dr ei(w1+wz—w3—w)r—i(K1+K2—K3).v’ (54)
—
(2n)8h2 ///dgK1 d*K, *K;[1 + F(u, KDL + F(u, K»)]F (u, Ks)

X 8(w) + wy — w3 — w)e KKKy, (55)

(The approximation made in (55) is to say f drexp(—iQr1) = 715(Q) +iP/Q ~ 75(Q),
i.e. to neglect the principal value integral.)
We will also need

2
G, v, w) ~ _(Z;W///CPK‘ PK, PKsF(u, K F(u, Ko)[1 + F(u, K3)]

X 8(w) + wy — w3 — w)e KKy, (56)

If the non-condensate band is taken to be in thermal equilibrium:

1

Fu,K) = - , (57)
oKu)—
exp(*eF) — 1
there is the relation
GPu,v,w) = eI GOy v, w). (58)

This will still be true even if the equilibrium is merely local, with © and T depending on the
position u.
Collecting all relevant terms together, we get a master equation term in the form

Aclgrowth =/d3u/d3v“G(_)(u, v, Lc)¢<u— g)}PCa¢T<U+§):|

ool ool ofe)
/d3u/d3v |:{G(+)(u, v, LC)q)T(u— %)}pc,¢(u+ )i|

—/ /d3v _pc{G(+)(u,v, Lc)qb(u—g)}, (u+ )i| (59)

d*u

+
| <

d*u

N <
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3.4. Scattering terms

These come from terms involving two ¢ operators; of these terms, only those involving one ¢
and one ¢ can yield a resonant term, corresponding to scattering of a non-condensate particle
by the condensate. The effect of the non-resonant terms is neglected.

Thus we arrive at an approximation to H ,(2) in the form of a term

H? ~2 / d*x Z,(x)U (x) +h.c., (60)
where

Z5(x) = uPnc(X) Yy (X), (61)

UKx) =¢' (x)p(x). (62)

The term analogous to (40) in the master equation becomes, using the notation of (41) and (42),

0
—%/ dr Ux)U (X, r)/ d3x/d3x’ (Zy(x)ZL(X, T)) pe ). (63)

3.4.1. Master equation terms for scattering. These arise from the term

0
[ex [ax [ aruzamve. 126 00, 0. e (64)
—0o0
We define
2u? )

M@, v, 0) = —— / &’K; / I’Ky F(Kp, w1+ F(Kp, w]e'® ™ V50 — w; — w),

2m)on

(65)

and, if F (K, u) corresponds to thermal equilibrium, as in (57), this satisfies the relation

M@, v,0) =e BT M, v, —w). (66)

The terms in the master equation arising from this part become

pelen = [ ¢ [ &y [U(u + g) {M(u, v, LC)U(U - g) }pci|
v v
+ /d3u/d3v |:pC{M(u, v, —LC)U<u — 5)} U(u+ §)i| (67)

3.5. Terms involving three ¢ operators

This part of the interaction Hamiltonian can be written as
3 _ 3 T i
H™ =u / d"x Yne ()9’ (x)¢" ()¢ (x) +h.c. (68)
The master equation term this time takes the form
uz 0 ! ! / / /
— / dr / d’x / d'x ¢’ (., DY, P (K, D) (0T () (%) (Yne ()Yl (X)) o (1)
—00

(69)

These terms are probably very small and will not be included in our analysis.
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3.6. Connection with the FTGPE of Davis et al

The master equation terms described above are related to the terms in the FTGPE, (29a—d)
of [15]. We have

Growth terms «— UnP{({7T ()7Ax)7(x))).
Scattering terms <—> Uo75{21//(X)(ﬁT(X)ﬁ(X)>}a
Terms with three ¢ operators <—> UyP{2|¥ (X)|>(7(x)) + W(X)2<ﬁT(X))}~

We point out that the FTGPE scattering term also includes the forward scattering part of the
Hamiltonian in (35) of this paper. The anomalous term of the FTGPE, analysed in section 5.2
of [15], is mainly responsible for the replacement of the true interatomic potential by the contact
potential in the equations of motion and hence the introduction of the momentum cut-off A.
In this paper, as noted in section 2.2, we have already performed this spatial coarse-graining
in the Hamiltonian with the cut-off A, and so any anomalous terms will be very small.

