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Noise-free scattering of the quantized electromagnetic field from a dispersive linear dielectric
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We study the scattering of the quantized electromagnetic field from a linear, dispersive dielectric using the
scattering formalism for quantum fields. The medium is modeled as a collection of harmonic oscillators with
a number of distinct resonance frequencies. This model corresponds to the Sellmeir expansion, which is widely
used to describe experimental data for real dispersive media. The integral equation for the interpolating field in
terms of thein field is solved and the solution used to find theout field. The relation between thein andout
creation and annihilation operators is found that allows one to calculate theS matrix for this system. In this
model, we find that there are absorption bands, but the input-output relations are completely unitary. No
additional quantum-noise terms are required.
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I. INTRODUCTION

A fundamental problem in quantum optics is how t
properties of light change as it propagates through a med
If the medium is nonlinear, new frequencies can be produ
and the quantum-noise properties of the field can be alte
This leads to such interesting phenomena as solitons, squ
ing, and quantum-phase diffusion, all of which have be
observed@1#. If the medium is linear, the situation is not a
dramatic, but linear media serve as a first step in the desc
tion of their nonlinear brethren, and they present problem
their own right, such as the inclusion of dispersion. It
generally thought that an accurate, first-principles treatm
of dispersion necessitates the inclusion of absorption,
consequently additional noise or reservoir operators. Here
analyze a quantum field theoretic model that demonstr
dispersion-induced absorption, but without any additio
noise operators appearing in the scattering relations.

Dielectric media can be described in a number of differ
ways. They can be characterized by their susceptibilitie
procedure that, when fields are included, leads to the ma
scopic Maxwell equations. Consequently, we shall call t
the macroscopic approach. It leads to difficulties when o
wants to include dispersion in a Lagrangian or Hamilton
formulation, because dispersion is a consequence of the
that the response of the medium is not instantaneous,
depends on the values of the field over a range of times@2#.
For certain kinds of fields, in particular narrow-band on
these problems can be overcome by using an approxim
Lagrangian that is local in time@3#. Another approach is to
construct a microscopic model for the medium and to inclu
the degrees of freedom of the medium in the theory@4–8#.
This, for obvious reasons, we shall call the microscopic
proach. It has the advantage that the inclusion of disper
is not a problem, but the disadvantage is that for each n
medium, a new model must be constructed. There are
intermediate approaches that use frequency-dependent
ceptibilities, but also add quantum noise operators to
equations of motion for the fields@9,11#.
1050-2947/2001/64~1!/013815~10!/$20.00 64 0138
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Most of the work on quantized fields in media has co
centrated on what happens inside the medium. Howe
there has been a steady stream of research that has co
ered fields entering and leaving a medium as well. This
essential if one wants to describe real experiments, in wh
the fields are generated outside the medium, then p
through it, and are finally measured in free space.

Perhaps the first to investigate this question were La
et al., who examined the connection between the field ins
and outside a laser cavity while studying why the laser lin
width is so narrow@12,13#. Their model consisted of a cavit
bounded on one end by a perfectly reflecting wall and on
other by a thin dielectric slab, and the cavity itself is fille
with an active medium. This cavity is embedded in a larg
cavity that represents the universe. They showed how
modes of the universe are related to the cavity quasimo
which makes it possible to find the output field in terms
the cavity field. In their analysis the field was classical, b
soon thereafter the quantum version of their model was c
structed and used to investigate the relation between the
inside and outside the cavity for a laser in the linear regi
by Ujihara @14#. This approach was later used by Ge
Banaclocheet al. to study the relationship between th
squeezing generated inside a cavity to that outside the ca
@15#.

