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Noise-free scattering of the quantized electromagnetic field from a dispersive linear dielectric

Mark Hillery
Department of Physics, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10021

Peter D. Drummond
Department of Physics, The University of Queensland, Queensland 4072, Australia

(Received 17 July 2000; published 13 June 2001

We study the scattering of the quantized electromagnetic field from a linear, dispersive dielectric using the
scattering formalism for quantum fields. The medium is modeled as a collection of harmonic oscillators with
a number of distinct resonance frequencies. This model corresponds to the Sellmeir expansion, which is widely
used to describe experimental data for real dispersive media. The integral equation for the interpolating field in
terms of thein field is solved and the solution used to find et field. The relation between tha andout
creation and annihilation operators is found that allows one to calculat thatrix for this system. In this
model, we find that there are absorption bands, but the input-output relations are completely unitary. No
additional quantum-noise terms are required.
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I. INTRODUCTION Most of the work on quantized fields in media has con-
centrated on what happens inside the medium. However,
A fundamental problem in quantum optics is how thethere has been a steady stream of research that has consid-
properties of light change as it propagates through a mediunered fields entering and leaving a medium as well. This is
If the medium is nonlinear, new frequencies can be producedssential if one wants to describe real experiments, in which
and the quantum-noise properties of the field can be alterethe fields are generated outside the medium, then pass
This leads to such interesting phenomena as solitons, squedhrough it, and are finally measured in free space.
ing, and guantum-phase diffusion, all of which have been Perhaps the first to investigate this question were Lang
observed 1]. If the medium is linear, the situation is not as et al, who examined the connection between the field inside
dramatic, but linear media serve as a first step in the descrignd outside a laser cavity while studying why the laser line-
tion of their nonlinear brethren, and they present problems invidth is so narrow12,13. Their model consisted of a cavity
their own right, such as the inclusion of dispersion. It isbounded on one end by a perfectly reflecting wall and on the
generally thought that an accurate, first-principles treatmenther by a thin dielectric slab, and the cavity itself is filled
of dispersion necessitates the inclusion of absorption, andith an active medium. This cavity is embedded in a larger
consequently additional noise or reservoir operators. Here weavity that represents the universe. They showed how the
analyze a quantum field theoretic model that demonstratesodes of the universe are related to the cavity quasimodes,
dispersion-induced absorption, but without any additionawhich makes it possible to find the output field in terms of
noise operators appearing in the scattering relations. the cavity field. In their analysis the field was classical, but
Dielectric media can be described in a number of differentsoon thereafter the quantum version of their model was con-
ways. They can be characterized by their susceptibilities, atructed and used to investigate the relation between the field
procedure that, when fields are included, leads to the macrdrside and outside the cavity for a laser in the linear regime
scopic Maxwell equations. Consequently, we shall call thisoy Ujihara [14]. This approach was later used by Gea-
the macroscopic approach. It leads to difficulties when ondéanaclocheet al. to study the relationship between the
wants to include dispersion in a Lagrangian or Hamiltoniansqueezing generated inside a cavity to that outside the cavity
formulation, because dispersion is a consequence of the fagt5].
that the response of the medium is not instantaneous, but This last problem had first been considered by Yurke who
depends on the values of the field over a range of tifggs based his approach on an earlier paper by Denker and him-
For certain kinds of fields, in particular narrow-band onesself [16]. They developed a quantum theory of electronic
these problems can be overcome by using an approximateetworks in which the network itself is located»at0 and
Lagrangian that is local in timg3]. Another approach is to transmission lines extending from therexte + o0 bring in-
construct a microscopic model for the medium and to includeput signals to the network and carry output signals away.
the degrees of freedom of the medium in the the@iy8]. Fields propagating toward=0 are input fields and those
This, for obvious reasons, we shall call the microscopic appropagating away are output fields, and the object is to find
proach. It has the advantage that the inclusion of dispersiothe output fields in terms of the input ones for a given net-
is not a problem, but the disadvantage is that for each newvork. A related input-output theory was developed by Col-
medium, a new model must be constructed. There are aldett and Gardinef17] and was put on a firmer footing by
intermediate approaches that use frequency-dependent su@@armichae[18]. This theory considers a cavity containing a
ceptibilities, but also add quantum noise operators to thenedium, active or passive, linear or nonlinear, which is
equations of motion for the field®,11]. coupled to a reservoir. The reservoir operators serve as the
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input and output fields. The dynamics of the system insideBy employing a fundamental approach, we have the advan-

the cavity is described by a master equation, and its solutiotage that the meaning of all of the operators that we employ

is used to find the time-dependent reservoir operators ands well defined, which is not always the case in the more

thereby, the output field. phenomenological treatments. The results presented here can
More recenﬂy a number of groups have examined thebe viewed as a justification of earlier phenomenological

scattering of the quantized electromagnetic field from inholheories.

mogeneous linear dielectrics. Glauber and Lewenstein con-

sidered the case of a nondispersive, lossless dielectric which Il. MODEL

is described by a real position-dependent susceptilpili®y.