3.7. The full master equation and its stationary solution
The full master equation can now be written:
pc = pClHam + pClgrowth + pClscall’ (70)

where the individual terms are given by (37), (59) and (67). The stationary solution of each of
the terms in the master equation (70), and therefore of the master equation itself, is given by
the grand canonical form

M) (71)

s X €X
o oxexp(

This follows:

(i) From the equality of terms in (59) like

G ,v, L u—z = GP,v, L u—X 72
(1 ’ C)¢ 2 pS )Os (7 ’ C)¢ 2 ’ ( )

which can be derived using (58), (71) and the commutation relation

[Nc. o] = —¢, (73)

between the field operator and the condensate band number operator:

Nec = f d*x ¢ (x)p (x). (74)

(ii) From the equality of terms in (67) like

{M(u, v, LC)U<u — %) },05 = pS{M(u, v, —LC)U<u — %)} (75)

which can be derived using (66), (71) and the fact that [U (x), Nc] = 0.
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3.8. The projection into the condensate band

In exactly the same way as noted in section 2.1, the projection into the condensate band means
that the operator L¢ has a projected expression when it acts on the condensate band operator

¢ (x):

. h?

iLcp(x) = Pe { —5- VI (0 + V() +ug’ ()¢ ()¢ (x) } (76)
which arises directly from the fact that the field operator commutation relation is

[¢(x), p"(X)] = Pe(x, X). )

The projector Pc(x, x") will occur frequently in the remainder of this paper, as an expression
of the fact that the field operator ¢ (x) and any approximate representations of it must always
be expressible in terms of the wavefunctions which span the condensate band.

This projector will play a significant role in the practical implementation of the master
equations and is by no means merely a formal requirement. It has two principal effects:

(i) The nonlocality generates a spatial smoothing function, and because the cut-off is in terms
of energy rather than momentum, the smoothing is stronger where the potential V (x) is
larger.

(ii) At positions where V(x) > Ep, all wavefunctions in the projector are exponentially
small, so the projector is essentially zero. This means that the boundary conditions on any
simulational grid are simply that any representation of ¢ (X) is zero there.

Although the projector can be written down quite easily using (15), this expression is not
computationally simple—efficient numerical implementation is essential for the practicality
of any simulations.

4. Approximate forms of the master equation

It is not possible to contemplate a numerical solution of the master equation in the form given
in (70), but there are two ways in which simplifications can be made, which we will call the
‘quantum optical’ master equation and the ‘high temperature’ master equation.

4.1. The ‘quantum optical’ master equation for a Bose—Einstein condensate

The method chosen in [22] was to expand the field operators in eigenoperators of L¢. Thus,
one wrote

P =Y Xn(x), (78)

where the eigenoperator requirement is (see [22], equation (28))
LeXp(X) = € Xn(X). (79)
This method has two disadvantages:

(i) We cannot calculate the operators X, (x) exactly, although when the Bogoliubov
approximation is valid, they can be expressed in terms of Bogoliubov amplitudes, as
was done in [22].

(ii) The resulting master equation (equation (50a—f) of [22]) can only be derived by making
a rotating wave or random phase approximation, whose validity can be questioned.
However, this master equation is of the Lindblad form (see [29], section 5.2.2), and
this is a highly desirable, though not absolutely essential, property, since it guarantees that
solutions are density operators with non-negative eigenvalues.

Useful results have been derived using this form of the master equation.
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4.2. The ‘high temperature’ master equation for a Bose—FEinstein condensate

In this case the essential approximation relies on the fact that eigenfrequencies of L are small
compared to the temperature; precisely

hleml/ksT < 1. (80)

This is a condition which is very often met, to an accuracy of at least 10%, at temperatures
which one would normally find in a degenerate Bose gas with a significant non-condensate
fraction. In some sense, the nomenclature ‘high temperature’ is misleading, but in a strict
sense it is a fair description of the kind of limit contemplated in (80). The master equation that
can be derived is not of the Lindblad form, as indeed is also the case for the unapproximated
master equation (70). However, as shown in [30], this probably only means that there are
transient situations arising after unrealistic (although physically acceptable) initial conditions
which give rise to a non-positive definite density operator. Such transients usually evolve on
a time scale more rapid than that used to derive the master equation, so they have no physical
significance.