This last problem had first been considered by Yurke w
based his approach on an earlier paper by Denker and
self @16#. They developed a quantum theory of electron
networks in which the network itself is located atx50 and
transmission lines extending from there tox51` bring in-
put signals to the network and carry output signals aw
Fields propagating towardx50 are input fields and thos
propagating away are output fields, and the object is to fi
the output fields in terms of the input ones for a given n
work. A related input-output theory was developed by C
lett and Gardiner@17# and was put on a firmer footing b
Carmichael@18#. This theory considers a cavity containing
medium, active or passive, linear or nonlinear, which
coupled to a reservoir. The reservoir operators serve as
©2001 The American Physical Society15-1
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MARK HILLERY AND PETER D. DRUMMOND PHYSICAL REVIEW A 64 013815
input and output fields. The dynamics of the system ins
the cavity is described by a master equation, and its solu
is used to find the time-dependent reservoir operators
thereby, the output field.

More recently a number of groups have examined
scattering of the quantized electromagnetic field from in
mogeneous linear dielectrics. Glauber and Lewenstein c
sidered the case of a nondispersive, lossless dielectric w
is described by a real position-dependent susceptibility@19#.
The scattering from dispersive media was studied by Kn¨ll
and Leonhardt who considered a medium consisting
damped harmonic oscillators@6#. Rather than use a forma
scattering approach they used time-dependent Green’s f
tions to solve the field equations. This built on earlier wo
by Fleischhauer and Schubert, who considered the rela
between source correlation functions and field correlat
functions after the field had propagated from the sou
through a linear passive system@20#. A different treatment of
dispersive media was given by Matloob,et al. @9#. They con-
sidered an arbitrary complex, frequency-dependent dielec
function and quantized the theory at the level of the eq
tions of motion rather than starting with a Lagrangian. Wo
ing in frequency space they found the fields emerging from
dielectric slab in terms of those entering it. A similar analy
was carried out by Gruner and Welsch@11#. A final approach
is based on polaritons in finite media@21–23#. For an infinite
dielectric interacting with the electromagnetic field t
eigenstates of the Hamiltonian are mixed matter-field mo
known as polaritons. If the medium is finite, the polarito
acquire a finite lifetime. By looking at the the electroma
netic parts of the polariton modes, scattering of the field fr
the medium can be described.

In this paper we shall apply the quantum scattering f
malism for fields to describe an electromagnetic wave s
tering from a finite medium, which behaves as a mirror
beam splitter. The medium is treated microscopically, an
is dispersive. The final result is an explicit expression for
out operators in terms of those of the input field. The cal
lation starts from first principles, and, consequently, sho
how some of the relations between in and out operat
which are often used in quantum optics, follow from an u
derlying scattering theory. An important feature of the mo
used here is that it includes a dielectric medium with m
tiple bare resonances, leading to a number of discrete abs
tion bands. This is typical of real dielectric materials, a
leads to a dielectric constant that can be modeled with
widely used Sellmeir@10# expansion in frequency.

As we noted in our discussion of previous results, th
are three treatments of scattering from a dispersive, lin
dielectric. Two are to some extent phenomenological in t
they do not start from a Hamiltonian describing the fie
medium system@9,11#. The third approach treats time
dependent fields rather than finding the asymptotic in and
fields that are the basic objects in a scattering treatment@6#.
We believe that this leaves room for a more fundamen
approach that can place the theory on a firmer foundat
The results we find from field-theoretic scattering theory
similar to those found in the approach pioneered by Yur
and have the virtue that they are simple and intuitively cle
01381
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By employing a fundamental approach, we have the adv
tage that the meaning of all of the operators that we emp
is well defined, which is not always the case in the mo
phenomenological treatments. The results presented here
be viewed as a justification of earlier phenomenologi
theories.

II. MODEL

We shall consider a one-dimensional model of the el
tromagnetic field and the medium that was developed in R
@8#. This model can be used to describe the normal incide
of an electromagnetic wave on a medium, where the w
travels in thex direction and is polarized in thez direction.

The field can be represented by means of the dual po
tial, L(x,t), which is appropriate if there are no free charg
In the case of az-polarized normally incident plane wave
L(x,t) is the y component of the dual potential. The field
are given by

D5
]L

]x
, B5m0

]L

]t
. ~2.1!