The scattering from dispersive media was studied bylKno

and Leonhardt who considered a medium consisting OE

damped harmonic oscillatof$]. Rather than use a formal

scattering approach they used time-dependent Green'’s fun . 2 . : ) S

tions to solve the field equations. This built on earlier work ravels n thex direction and is polarized in thedirection.

by Fleischhauer and Schubert, who considered the relation The field can b.e represented .by means of the dual poten-

between source correlation functions and field correlatioj'al' A(x.1), which is appropriate if thefe are no free charges.

functions after the field had propagated from the sourc n the case of @-polarized normally mmdent_plane wave,

through a linear passive systdao]. A different treatment of -*(X:1) IS they component of the dual potential. The fields

We shall consider a one-dimensional model of the elec-
romagnetic field and the medium that was developed in Ref.
8]. This model can be used to describe the normal incidence
f an electromagnetic wave on a medium, where the wave

dispersive media was given by Matlogd,al.[9]. They con-  &r€ given by

sidered an arbitrary complex, frequency-dependent dielectric IA IA

function and quantized the theory at the level of the equa- D=—, B=puo—. (2.2)
tions of motion rather than starting with a Lagrangian. Work- IX dt

ing in frequency space they found the fields emerging from a
dielectric slab in terms of those entering it. A similar analysis The medium consists of dipoles that are harmonic oscil-
was carried out by Gruner and WelddH)]. A final approach lators with massesn, and bare frequencie® ,, where v
is based on polaritons in finite medial—23. For an infinite  =1,... N. The unrenormalized oscillator frequencies can
dielectric interacting with the electromagnetic field the be chosen to correspond to transition frequencies of atoms or
eigenstates of the Hamiltonian are mixed matter-field modegiolecules making up an actual material. Each oscillator is
known as polaritons. If the medium is finite, the polaritonsdescribed by a field;,(x), which gives the displacement of
acquire a finite lifetime. By looking at the the electromag-the oscillator at positio and with frequency), . It is con-
netic parts of the polariton modes, scattering of the field fromvenient to represent the oscillators in terms of the polariza-
the medium can be described. tion fields
In this paper we shall apply the quantum scattering for-
malism for fields to describe an electromagnetic wave scat- P, (X)=q,p,(X)r ,(X), (2.2
tering from a finite medium, which behaves as a mirror or
beam splitter. The medium is treated microscopically, and itvherep,(x) is the density of oscillators with frequen€y,,
is dispersive. The final result is an explicit expression for theand the dipole corresponding to oscillators of typeonsists
out operators in terms of those of the input field. The calcu-of chargeqy, . We shall work in the multipolar gauge so that
lation starts from first principles, and, consequently, showshe coupling between the electromagnetic field and the me-
how some of the relations between in and out operatorglium is proportional toX,p,(x)D(x). The medium self-
which are often used in quantum optics, follow from an un-interaction terms proportional to the square of the total po-
derlying scattering theory. An important feature of the modellarization are incorporated into the frequencifs,.
used here is that it includes a dielectric medium with mul-  For a volume such as a waveguide of cross-sectional area
tiple bare resonances, leading to a number of discrete absorp; the Lagrangian density for the medium-field system is
tion bands. This is typical of real dielectric materials, andgiven by
leads to a dielectric constant that can be modeled with the
widely used Sellmeif10] expansion in frequency. A
As we noted in our discussion of previous results, there L= -—
. . . . 260
are three treatments of scattering from a dispersive, linear
dielectric. Two are to some extent phenomenological in that
they do not start from a Hamiltonian describing the field- +>
medium system[9,11]. The third approach treats time- v
dependent fields rather than finding the asymptotic in and out
fields that are the basic objects in a scattering treatifrégnt
We believe that this leaves room for a more fundamenta\INhere
approach that can place the theory on a firmer foundation.
The results we find from field-theoretic scattering theory are 2
= . : a,p,(X)
similar to those found in the approach pioneered by Yurke, g,(X)= ———=. (2.9
and have the virtue that they are simple and intuitively clear. m,€o

%'Az(x)—wa(x))2
Cc

1

300 LPEC) ~ QIP00T+2p, () A ()

|

2.3
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A. Refractive index

A B A 2 2 ~2
From the Lagrangian density we find the equations of /t(X)= 2¢0’ | 2o (X) +[HA(X)] +EV €09,(X) 3,(X)
motion for the fields )
X) = 2P,,(X) Ay A (X 2.1
HA=CPHA=—c?0,2 P, + G00P 072 AA ’ 19