We now develop the approximations based on the condition (80). The functions
G® (u, v, w) and M (u, v, w) can then be evaluated approximately for iw < kg T, the limit in
which the stochastic Gross—Pitaevskii equation was originally derived [ 1]. Under this condition
we can use (66) to give

ho

Muv,w)=(1— —— |M(u,v,O0). 81

(u,v,0) ( 2kBT) (u,v,0) (81)

For G®(u, v, w) we can take GP(u,v,w) ~ GP(u,v,0) (using, for example, formula
(153) of [22]) and then write using (58)

w—ho

G, v,w) ~ (1
kgT

>G<+> (u, v, 0). (82)
These two expressions will be used to derive all that follows in this paper, but more accurate
expressions could be used, involving higher powers of iw/ kg T', which would extend the range
of the approximation, as noted by Stoof [10, 31, 32]. The highest value of €, available is of the
order of Eg — i &~ 2, so that this method would be available for smaller chemical potentials
and lower temperatures.

4.2.1. Growth terms. Both of G& are sharply peaked as functions of v, so we will also
approximate ¢ (u=£v/2) ~ ¢ (u) in the growth terms and get the approximate master equation
terms:

] growtn = (1 - ,CBLT) f Px G ®){[p(X)pc. 6T ()] — [ped’ (X), ()]}

h _
Y oT d*x G){[(Lep (X)) pc, ¢' ()] — [pc(Leg (x)), ¢ (x)1}

+ f d*x GX){[¢"(X)pc, ()] — [pcd (x), ¢ ()]} (83)
Here we have used the notation

G(x) = / d*vGP(x,v,0). (84)
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4.2.2.  Scattering terms. We cannot make the approximation ¢(u £ v/2) = ¢(u) in
the scattering terms, because f d3v M(x, v, 0) is ill defined, since it involves the product
3(w; — w2)8 (K| — K3). In this case we must keep the full dependence on v:

Aclsca = — / d*xdiv M(x, v, 0){[U(x +v/2), [U(x —v/2), pcl]

+ [Ux+v/2), [(LcU(X —V/2)), ,Oc]+]}- (85)

2kg T

4.2.3. Estimate of the amplitude. To understand the nature of the scattering term, one can
evaluate the Fourier transform

Y _ 3o a—ikey
M, k,0) = 20y /d ve M(x,v,0),
2 2
- QTI;SW/CPK' /d3K2 FKy, %[+ F (K, x)]8(K; — Kz — k)
x 8(w1 — wy). (86)
Since F (K, x) depends on
2902
ek(xX) = + VX)) =ho(K, x), (87)
2m

this can be written as
2

(27)3h?

We can choose the x axis in the K integration parallel to k and use the delta function to eliminate
K, — |k|/2. Using the notation K = (K, K_), so that

~ 3 2m 2
M(x,k,0) = /d‘KF(eK,x)[l + F(eK,x)]78(2K -k — k). (88)

n2(K2 + |k|?/4) .

ek (x) = ¢k, x) = .

V(x), (89)

we can write

- 2mu? N R o
Mk, 0) = m / d’K fT,[L(eK(kv x) {1+ fT,[L(eK(ks X))}, (90)
where
1
fr.(y) = ORI 1 91)

Using (89), we can change the integration variable to éf( (k, x), where the lower limit of the
integration is now

Emin(k, X) = max(Eg, V(x) +h%|k|*/8m)/ kg T. (92)

The integral can then be written as

. dmu?  2wmkgT [® d
MGk 0) = L FL [ D ©3)
Qm)n’lkl  n (Emn—p)/ ks T [€XP(Y) — 1]
. 2mu?  2mmkgT 1 94)
o)kl B2 exp((Emin(k,X) — p)/kgT) — 1’
8a2(kgT)?
a-(kgT) ©95)