The medium consists of dipoles that are harmonic os
lators with massesmn and bare frequenciesVn , wheren
51, . . . ,N. The unrenormalized oscillator frequencies c
be chosen to correspond to transition frequencies of atom
molecules making up an actual material. Each oscillato
described by a field,r n(x), which gives the displacement o
the oscillator at positionx and with frequencyVn . It is con-
venient to represent the oscillators in terms of the polari
tion fields

pn~x!5qnrn~x!r n~x!, ~2.2!

wherern(x) is the density of oscillators with frequencyVn ,
and the dipole corresponding to oscillators of typen consists
of chargesqn . We shall work in the multipolar gauge so th
the coupling between the electromagnetic field and the
dium is proportional to(npn(x)D(x). The medium self-
interaction terms proportional to the square of the total
larization are incorporated into the frequencies,Vn .

For a volume such as a waveguide of cross-sectional
A, the Lagrangian density for the medium-field system
given by

L5
A

2e0
H 1

c2
L̇2~x!2~]xL~x!!2

1(
n

F 1

gn~x!
@ ṗn

2~x!2Vn
2pn

2~x!#12pn~x!]xL~x!G J ,

~2.3!

where

gn~x!5
qn

2rn~x!

mne0
. ~2.4!
5-2
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NOISE-FREE SCATTERING OF THE QUANTIZED . . . PHYSICAL REVIEW A64 013815
A. Refractive index

From the Lagrangian density we find the equations
motion for the fields

] t
2L2c2]x

2L52c2]x(
n

pn ,

~2.5!
] t

2pn1Vn
2pn5gn]xL.

For a medium of constant density@i.e., gn(x) is independent
of x#, we can solve the above equations by assuming
both pn andL are proportional toei (kx2vt). The values ofv
are the frequencies of the modes of the system and are g
by the solutions of Eq.~2.5!:

v25~kc!2F12(
n

gn

Vn
22v2G . ~2.6!

Defining the index of refraction,n(v), to bekc/v, we find

n~v!5F12(
n

gn

Vn
22v2G21/2

. ~2.7!

This is very similar@8# to the classical Sellmeir expansio
for the refractive index. Note that this expansion is not ide
tical to the Sellmeir expansion, but can be converted into
commonly used Sellmeir form through a renormalization
the bare resonant frequencies of the oscillators. The cha
teristic property of this type of equation is that it posses
solutions for the refractive index that are either purely r
~transmission bands! or purely imaginary~absorption bands!.
At the bare resonance frequency, the refractive index is z
Near a resonance, wherev→Vn , the refractive index is rea
for v.Vn , and imaginary forv,Vn . At a finite detuning
below a resonance, the refractive index goes to infinity j
below the start of the corresponding absorption band.

B. Lagrangian quantization

From the Lagrangian density we can find the canon
momenta corresponding toL andpn , which we shall denote
by P andpn , respectively. These are given by

P~x!5m0L̇~x!, pn~x!5
ṗn~x!

e0gn~x!
. ~2.8!

The theory is quantized by imposing the commutation re
tions

@L̂~x,t !,P̂~x8,t !#5 i\d~x2x8!/A ~2.9!

and

@ p̂n~x,t !,p̂n8~x8,t !#5 i\dn,n8d~x2x8!/A. ~2.10!

The canonical momenta and the Lagrangian density can
be used to find the Hamiltonian density for the quantiz
theory
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H~x!5
A

2e0
:H e0

m0
P̂2~x!1@]xL̂~x!#21(

n
Fe0

2gn~x!p̂n
2~x!

1
Vn

2

gn~x!
p̂n

2~x!22p̂n~x!]xL̂~x!G J : . ~2.11!

This can be put in a different form if we define annihilatio
and creation operators,ĵn(x) and ĵn

†(x), for the oscillators,
where

ĵn~x!5
1

A2\
SA Vn

e0gn~x!
p̂n1 iAe0gn~x!

Vn
p̂nD ,

~2.12!

so that

@ ĵn~x!,ĵn8
†

~x8!#5dn,n8d~x2x8!/A. ~2.13!

We finally have for the Hamiltonian density

H~x!5
A

2e0
:H e0

m0
P̂2~x!1@]xL̂~x!#2

1(
n

F2e0\Vnĵn
†~x!ĵn~x!