(2.9  This can be put in a different form if we define annihilation

and creation operator%,y(x) and é“;(x), for the oscillators,
where

Iep,+Q2p,=7,0A.
For a medium of constant densftye., g,(x) is independent
of x], we can solve the above equations by assuming that
bothp, andA are proportional te'**~“Y, The values ofv 2 (x)= ( / /Eogy(X ~ )
are the frequencies of the modes of the system and are given g eog P ¥ Mo
by the solutions of Eq(2.5): (2.12

so that

(2.6

w2=(kc)2{1—2

v @ % g ’ '
[£,00,8,,(X)]=6,, 80—x)A. (213
Defining the index of refractiom(w), to bekc/w, we find

" We finally have for the Hamiltonian density

-3 g,

Qz—w

n(w)= 2.7

H(X)= Zieo: [ %ﬂz(x) +[ A (x)]?

This is very similar[8] to the classical Sellmeir expansion

for the refractive index. Note that this expansion is not iden- Z
tical to the Sellmeir expansion, but can be converted into the

commonly used Sellmeir form through a renormalization of

the bare resonant frequencies of the oscillators. The charac- P [h €09, (X )[§ 0+ 21010 (%) ]

teristic property of this type of equation is that it possesses 2Q),

solutions for the refractive index that are either purely real

(transmission band®r purely imaginaryabsorption bands (2.149

At the bare resonance frequency, the refractive index is zero.

Near a resonance, whete— (), the refractive index is real IIl. SCATTERING THEORY

for o> ,, and imaginary folw<<(},. At a finite detuning )

below a resonance, the refractive index goes to infinity just N order to determine what happens when an electromag-

below the start of the corresponding absorption band. netic wave scatters off the medium, we shall apply the stan-
dard formulation of scattering for quantum field4]. This

is done in the Heisenberg picture so that it is the field opera-

tors that are time dependent. Because we shall consider a
From the Lagrangian density we can find the canonicamedium that is bounded in thedirection, the interaction is

momenta corresponding tb andp,,, which we shall denote hounded in time. This can be seen either by considering the

2601, EN(X)E,(X)

B. Lagrangian quantization

by IT and,, respectively. These are given by incoming waves to be wave packets, so that the interaction
5.0 takes place only while the packet is inside the medium, or by

s _ X using plane waves and turning the interaction on and off

()= poA(X),  m,(X)=— 00, (X) " 28 adiabatically. In either approach, the fields will go to free

fields both ag— —«~ and ast—~. The free fields as—
The theory is quantized by imposing the commutation rela—« are the in fields, and those &s-« are the out fields.

tions The time-dependent field operators that carry the full time-
dependence of the Hamiltonian, including the interaction, are
[A(x1),II(X",)]=ihs(x—x")/A (2.9 also known as the interpolating fields, because they interpo-
late between the in and the out fields. Our goal is to use the

and interpolating fields to find an expression for the out fields in

terms of the in fields. This will give us a complete descrip-
[f),,(x,t),%,,,(x’,t)]zihﬁwfﬁ(x—x’)/A. (2.10  tion of the scattering process. We note here that a related
Heisenberg-picture approach to quantum scattering theory
The canonical momenta and the Lagrangian density can novelevant to quantum optics measurements was recently de-
be used to find the Hamiltonian density for the quantizedveloped by Daltoret al.[25]. They developed a similar basic
theory formalism, but did not consider specific examples.
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A. In and out fields

A — A _ A2 ’ 1 A (adv)
To find the relationship between the in and out fields, we AXD=Aoul(xt —c f dx J dr'a

need to express the equations of motion of the interpolating

fields as integral equations. From the Hamiltonian for our fi€09,(X")

model we find

ﬁfogv oS ~t
20 L& Bl

(F-c?T)A==c?0,>
v

(3.

i0 5 i ﬁfogv ~
(d+i V)§V—60—ﬁ Wvﬁx

In order to express these as integral equations we define the

Green’s functionsA"®9(x,t), A@%®)(xt), TY(x,t), and
r@®)(x t). They satisfy the equations

(97— 2R AT (x, 1) = 8(x) &(1),

(3 +1Q,)TU(x,1) = 8(x) 8(1),

(3.2)
(9F = 2R AP (x,1) = 8(x) &(1),
(0 +i1Q,)T e (x,t)= 8(x) 8(t),
and the boundary conditions
A (x,t) =T (x,t)=0 for t<O,
A@D)(x ty=T@W)(x t)=0 for t>0. (3.3