"~ 212 (Epin(k, x) — ) |k|
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The principal dependence on k comes from the 1/|k| term, which is most significant for small
|k|. The operators U (x £ v/2) are restricted to the condensate band and thus will be significant
only for x such that Eg > V (x). Thus the major contribution comes from situations such that
Enin(k, X) = Eg, in which case the only k dependence comes from the 1/]k| term, and we
can write

- M
M, k, 0 —_— 96
(x ) —> K| (96)
where we define
8a’(kgT)?
a“(kgT) ©7)

= Q) (Er—p)

4.2.4. Approximate local form. The form (95) is nonlocal and this may be an important
feature. Nevertheless, we can try to write an approximate local equivalent in the form (which
is essentially of the form of the quantum Brownian motion master equation as described in
[29], section 3.6.1)

Acsca = — / d3xM(x>{[U(x>, [U(x), pcll + [U(x), [(LcU(x»,ch]}. (98)

2kgT

However, the correct choice of M (x) is not straightforward; a possible estimate can be made
by taking k = k; —Kk;, where 71k; are the momenta of two particles in the condensate band. We
then compute the average of (95) over the region Rc such that |k, »| < +/2m(Er — V(X)) /1,
on the assumption of a noninteracting excitation spectrum:

1 a3k, &’k
= : 2// a&’k; &k, (99)
av RC ki — k| Re

ki — kol
6hO(Eg — V(X))
2m(Eg — V(X))

The singularity when Ex = V(x) is harmless, since the occupation is also zero there. Thus
we can choose

(100)

167a2(ksT)? 1
WEg— ) ki —kal |,

M(x) = (101)

4.2.5. Comparison of local and full forms. There are obvious technical advantages in using
the local form (98) of the scattering term instead of the full form (85). The local form will
give the correct stationary distribution for any choice of M (x) and is, in at least this sense,
acceptable. The main difference is that the local form gives essentially the same scattering rate
at all momentum transfers, whereas the full form gives a significant drop off at high momentum
transfers, and this is known to be a significant feature of the kinetics when this is treated by
forms of the quantum Boltzmann equation, as noted for example in the papers of Svistunov,
Kagan and Shlyapnikov [33, 34]. The idea of ‘flux’ in energy space is used, based on the
locality in energy space of the collision integral.

5. Wigner function representation

5.1. Fokker—Planck equations

Fokker—Planck equations can be derived by using the transforms of [29], as described in [1].
None of the three principal terms (Hamiltonian, growth, scattering) can be put exactly in the
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form of a genuine probabilistic Fokker—Planck equation but, on the assumption that higher-
order derivatives become less significant, an approximate probabilistic Fokker—Planck, valid
for large occupations, can be derived.

The methodology used can be demonstrated for one part of pc|growth:

_ 1 _
/ d*x G(x) [[cb (x), pcl — kB—TW (x) —hLcp(x)}pc, ¢*(x>}. (102)

The transformation to a Fokker—Planck equation for the Wigner function W of the phase space
field function «(x) is achieved by the mappings:

sW

l _ 1
[oc, ' (x)] — S ) (103)
[¢(x), pc] — S’ (104)
ue(x)pc — pa(x)W, (105)
hLco(X)pc — Lea(x)W. (106)

In this equation there are some important points of notation and approximation

(a) The fact that the condensate band is spanned by the finite set of wavefunctions Y, (x)—see
(15)—means that we define the phase space amplitude by

a(x) =) Ya(®a, (107)

(where «, are independent mode amplitudes) and that we define a modified functional
differentiation operator

s 9
- = Y* . 1
S (x) Z . (108)

This would be a genuine functional differentiation operator if the full set of modes Y, (x)
were used instead of only the set within the condensate band. Notice that from these
definitions

Sa(x)

Sa(x’)

whereas the right-hand side is a delta function for a true functional differentiation operator.

(b) Including the effect of the mean field arising from the non-condensate as an effective

= Pe(x.x), (109)

potential

Verr(X) = V(X) + 2unnc(X), (110)
the projected Gross—Pitaevskii operator is introduced as

_ 2 V2a(x) )

Lea(x) = PC{_T + Verr (X)) (X) + ufoe(x)] a(x)}. (111)

The projector arises as a consequence of (103), (104), (109), etc.