22A\e0gn~x!

2Vn
@ĵn~x!1 ĵn

†~x!#]xL̂~x!G J : .

~2.14!

III. SCATTERING THEORY

In order to determine what happens when an electrom
netic wave scatters off the medium, we shall apply the st
dard formulation of scattering for quantum fields@24#. This
is done in the Heisenberg picture so that it is the field ope
tors that are time dependent. Because we shall consid
medium that is bounded in thex direction, the interaction is
bounded in time. This can be seen either by considering
incoming waves to be wave packets, so that the interac
takes place only while the packet is inside the medium, or
using plane waves and turning the interaction on and
adiabatically. In either approach, the fields will go to fr
fields both ast→2` and ast→`. The free fields ast→
2` are the in fields, and those ast→` are the out fields.
The time-dependent field operators that carry the full tim
dependence of the Hamiltonian, including the interaction,
also known as the interpolating fields, because they inter
late between the in and the out fields. Our goal is to use
interpolating fields to find an expression for the out fields
terms of the in fields. This will give us a complete descr
tion of the scattering process. We note here that a rela
Heisenberg-picture approach to quantum scattering the
relevant to quantum optics measurements was recently
veloped by Daltonet al. @25#. They developed a similar basi
formalism, but did not consider specific examples.
5-3
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MARK HILLERY AND PETER D. DRUMMOND PHYSICAL REVIEW A 64 013815
A. In and out fields

To find the relationship between the in and out fields,
need to express the equations of motion of the interpola
fields as integral equations. From the Hamiltonian for o
model we find

~] t
22c2]x

2!L̂52c2]x(
n
A\e0gn

2Vn
@ĵn1 ĵn

†#,

~3.1!

~] t1 iVn!ĵn5
i

e0\
A\e0gn

2Vn
]xL̂.

In order to express these as integral equations we define
Green’s functionsD (ret)(x,t), D (adv)(x,t), Gn

(ret)(x,t), and
Gn

(adv)(x,t). They satisfy the equations

~] t
22c2]x

2!D (ret)~x,t !5d~x!d~ t !,

~] t1 iVn!Gn
(ret)~x,t !5d~x!d~ t !,

~3.2!
~] t

22c2]x
2!D (adv)~x,t !5d~x!d~ t !,

~] t1 iVn!Gn
(ret)~x,t !5d~x!d~ t !,

and the boundary conditions

D (ret)~x,t !5Gn
(ret)~x,t !50 for t,0,

D (adv)~x,t !5Gn
(adv)~x,t !50 for t.0. ~3.3!

The retarded Green’s functions can be expressed as

D (ret)~x,t !5
1

~2p!2E dk dv
ei (kx2vt)

~ck!22~v1 i e!2
,

~3.4!

Gn
(ret)~x,t !5

d~x!

2p E dv
e2 ivt

i ~V2 i e2v!
,

wheree→01, and the advanced Green’s functions are giv
by almost identical expressions, the only difference be
thate is replaced by2e. The integral equations correspon
ing to the differential equations, Eqs.~3.1!, are

L̂~x,t !5L̂ in~x,t !2c2E dx8E dt8D (ret)~x2x8,t2t8!]x8

3(
n
A\e0gn~x8!

2Vn
@ĵn~x8,t !1 ĵn

†~x8,t !#,

~3.5!

ĵn~x,t !5 ĵn
( in)~x,t !1

i

e0\E dx8E dt8G (ret)

3~x2x8,t2t8!A\e0gn~x8!

2Vn
]x8L̂~x8,t8!.

The corresponding expression involving the outfields is
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L̂~x,t !5L̂out~x,t !2c2E dx8E dt8D (adv)

3~x2x8,t2t8!]x8(
n
A\e0gn~x8!

2Vn

3@ ĵn~x8,t !1 ĵn
†~x8,t !#,

~3.6!

ĵn~x,t !5 ĵn
(out)~x,t !1

i

e0\E dx8E dt8G (adv)

3~x2x8,t2t8!A\e0gn~x8!