The retarded Green’s functions can be expressed as

gl (kx—ot)
ATe)(x t)= f dk dp————,
(2)? (ck)?—(w+ie)?
(3.9
e*iwt

e (x,t)= 52(7)” da,i(ﬂ

—ie—w)’

wheree— 0", and the advanced Green’s functions are given
by almost identical expressions, the only difference being
that e is replaced by- €. The integral equations correspond-

ing to the differential equations, Eq&.1), are
]\(x,t)=f\m(x,t)—c2f dx’f dt’ AT (x—x',t—t")dy

ﬁfogu(X') ~ , 2t
2—0,,[5"()( D+ &X' D],

X
| 35
%y<x,t>=%9”><x,t>+6;—ﬁ f dx f dt e

hegg, (X' -
X(x—x’,t—t’)\/%()ax//\(x’,t’).

The corresponding expression involving the outfields is

x(x—x',t—t’)aX,E 20
X[E,(X" D+ ENX D],
(3.6)

. , i
gy(x,t):gg°“t>(x,t)+—f dx’J dt'r@)
Eoﬁ

f x’ A
X (X=X t—t") \/%()ax,/\(x’,t’).

Note that the integral equations incorporate the boundary
conditions for the fields. The first set of equations implies
that A (x,t) and £,(x,t) will go to A;(x,t) and £IM(x,t),
respectively, as— —, and the second set implies that they
will go to A u(x,t) and £°U9(x,t), respectively, as—o.

What we shall do is solve the first set of equations for
A(x,t) and,(x,t) in terms of the in fields, and then insert
this solution into the second set to find the out fields in terms
of the in fields.

B. Fourier decomposition

We begin solving Eqs(3.5) by taking the time Fourier
transform of both sides. Defining

AX,w)= dt “tA(x,t),

=

£,(x w)=if dt ¢ (x,t) (3.7
ANAS] \/E I ANATR VR

and similarly for the in and out fields, we find that
AX,0)=A (X, 0)— i—cf dx’elelx=xliey
1 n ’ 2(1) X

heogv(xl) A

X2, [£,(x',0)+ &X', —w)],

20,
(3.9
and
£,(x,0)=E"(x,0)
1 [heog,(X) 1 .
T N 20, 0 e oA X@)
(3.9

In deriving these equations we made use of the fact that

: i
f dt elth(rEt)(X,t)Z melw|x|/0_ (3.10

013815-4
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We can derive an equation for only the field(x,ko) by A. Classical case

substituting from Eq(3.9) into Eq. (3.8). We find that In order to find the solution of the operator equation, Eq.
(3.12, we first find solutions to the corresponding c-number

. R ic _ , equation, which we shall denote a$x,w). We begin by
A(X,@)=Ajp(X, @) = Zi dx'elelxlieg,, dividing the line into three regions, region | farx —L, re-
gion Il for —L=<x=<L, and region Ill forx>L. In regions |
fieod,(X)| ~ o and lll, u(x,w) satisfies

X2, L()SS”)(X’@H&S””(X’,—M

[c?02+ w?]u(x,w)=0, 4.1
1 [heeg,(X") 2Q), s A (X @) and in region Il

eoh V20, 02— (w+ie? © |

[c202+ w?nd(w)]u(x,»)=0, (4.2

(3.11
where ng is the value ofn(x,w) in region Il. A solution

Our next step is to turn this into a differential equation, incident from the leftu,(x, ), which satisfies the equation
but before doing so we shall make a Simplifying assumptionand has the proper Continuity properties, is given by
The field %(Vi“)(x,t) is a free field that oscillates at the fre- . .
quency(),, and this implies that"™ (x, ) is nonzero only e+ R(w)e™ KX in region |
whenw={),. We are mainly interested in cases where they, (x,w)=1{ B{(w)e'*+B{)(w)e '** in region Il
incoming light is not resonant with the medium, so we shall ik(w)x
initially assume thatw+# (), for v=1, ... N. This implies
that we can dropéi™(x,0) and &™'(x,—w) from the
above equation and set=0. We return to the resonant case wherek(w)=w/c , and x(w)=ngk(w). It is to be remem-
later. bered that waves proportional & or €'** are propagating

Next, we then apply the differential operatfiv;+ w”to  to the right, and those proportional & '** or e”'** are
both sides. This annihilates the in-field term and converts th@ropagating to the left.

integral equation into a homogeneous differential equation. Suppressing the frequency arguments for clarity, the co-