(c) The two replacements (105) and (106) are approximate, not only in the sense that higher-
order derivatives are neglected, but also in the sense that all derivatives which should arise
from the left-hand side are neglected. This is not an essential aspect of the method, since
we can technically still handle the first-order derivative terms which would turn up on the
right-hand sides of (105) and (106) and these would produce only second-order derivatives
in the final Fokker—Planck equation. This would produce a fractional correction of the
order of i/ kg T to the noise terms only.
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The projected Gross—Pitaevskii operator can be written in terms of the Gross—Pitaevskii
Hamiltonian:

h2 \V/ 2
Hop = /d3x {M Ve (X)) + 5|a(x>|“}, (112)
2m 2
in the form
= 8 Hap
L X) = = . 113
caw = =2 (113)

We also define the Gross—Pitaevskii particle number:

Ngp = /d3x loe(x)]2. (114)

The term (102) then transforms into the term in the Fokker—Planck equation:

/d3xé(x)_5 {_SW _KM}. (115)
Sa(x) | da*(x) kT Sa*(x)

Using the same kind of approximations, the scattering term (98) can be transformed to a
corresponding form and we obtain, putting all the terms together, the Fokker—Planck equation:

AW ;8 {iW SHgp - [ sW w S(;LNGP—HGP)“
— = [ d’x = — = +G(x)| = - =
ot Sax) | I Sa*(x) Sa*(x) kgT Sa*(x)
5 [iW 8H, - 5 5 —H
_ /d3 ) {IW 8Hgp G x)|: 14 W 8(uNgp GP):|}

X Sa* (x) n Sa(x) Sa(x) a kB—T Sa(x)

+ /d3xd3x/M<X+X/ Xx—X O)[a*(x) b —a(x)L}
2 ’ Sar*(x) Sa(x)

:*/[SW WSHGP} /[SW WSng”
X da"(xX)| = —aX)| = .

Sar(x) | kaT 3a*(x)) Sa(x)  keT sa(x)
(116)

5.2. Stationary solutions of the Fokker—Planck equation

Independently of the forms of G(x) and M (x, X'), the stationary solution of the Fokker—Planck
(116) equation is given by

(117)

Ngp — H,
W, o exp(w).

ks T

This is the grand canonical distribution expected for a classical field theory whose field «(x, )
obeys the Gross—Pitaevskii equation.

5.3. Stochastic Gross—Pitaevskii equations

The Fokker—Planck equation (116) is equivalent to a set of stochastic differential equations,
which we shall write in the Stratonovich form, in a choice of forms in which various degrees
of simplification are made of the scattering terms, as follows. The notation (S) to the right of
an equation indicates that it is in Stratonovich form, as in [35].
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5.3.1. Full form of the stochastic differential equations. Using the full form of the scattering
term, we have

G(x)
kT

1 3 X+x ,
— d’x' M X —X,0 )a(x)
2kgT 2

x {a* (X', 1) (Lea(X, 1)) — a(x, t)(Lea (X', 1)*} df +ia(x) dWy (X, t)}.

{na(x, 1) — Lea(x, 1)} dt + dWg (x, 1)

S)da (x,1) = —%I:Ca(x, t)dr + Pc{

(118)

The noise dWg; (x, 1) is complex, while dWy, (x, 1) is real; they are independent of each other
and satisfy the relations
dWg (x, 1) dW (X, 1) =2G(x)8(x — X)) dt, (119)
dWe (x, 1) dWg (x', 1) =dW§ (x, 1) dW( (x', 1) =0, (120)

X+X

AWy (x, 1) dWy (X, 1) = ZM( X — X, 0) dr. (121)

5.3.2. Simplified nonlocal form. The implementation of the last two lines of (118) obviously
presents some technical issues. However, if we simplify (95) by setting Enin (k, X) — Ej (as
discussed there), the nonlocal form can be considerably simplified. The operator 1/+/—V?2, of
which 1/|k]| is the Fourier transform, is not singular when acting on functions with well behaved
Fourier transforms such as k — 0. Using this, the stochastic differential equation becomes