2Vn
]x8L̂~x8,t8!.

Note that the integral equations incorporate the bound
conditions for the fields. The first set of equations impli
that L̂(x,t) and ĵn(x,t) will go to L̂ in(x,t) and ĵn

( in)(x,t),
respectively, ast→2`, and the second set implies that the
will go to L̂out(x,t) and ĵn

(out)(x,t), respectively, ast→`.
What we shall do is solve the first set of equations

L̂(x,t) and ĵn(x,t) in terms of the in fields, and then inse
this solution into the second set to find the out fields in ter
of the in fields.

B. Fourier decomposition

We begin solving Eqs.~3.5! by taking the time Fourier
transform of both sides. Defining

L̂~x,v!5
1

A2p
E dt eivtL̂~x,t !,

ĵn~x,v!5
1

A2p
E dt eivtĵn~x,t !, ~3.7!

and similarly for the in and out fields, we find that

L̂~x,v!5L̂ in~x,v!2
ic

2vE dx8eivux2x8u/c]x8

3(
n
A\e0gn~x8!

2Vn
@ĵn~x8,v!1 ĵn

†~x8,2v!#,

~3.8!

and

ĵn~x,v!5 ĵn
( in)~x,v!

1
1

e0\
A\e0gn~x!

2Vn

1

Vn2 i e2v
]xL̂~x,v!.

~3.9!

In deriving these equations we made use of the fact that

E dt eivtD (ret)~x,t !5
i

2vc
eivuxu/c. ~3.10!
5-4
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NOISE-FREE SCATTERING OF THE QUANTIZED . . . PHYSICAL REVIEW A64 013815
We can derive an equation for only the fieldL̂(x,k0) by
substituting from Eq.~3.9! into Eq. ~3.8!. We find that

L̂~x,v!5L̂ in~x,v!2
ic

2vE dx8eivux2x8u/c]x8

3(
n
A\e0gn~x8!

2Vn
F ĵn

( in)~x8,v!1 ĵn
( in)†~x8,2v!

1
1

e0\
A\e0gn~x8!

2Vn

2Vn

Vn
22~v1 i e!2

]x8L̂~x8,v!G .

~3.11!

Our next step is to turn this into a differential equatio
but before doing so we shall make a simplifying assumpti
The field ĵn

( in)(x,t) is a free field that oscillates at the fre

quencyVn , and this implies thatĵn
( in)(x,v) is nonzero only

whenv5Vn . We are mainly interested in cases where
incoming light is not resonant with the medium, so we sh
initially assume thatvÞVn for n51, . . . ,N. This implies
that we can dropĵn

( in)(x,v) and ĵn
( in)†(x,2v) from the

above equation and sete50. We return to the resonant cas
later.

Next, we then apply the differential operatorc2]x
21v2 to

both sides. This annihilates the in-field term and converts
integral equation into a homogeneous differential equat
The result is

]xS c2

n2~x,v!
]xL̂~x,v!D 1v2L̂~x,v!50. ~3.12!

Here,n(x,v), the space- and frequency-dependent index
refraction of the medium, is given by

n~x,v!5S 12(
n

gn~x!

Vn
22v2D 21/2

. ~3.13!

In this form, the equations have a rather classical app
ance, and the matter operators no longer appear in the
mulation, which gives rise to a substantial simplification.

IV. DIELECTRIC LAYER

We now want to specialize our equations to the case
dielectric layer with a uniform density of oscillators. Th
corresponds to the important case of a beam-splitter or
ror, although we make no restrictions as to the size of
layer. The medium extends fromx52L to x5L. Inside the
medium,n(x,v) has a value ofn0(v), and outside the me
dium it has a value of 1. The solutions to Eq.~3.12! should
be continuous andn22(x,v) times their derivative should b
continuous. These correspond to a continuous magnetic
electric field, respectively.
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A. Classical case

In order to find the solution of the operator equation, E
~3.12!, we first find solutions to the corresponding c-numb
equation, which we shall denote asu(x,v). We begin by
dividing the line into three regions, region I forx,2L, re-
gion II for 2L<x<L, and region III forx.L. In regions I
and III, u(x,v) satisfies