T(w)e in region lll,

4.3

The resultis efficients in the above equation are given by
2 i _ing=Dsin2kl) . 2ng 0
I A (X0) | +0?A(X,0)=0. (3.12 R=— 5 e L T=Fle '
n“(x,
- (4.9
No(No+1) _. na(n .
Here,n(x, ), the space- and frequency-dependent index OfBSI)zwe*I(KJrk)L, B0= — oMo—1) (L

refraction of the medium, is given by

12 whereD=2nocos(2<L)—i(n§+ 1)sin(2L). Note thatRandT
n(x w):( 2 V( ) ) . (3.13 are, respectively, the reflection and transmission coefficients

for the medium, and thgR|?+|T|?=1. For a solution inci-
dent from the right we have

In this form, the equations have a rather classical appear- | (X, )
ance, and the matter operators no longer appear in the for- "’

mulation, which gives rise to a substantial simplification. T(w)e k@)X in region |
={ B (w)e“@*+B((w)e "X in region Il

IV. DIELECTRIC LAYER e~ K(@)X 4 R()elk(@)x in region Il1,

We now want to specialize our equations to the case of a (4.5

dielectric layer with a uniform density of oscillators. This

corresponds to the important case of a beam-splitter or mifywherek , «, R, and T are as before, whlleB“)—B(') and
ror, although we make no restrictions as to the size of theB(r)_B(l)
layer. The medium extends fror= —L to x=L. Inside the
medium,n(x,w) has a value ofy(w), and outside the me-

dium it has a value of 1. The solutions to E§.12 should

be continuous and~?(x,w) times their derivative should be Both u, andu, are solutions of the differential equation,
continuous. These correspond to a continuous magnetic arihs.(4.1) and(4.2), and this implies that they are also solu-
electric field, respectively. tions to the corresponding integral equation

B. Asymptotic fields

013815-5



MARK HILLERY AND PETER D. DRUMMOND PHYSICAL REVIEW A 64 013815

C. Quantum case

ic (L :
=A. - 1 aio|x—x"|/c , .
AX0)=Ain(X,) ZwJ,LdX € I In the quantum case we have the usual expansion of a free

field in terms of annihilation and creation operators. This

leads, in the present case, to
X[ 1= I A(X",w) |, (4.9
n (X,(,L)) ~ ﬁCEO PP .
. . . _ Am(x,t)zj dk s k[af(m)el(kx—\k\ct)
for particular choices of the field\;,(X,w). We can find mAlK|

Ain (X, w) for both solutions simply by substituting them into
Eq. (4.6). We must be careful, however, because the expres-
sion inside the square brackets is not continuous=at-L, L
and it is being differentiated, so that the discontinuities will Which implies that forw>0
lead to finite contributions after being integrated. One way to
find these contributions is to consider a refractive index that A (X, @)= / heo [A(m gloxicy 3 g-iexic)
is continuous, but that goes to the desired one as a limit. it 2CAk(w)" K@) ~k(w) '

For example, let us suppose theix,w) is 1 forx<—L (4.12
— 6 andx>L+ 4, is equal tony for —L<x=<L, goes con-
tinuously from 1 tony asx goes from—L—5to —L, and  The results of the previous paragraph allow us to see that if
goes continuously fronmy to 1 asx goes fromL to L+48.  A(x,®) is given by
We can then take the limi#— 0. Let us examine what hap-

pens in the interval betweenL— 6 and —L; the interval - heg ~ (in) ~ (in)
betweenlL andL + & is similar. As5—0 we have that A(X,0)= m[ak(wM(X,w)+a—k(w)ur(X,w)],

(4.13

_’_(éf(in))Te—i(kxﬂklct)]’ (4_11)

J_ dx’elex=xleg 11— —) A A(X ) N _ o
-L-5 n?(x, ) then it is a solution of Eq4.8) with A;, given by Eq.(4.12).
This gives us the interpolating field in terms of the in field.
1- 1 PN Our remaining task is to use the expression for the inter-
n2(x,w) x A(X', ) polating field to find the out field in terms of the in field. This
- IxA(X,0)| 4.7
X,®)|y=_1 +, .
n2( ) X X L

can be done by substituting the expressionfﬁ@x,w) given
0 w

) -L
_)e|w|X+L\/Cf dxr&x/
-L-6

in the previous paragraph into the equation that relates the
interpolating field to the out field

— eia)X+L/C( 1—

wherex=—L" denotes the limit ax— —L from the posi-
tive direction k=L~ is defined in an analogous fashjon
The other limit of the integral contributes zero, due to the