S)da (x,1) = —%I:Coz(x, t)dt +Pc{f ;) {na(x, t) — hLca(x, H}de+dWgs (x, 1)
B
Ma(x) 1 . - - 1 d
T kT ﬁ{“ (x, ) Lea(x, 1) — a(x, 1)(Leca(x, 1))} dt
+ia(x) dWy (x, t)}. (122)

The noise dWg; (X, t) is complex, while d W (X, t) is real; they are independent of each other
and satisfy the relations

dW¢ (x,1)dWg (X', 1) = 2G(x)8(x — x) dt, (123)
dWe (x, 1) dWe (X', 1) = dW( (x, 1) dWS (X', 1) =0, (124)
, 2M ,
dWy x, ) dWy (X', 1) = mé(x —x')dr. (125)
5.3.3. Local form of the stochastic differential equations. These take the form
i- G(x) -
S)da (x,1) = —ﬁLc(a(x, 1)) dt + Pc T {rna(x,t) —hLca(x, t)}dr + dWg (x, 1)
B
M@ax) - - )
- 7{“ (Xs z‘)IJCa(Xv t) - (X(X, f)(LCC((X, t)) }dt
2kgT

+ia(x) AWy (x, z)}. (126)
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The noise dWg (x, 1) is complex, while dWj; (x, 1) is real; they are independent of each other
and satisfy the relations

AW (x, 1) dWe (X, 1) = 2G(x)8(x — x') dt, (127)
dWe (x, 1) dWg (X, 1) = AW} (x, 1) AW (X', 1) = 0, (128)
dWy; (x, 1) dWy; (X', 1) = 2M (x)8(x — x) dr. (129)

5.4. Comparison with other methods

The stochastic differential equations we have derived have similarities with those we have
previously derived, as well as with Stoof’s. However, our way of implementing the idea of
eliminating higher energy thermalized modes has significant differences from Stoof’s:

(i) There are major technical differences in how the elimination is done. Ours is based on
the ideas of quantum optics, which are used to develop a quantum mechanical master
equation. The master equation is then transformed using the Wigner function to give a
Fokker—Planck equation, which is equivalent to a stochastic differential equation. Stoof
uses a functional integral formulation of the Keldysh method, in which the elimination is
achieved in the action integral. This method is almost certainly equivalent to our quantum
optical method. Thus, although the technical methods used appear very different, this is
not physically significant.

(i) However the choice of what to eliminate is different. Stoof eliminates modes with energy
< 1 and finds a Fokker—Planck equation (equivalent to a stochastic differential equation)
which involves self-energy functions, which he evaluates using the many-body 7 -matrix
method. In contrast we carry out the elimination as a two-stage process, as detailed in
sections 2 and 3. Thus we separate the elimination process which is required to give an
effective field theory from that required to give a master equation for the condensate band.
This has the advantage that we do not need to use a many-body 7'-matrix description.

(iii) The equations which arise are given above as (118), (122) and (126), depending on degrees
of approximation used. The principal differences are the appearance of the projector and
the inclusion of scattering terms. There is also the implicit difference that the field variable
we use is not exactly the same as Stoof’s, since it includes a wider range of states.

(iv) Our earlier work [1] included the scattering terms but was unable to give any precise value
to them because of the crudeness of the methods used, and also for reasons related to the
fact, which we have found in this paper, that the scattering cannot be described locally
without making very crude approximations, such as those which lead to the form (126).
The explicit appearance of the projector in the equations did not occur there or in Stoof’s
method. It is possible that, in numerical implementation, the projector will not always
be essential, but we are confident that there are situations in which its inclusion will be
important.

6. Conclusions and outlook

The problem we have set ourselves in this paper is to produce a description of finite temperature
condensed or nearly condensed Bose gases which is both accurate and implementable. Apart
from those used to derive the basic Markovian master equation (33), there are only two
significant approximations made in our derivation:

(i) The energy eigenvalues of the excitations are small compared to temperature, as noted in
section 4.2. This is needed to get a master equation of a reasonably simple kind, the ‘high
temperature master equation’.
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(i) The occupations of the modes being treated in the condensate band are significantly larger
than unity, as noted in section 5.1. This is essential for us to be able to use a Wigner
function representation of the master equation which becomes equivalent to a classical
field representation.