@c2]x
21v2#u~x,v!50, ~4.1!

and in region II

@c2]x
21v2n0

2~v!#u~x,v!50, ~4.2!

where n0 is the value ofn(x,v) in region II. A solution
incident from the left,ul(x,v), which satisfies the equatio
and has the proper continuity properties, is given by

ul~x,v!5H eik(v)x1R~v!e2 ik(v)x in region I

Br
( l )~v!eik(v)x1Bl

( l )~v!e2 ik(v)x in region II

T~v!eik(v)x in region III,
~4.3!

wherek(v)5v/c , andk(v)5n0k(v). It is to be remem-
bered that waves proportional toeikx or eikx are propagating
to the right, and those proportional toe2 ikx or e2 ikx are
propagating to the left.

Suppressing the frequency arguments for clarity, the
efficients in the above equation are given by

R52
i ~n0

221!sin~2kL !

D
e22ikL, T5

2n0

D
e22ikL,

~4.4!

Br
( l )5

n0~n011!

D
e2 i (k1k)L, Bl

( l )52
n0~n021!

D
ei (k2k)L,

whereD52n0cos(2kL)2i(n0
211)sin(2kL). Note thatR andT

are, respectively, the reflection and transmission coefficie
for the medium, and thatuRu21uTu251. For a solution inci-
dent from the right we have

ur~x,v!

5H T~v!e2 ik(v)x in region I

Br
(r )~v!eik(v)x1Bl

(r )~v!e2 ik(v)x in region II

e2 ik(v)x1R~v!eik(v)x in region III,

~4.5!

where k , k, R, and T are as before, whileBr
(r )5Bl

( l ) and
Bl

(r )5Br
( l ) .

B. Asymptotic fields

Both ur andul are solutions of the differential equation
Eqs.~4.1! and~4.2!, and this implies that they are also sol
tions to the corresponding integral equation
5-5
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L~x,v!5L in~x,v!2
ic

2vE2L

L

dx8eivux2x8u/c]x8

3F S 12
1

n2~x,v!
D ]x8L~x8,v!G , ~4.6!

for particular choices of the fieldL in(x,v). We can find
L in(x,v) for both solutions simply by substituting them in
Eq. ~4.6!. We must be careful, however, because the exp
sion inside the square brackets is not continuous atx56L,
and it is being differentiated, so that the discontinuities w
lead to finite contributions after being integrated. One way
find these contributions is to consider a refractive index t
is continuous, but that goes to the desired one as a limit

For example, let us suppose thatn(x,v) is 1 for x,2L
2d and x.L1d, is equal ton0 for 2L<x<L, goes con-
tinuously from 1 ton0 as x goes from2L2d to 2L, and
goes continuously fromn0 to 1 asx goes fromL to L1d.
We can then take the limitd→0. Let us examine what hap
pens in the interval between2L2d and 2L; the interval
betweenL andL1d is similar. Asd→0 we have that

E
2L2d

2L

dx8eivux2x8u/c]x8F S 12
1

n2~x,v!
D ]x8L~x8,v!G

→eivux1Lu/cE
2L2d

2L

dx8]x8F S 12
1

n2~x,v!
D ]x8L~x8,v!G

5eivux1Lu/cS 12
1

n0
2~v!

D ]xL~x,v!ux52L1, ~4.7!

wherex52L1 denotes the limit asx→2L from the posi-
tive direction (x5L2 is defined in an analogous fashion!.
The other limit of the integral contributes zero, due to t
refractive index term approaching unity. Explicitly putting
the terms resulting from the boundaries of the medium gi

L~x,v!5L in~x,v!2
ic

2vE2L1

L2

dx8eivux2x8u/c

3S 12
1

n0
2~v!

D ]x8
2 L~x8,v!2

ic

2v Feivux1Lu/c

3S 12
1

n0
2~v!

D ]xL~x,v!Ux52L12eivux2Lu/c

3S 12
1

n0
2~v!

D ]xL~x,v!U
x52L2

G . ~4.8!