1 1 ic (L~ I a—iw|x—x"|/c
A(x,w)onut(x,w)+Z _L+dx e

refractive index term approaching unity. Explicitly putting in 1 2 R x o)+ ic Ciw|x+Llic
the terms resulting from the boundaries of the medium gives XL ng(w) T A(X, ) 20| €
A(X,0)=Ain(X,0) — EJL_ dx'elx—x'lle - .
: it 20) L+ X[ 1= 5—| dA (X, 0) | go s —e 1ok tle
no(w)
1 ic| .
X(l_ 5 )0)2(,A(X',w)—2— e|oz)|X+L|/C 1 A
No(w) @ X| 1= 55— oA (X, o) : (4.14

no(a)) x=-L"

L+ — eiw\fo\/c
X=—

x(l—%) A A (X, )
(o)

n2(w which follows from Eqs(3.6). The derivation is almost iden-

tical to that of Eq.(4.8), so we do not give it explicitly.
Making this substitution we find that, fas>0

- h .
Roulx,0)= \ gl T(@)e "

+R(w)e K@ aleu) + {R(w) e ()

(4.9

1
X ( 1- 2—)> I A (X, w)

x=—-L"

If we now substituteu,(x,w) into this equation instead of
A(X,w), we find that

. — alwx/c . R
Am(X,a)) € ’ (49) +T(w)e—lk(w)X}a(:)ltj(tzu)]. (415)

and if we substitutel, (X, ), we find ] )
The out field can also be expressed in terms of out cre-

Aip(x,w)=e"exc, (4.10  ation and annihilation operators,
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(in) — 7iQ,,t"(in) [P :
e t):J’ dk | hceg [é(out)ei(kxflklct) whereé, "’ (x)=e &, (x,0). This implies that
out 477A|k| “ Z(in Z(@in
EV(x,0)=2m5(0=0,)E"(x),
n (é(kout))‘re—i(kX—\k\Ct)]_ (4.19 (4.21)
Taking the Fourier transform of this equation with respect to EM(x,—w)= 278w+ Q,) EM(x).

time, for >0, gives o ] ] oo o
Application of the differential operatoe<d; + w* to Eq.

i _ feg £ (0UD k(@) 4 300 - ik(w)x (3.11), this time keeping the matter terms, gives
Out(X,w) ZCAk(w)[ak(w) e a,k(w)e )]

2
c . . .
(4.17) ax( T )aXA(x,w) + w2A (X, 0) = ,Fin(X, 0),
n?(x,
Comparing Egs(4.15 and(4.17) we see that fow>0 ¢ (4.22)
aQu)=T(w)a{()+R(w)ay,, (4.18  where we now include an inhomogeneous term defined as:
Alout) _ A N . hmegd, (X i
A%l =R(w)a[) + T()a"), - (4.19 B (xw)=c2D) 5—9()[ Sw—0,)EM(x)

These equations are the solution to the scattering problem. _
We note that the transmission and reflection coefficients sat- +8(w+Q,)EMT(x)]. 4.23
isfy the usual relation of T(w)|?+|R(w)|?=1. This holds . .
even in the band-gap regions, where transmission occurs via 1his equation can be solved by means of a Green'’s func-
an evanescent field. Thus, the scattering problem is explicitl{fion that satisfies
unitary, as we would expect. It is important to notice that

unitarity holds even inside the band gaps of the problem c? 2

o : . ; ’ - )|+ ")=8(x—x'
indicating that the absorption bands simply modify the re- | n2(x, ) AHGOOXT) [+ @TCOOXT) = 8(x=x"),
flection and transmission coefficients, without removing pho- (4.24

tons. Another way to think of this, is that even when a pho- . N
ton is removed through virtual excitation of an atomic together with the proper boundary conditions. For the bound-

resonance, the photon will eventually be reradiated in eithefry conditions, we shall choos&(x,x") to have only outgo-
the forward of backward directions. ing waves atx= *o. Any fields produced by these matter

terms are generated in a finite region and propagate outward,
so that these boundary conditions are the appropriate ones.

. _ The Green’s function can be found by standard techniques,
Let us now consider what happens wher = ,. This  and is given by

case was excluded from our earlier treatment, since it must

D. Resonances

involve some matter-operator contribution, which we have 1 , ,
neglected so far. Of course, as the resonances are discrete, mu/(x,w)ur(x w)  [x>X']
the frequencies involved are essentially a set of measure G(x,x’)=

zero, lying on the upper edge of each band gap. U (@)U X" @) [x<x'T.