These two conditions are essentially the same, since the occupation of a mode of energy € is
largeif € « kT, even though the reasons for the conditions are quite independent. Therefore,
it is clear that, if one is using the ‘high temperature master equation’, then it is also sensible to
use the Wigner function classical field representation, since the two are accurate to the same
degree of approximation.

6.1. The validity of the classical field representation

Classical field representations have often been introduced heuristically by the argument that
the quantum field operator can be replaced by a classic field function, provided the occupations
of the modes are high. The Wigner function methodology which we use gives a systematic
way of implementing these heuristic ideas and gives a way of assessing the validity of the
formalism?. It is important to realize that, when formulated through the Wigner function, the
classical field method gives a truly quantum mechanical description of the system, subject
only to the technical approximations made. This means that we expect the major quantum
mechanical aspects to be correctly treated; in other words, the classical field method, correctly
and carefully formulated, has no heuristic approximations introduced to provide refuge from
quantum mechanics—it is a valid way of treating quantum mechanics in a certain degree of
approximation, which fortunately behaves very much like a classical description.

As a result, certain quantum properties make their presence felt when using this method.
The Wigner function exhibits ‘vacuum occupation’ of the modes—the mean square of the
classical field is non-zero even when there are no particles. This follows from the relationship
between the classical field averages and the quantum averages in the form

a'a+aa’
2

which says that the minimum occupation exhibited by the classical field is the ‘vacuum
occupation’, half a particle per mode—an expression of the Heisenberg uncertainty principle.
When summed over the infinite number of modes which constitute the full system, this gives
a divergent field function; thus, a cut-off must be introduced, such as the one we have chosen,
which defines the boundary of the condensate band.

There are two different ways in which the classical field method applied to the condensate
band can be valid.

> = /dz(x la*W(a, a®), (130)

(i) The temperature may be so low that there is little occupation at the top of the condensate
band, so that all of the noise terms derived in section 5 are zero. At low energies,
the excitations of a Bose condensate are largely phonon-like and amount to quantized
shape and density oscillations of the condensate itself. These are only noticeable if their
occupation is large; modes with low occupation, although badly described by the classical
field method, provide a completely negligible contribution to the system.

However, since there is no external noise, in this case the initial occupations of the
modes must be chosen so as to represent the existence of a finite temperature. Even

3 The alternative P- and Q-function descriptions are better called phase space representations, since the resulting
equations of motion possess non-negligible noise terms of a purely quantum nature, and thus the field cannot be said
to be a classical field.
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if the temperature is zero, these occupations must be chosen to give the correct ‘vacuum
occupation’ and this gives rise to irreversible effects, as first noted by Steel et al [11].

(ii) If the temperature is not very low, the total number of particle in modes with occupations
Z 1 canbe very significant and this is necessarily the case during the process of condensate
growth from a vapour. The influence of these modes has to be included, and this is what
has been done in this paper.

In principle the initial conditions should be chosen as in (i) to give the right ‘vacuum
occupation’, but their effect rapidly dies out because of the irreversible coupling to the reservoir
which generates the noise and damping terms.

6.2. The degenerate non-condensed Bose gas

It is known that, during the process of condensate growth, the occupations of a large number
of modes become significantly larger than one before the appearance of a single dominant
mode, the condensate. These modes are, of course, describable by our stochastic classical
field equations (118)—(129), since we have nowhere assumed the existence of a condensate,
and because their high occupation makes the classical field method valid. Kagan et al [34],
in their pioneering work on the initiation of Bose—Einstein condensation, also argued that a
description in terms of the Gross—Pitaevskii equation was possible for such a system. However,
because their philosophy was more qualitative, the technical details which we are compelled
to attend to do not appear in their work.

6.3. The projector into the condensate band

One of the essential features of the description is the presence of a projector in the equations
of motion for the classical field. This prevents non-condensate band modes being wrongly
included in numerical simulations. Such a projector has already been implemented in [15-17],
but only for a homogeneous system. While the projector for a system with a trap potential can
be written down explicitly, as in (15) and (16), it is not an easy task to implement this projector
efficiently.