In this case, terms proportional to eith&f™(x,w) or 2iwcT(w)

EIMT(x, — ) will be present in Eq.(3.11). This, in turn, 4.29
means that the solution for the interpolating field given in  The solution to Eq(4.22 with only outgoing waves at
Eq. (4.13 must be modified. In particular, a term propor- x=+  which we shall callA((x,w) is then

tional to the matter fields must be added. This is not surpris-
ing; it is usually accepted that in a dispersive medium there
must be absorption, and this in turn generally requires cou-
pling to a reservoir field. However, it would be rather sur-
prising to find quantum noise only occurring at discrete fre-  Sypstitution off\s(x,w) into Eq. (3.1)—the integral

quencies corresponding to the band edge. We have already, ,ation forA (x,w)—shows that it is, as expected, a solu-
established, in particular, that absorption in the band at fre:.

guencies different from the resonances simply changes thtéOn with Ajn(X, @) =0. A.complete splu:uon for Qe”e”ﬂ"
transmission and reflection coefficients, without adding any\in(X,@) can then be obtained by addingAq a solution of
noise source. We will now show that even with the matterthe homogeneous equation with the propgr, as discussed
terms included, our earlier conclusions still hold; there are nan the previous section.

]\S(x,w)=f_Lde’G(x,x')ax,l“:m(x',w). (4.26)

extra noise sources for the out fields. As has already been notefl;,(x, ) is only nonzero if
In order to see this, we first note that w==*Q,, for some indexv. At these values, which corre-
~(in) o i0.tin) spond to the upper boundary of each band edge, the index of
£ (x,)=e" " £V (x), (420 refraction vanishes inside the medium, and
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—L
— —2iwl/c ’ ’ ,”_ ’ ~ _
T(w) C—iwLe , J_L_(de U (X', w)dy Fin(X' o)~u,(—L,w)
(4.27 R R
oL X[Fin(=L—=68,w)—Fi,(—L,w)]. (4.32
R(a))= low e72iwL/C
c—iwlL ' Adding these contributions up, and noting thah{i, »)
=0 for —L=x=<L, thenu,(—L,w)=u,(L,w), we find that
For —L<x<L we have that
L+ R
' Iimj dxX'u,(x",w)dy Fin(X',w)=0. (4.33
U (X, 0)=U,(X,w)= e ietie, (4.28 §-07 ~L=o

C—iwlL
This implies that the matter operatats not contributgo

Therefore, forw= =, , it follows that the Green's func- ¢ interpolating field solution, even at the resonance fre-

tion is constant, and s(x,w) is proportional to quencies that we did not consider in detail previously. Thus,
. the previous relation between the in and out operators still
- r N E £ holds at the resonances whese= = (), . At first sight, this
dx' 9 Fin(X',w)=F(L,w)—F;,(—L,w). Cr e '
LL xFin(X @) =Fin(L, @) =Fin(-L,@) seems difficult to understand, since in general one would

(4.29 need to include noise operators to conserve commutation re-
lations, and hence unitarity. However, this is consistent be-
Here, however, we must be careful since the source functioause, as can be seen from E4.28, we have|T(w)|?
Fi.(X,w) is proportional toyg,(x), which is discontinuous +|R(w)|?=1, even whenw=+Q, for v=1,...N. In
atx==*L, so that the right-hand side of the above equatiorsummary, we reach the somewhat surprising conclusion that
is not well defined. no additional noise operators are needed in the asymptotic
In order to resolve this difficulty, we must use the sameproperties of the present model, even at resonance.

technique as before, and consider a continuously changing
refractive index over a small boundary region. That is, we V. PHOTODETECTION EXAMPLE

suppose that(x,w) is 1 for x<—L—4 andx>L+ 4, is ) o .
equa' to O for— Lgxgl_, goes CO”tinuous'y from 1 to O as Given the state of the in f|e|d, these equatlons allow us to

x goes from—L — 8 to — L, and goes continuously from 0 to calculate the properties of the out field, and hence calculate
1 asx goes fromL to L+ 8. A similar behavior is assumed ©Observable scattering properties. In order to see how this

for \/g,(x). We can then take the limi— 0. Let us examine works let us consider an example. We shall find the prob-
what happens in the interval betweerL — 5 and —L; the ability that a photo detector located atwherex>0 and is
interval betweerl. andL + & is similar. ’ far from the medium, will fire at timé. At the long times

For x>L + 8, the integral we wish to consider is then required for propagation to this location, the fields will as-
’ ymptotically become out fields. The photodetection probabil-

L+s N ity is therefore proportional to
f dx'u, (X", w)dy Fin(X', o)
S

o (in| DS, HBSxbiny=(in|[ A (x,0)]

= J:LL_(SdX’ur(X"a))ﬁxrl’iin(x"a))+U,(L,w)[|Ein(L,w) X[ﬁxf\f)tt)(x,t)]Iin},
(5.1

~ L+6 R
_Fin(_L'“’)]“Lﬁ_ dxUr (X", @) dy Fin(X', ). where|in) is the in state,

(43© ~ ﬁCEO ~ .
Af;[,t)(x,t)=Jdk 47TA|k|a(kout)el(kx—|k|ct)’ (5.2)

For x in other intervals, the situation is similar. Note that
U, (X", w) is now a solution of the homogeneous version of - A (4) . )
Eq. (4.24), including the modified index of refraction. From a@nd Ag i (X,t)=[Ag¢(x,1)]". Now let f(k) be a function

this equation it is relatively straightforward to show that, for that is zero ifk<<0. The Fourier transform df(k) is closely
8 small, related to the shape of the pulse that is being sent into the

medium. Define

L+6 .
J dx'u, (X", w)dy Fin(X",w)~u,(L,w)
L

anf1= [ dktoo@gy, 53
X[F(L+ —F .
[Fm(l— 5;“0) Fm(l—yw)], (4 3]) and let
and this becomes an equality &s-0. A similar relationship _ R -
holds for the integral from-L— & to —L: lin)=exp(@i,[ f]—aj,[f1)[0)in - (5.9
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This is a coherent state composed of wave packets with theee how they emerge from the underlying scattering theory.
intensity of the field and the shape of the wave packet deter- An important feature of the theory treated here is that it
mined byf (k). For this state the correlation function in Eq. has absorption bands, without any corresponding noise terms

(5.1 is given by in the field equation. This is due to the dielectric model used
R ) here, in which the dielectric constant is always either purely
(in|D{x,HDS (x,t)lin) real or purely imaginary. In this type of model, all photons

) absorbed are reemitted. Thus, absorption simply results in a
f dkf(k)T(ckyeitx—IKen| (55 strong reflection, with purely evanescent fields inside the di-
electric. In a related phenomenological treatmgdil one
) finds similar behavior: if the dielectric constant is always
where we have used E(.19 to relate the in and out op- gither purely real or purely imaginary, it is possible to have
erators, and we have explicitly indicated thdependence of dispersion without any additional noise terms.
the transmission coefficient. o The reason for this is that the scattering terms alone are
As expected, this equation demonstrates explicitly thatficient to ensure that the input-output relations remain
photodetection rates are suppressed for frequency compgpitary, with no change in the commutators. Thus, in the
nents that correspond to the dielectric absorption bandsyesent model, there is no need for any additional source
Where_T(w)—>O. At these fr_equen_mes, the predom'n_ant ef-terms. The theory therefore provides a justification for the
fect will be a strong reflection, with no photodetection oc-se of simple input-output relations to describe idealized di-
curring at the detector location on the other side of the mirgjectric or metallic mirrors. even when the dielectric re-
ror. sponse is dispersive. However, for realistic media it is gen-
erally the case that absorption can also occur even in the
VI. CONCLUSION transmission bands. Treating this would require the use of

We have presented an analysis of a quantized eIectromag%ore sophisticated models, including a complex refractive

netic wave scattering off a linear, dispersive medium of finite dex

extent. The medium consists of harmonic oscillators whos \'/:m%"yr’norqte ‘\:/\‘/ai?h aSkm'f tﬁk'r?tg t'?t?] 3ccr:our;t rtrr:odef that i
energy-level spacings can be chosen to match those of %? € momenta components transverse 1o the propaga

actual medium in the spirit of the classical Sellmeir expan- ion direction of the input field would lead to noise operators.

sion. What emerges is a relation betweenithandout fields ::236'; tgl?(tasnelgizsiﬂgn ttr;]ee Eﬁ?‘;‘r lftrZF];Ef)er:hna%iclzt%ettr\:\?;:n
that is most simply stated in terms of their annihilation op- P ' y

erators. The overall results are exact, and simply expresséHem and theout operators would transform an annihilation

in terms of linear transmission and reflection coefﬁcients.(.)perator for a mode propagating in thedirection into a

The medium has both transmission and absorption bandgnear combination of annihilation operators for modes, some
Since the model is a full quantum-field version of the widerOT which would have wave vectors withandz components.

ssed Lorenz modol rat eads t th Semer expansion, ECEU%6 1 12 SCaer appiosc mploycs 17, o o

has a wide area of applicability to realistic dielectric media . : y and not

with a variety of dispersion relations. often done in quantum optics, the scattering into them does
The final results are very similar to the classical expres—nOt lead to noise operators. We acknowledge that the three-

imensional case needs further investigation, but we believe

sions that relate the amplitudes of the incoming and outgoinﬁ_"at alitatively it is similar to the one-dimensional case
waves. The transmission and reflection coefficients that on qualitatively 1L 1S simi : ! '

finds from the quantum and classical analyse_s are identical, ACKNOWLEDGMENTS
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