The projector deals correctly with two problems which arise in practical simulations:

(i) The fineness of the mesh. The distance between mesh points determines the highest
momentum which can be represented in the simulation. However, one cannot choose this
to be the physical cut-off, even in the case of no trapping potential, since nonlinear terms
such as Pe{|a(x)|?a(x)} in (111) are wrongly represented this way. To represent this term
correctly without aliasing, the numerical wavenumber cut-off must extend to at least two
times the physical cut-off. If one assumes the physical cut-off is to be given by the mesh
fineness, incorrect results will be obtained unless there is no significant occupation above
one half of the mesh wavenumber cut-off.

In addition, when a trap potential is present, a cut at a minimum wavelength does not correspond
to a cut at definite energy. This would mean that even noninteracting atoms would pass from
the condensate band to the non-condensate band with the progression of time, presenting some
difficulties for the formalism.

(ii) The boundary condition at the edge of the spatial grid. Because the projector involves trap
eigenfunctions only up to energy E, in the case of a non-vanishing trap potential there is
a distance R such that for |x| > R projected functions become exponentially small. This
means that not only are the field functions «(x) of section 5 exponentially small there, but
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also the added noise terms as well. Therefore in practical simulations on a grid of finite
size, the issue of the boundary condition for the noise and the field function at the edge
of the grid is determined; the simulation region must be so large that all field and noise
functions can be set equal to zero at the boundary.

Where there is no trap potential, the box inside which the simulation is being implemented
has real physical significance and periodic boundary conditions are usually chosen.

6.4. Applications

(i) Condensate growth. The theory of condensate growth is at this stage not entirely
satisfactory—there is still disagreement between theory and experiment under certain
conditions [36, 37]. The main defect in computations of condensate growth [36—42] to
date is an inadequate treatment of the phonon-like quasiparticle excitations. Using the
formulation proposed here would definitely include these correctly.

(ii) Vortex lattice growth. The theoretical situation in the growth of vortex lattices is in a very
preliminary stage. The stabilization of the vortices into a lattice is clearly a result of some
kind of irreversible process, for which a phenomenological model was first proposed by
Tsubota er al [43], while we presented a physically based model [44] based on a rotating
frame version of our phenomenological growth equation [ 1] which attributed the necessary
irreversibility to interaction with a thermal cloud.

In contrast, Lobo et al [45] used a simple stochastic classical field model of the type mentioned
above, in which the noise arises from initial conditions with no interaction with a thermal cloud
to provide the requisite damping. However, the noise in their implementation of this model
is nonzero throughout the simulation region and this causes some difficulty in deciding the
appropriate boundary condition at the edge of the simulation region, since they choose the
high energy cut-off to be given by the fineness of the simulation mesh, with no projector as in
this paper. In effect, this means that the vacuum can transfer angular momentum to the system
and that indeed the vacuum is different, depending on whether the simulation is carried out in
a rotating frame or a non-rotating frame.

Our proposed methodology would avoid the boundary condition difficulties of the last
model, combining its ideas with those of our earlier model.

(iii) Heating of a condensate by mechanical disturbance. When a condensate is mechanically
disturbed, some heating occurs. This is clearly also a phenomenon which can be treated
by our methodology.

6.5. Technical aspects

The proposed stochastic differential equations (118)—(129) are not as simple as one would
like, but are nevertheless probably quite practical even in three dimensions. The noise and
damping arise due to the growth and scattering terms in the master equation. The former
describe the transfer of particles between the condensate and non-condensate bands, while the
latter represents the effect of non-condensate particles colliding with condensate band atoms,
with one particle remaining in each band. The growth terms in the stochastic Gross—Pitaevskii
equation are relatively easy to implement numerically, but there are definitely some challenges
for the scattering terms. The essential feature of the projector into the condensate band in the
equations is an additional challenge, relatively easy to conceive but formidable to implement.
However, the projector is not of merely cosmetic significance and this challenge must be faced.

6.6. Outlook

The practical implementation of our methodology will be the feature of forthcoming papers
which will include treatments of condensate growth, vortex lattices and heating.
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