If we now substituteul(x,v) into this equation instead o
L(x,v), we find that

L in~x,v!5eivx/c, ~4.9!

and if we substituteur(x,v), we find

L in~x,v!5e2 ivx/c. ~4.10!
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C. Quantum case

In the quantum case we have the usual expansion of a
field in terms of annihilation and creation operators. Th
leads, in the present case, to

L̂ in~x,t !5E dkA \ce0

4pAuku@
âk

( in)ei (kx2ukuct)

1~ âk
( in)!†e2 i (kx2ukuct)#, ~4.11!

which implies that forv.0

L̂ in~x,v!5A \e0

2cAk~v!
@ âk(v)

( in) eivx/c1â2k(v)
( in) e2 ivx/c#.

~4.12!

The results of the previous paragraph allow us to see th
L̂(x,v) is given by

L̂~x,v!5A \e0

2cAk~v!
@ âk(v)

( in) ul~x,v!1â2k(v)
( in) ur~x,v!#,

~4.13!

then it is a solution of Eq.~4.8! with L̂ in given by Eq.~4.12!.
This gives us the interpolating field in terms of the in fiel

Our remaining task is to use the expression for the in
polating field to find the out field in terms of the in field. Th
can be done by substituting the expression forL̂(x,v) given
in the previous paragraph into the equation that relates
interpolating field to the out field

L̂~x,v!5L̂out~x,v!1
ic

2vE2L1

L2

dx8e2 ivux2x8u/c

3S 12
1

n0
2~v!

D ]x8
2 L̂~x8,v!1

ic

2v Fe2 ivux1Lu/c

3S 12
1

n0
2~v!

D ]xL̂~x,v!Ux52L12e2 ivux2Lu/c

3S 12
1

n0
2~v!

D ]xL̂~x,v!U
x52L2

G , ~4.14!

which follows from Eqs.~3.6!. The derivation is almost iden
tical to that of Eq.~4.8!, so we do not give it explicitly.
Making this substitution we find that, forv.0

L̂out~x,v!5A \e0

2cAk~v!
@$T~v!eik(v)x

1R~v!e2 ik(v)x%âk(v)
(out)1$R~v!eik(v)x

1T~v!e2 ik(v)x%â2k(v)
(out) #. ~4.15!

The out field can also be expressed in terms of out c
ation and annihilation operators,
5-6
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L̂out~x,t !5E dkA \ce0

4pAuku@
âk

(out)ei (kx2ukuct)

1~ âk
(out)!†e2 i (kx2ukuct)#. ~4.16!

Taking the Fourier transform of this equation with respec
time, for v.0, gives

L̂out~x,v!5A \e0

2cAk~v!
@ âk(v)

(out)eik(v)x1â2k(v)
(out) e2 ik(v)x!].

~4.17!

Comparing Eqs.~4.15! and ~4.17! we see that forv.0

âk(v)
(out)5T~v!âk(v)

( in) 1R~v!â2k(v)
( in) , ~4.18!

â2k(v)
(out) 5R~v!âk(v)

( in) 1T~v!â2k(v)
( in) . ~4.19!

These equations are the solution to the scattering prob
We note that the transmission and reflection coefficients
isfy the usual relation ofuT(v)u21uR(v)u251. This holds
even in the band-gap regions, where transmission occurs
an evanescent field. Thus, the scattering problem is explic
unitary, as we would expect. It is important to notice th
unitarity holds even inside the band gaps of the proble
indicating that the absorption bands simply modify the
flection and transmission coefficients, without removing ph
tons. Another way to think of this, is that even when a ph
ton is removed through virtual excitation of an atom
resonance, the photon will eventually be reradiated in eit
the forward of backward directions.

D. Resonances

Let us now consider what happens whenv56Vn . This
case was excluded from our earlier treatment, since it m
involve some matter-operator contribution, which we ha
neglected so far. Of course, as the resonances are disc
the frequencies involved are essentially a set of mea
zero, lying on the upper edge of each band gap.

In this case, terms proportional to eitherĵn
( in)(x,v) or

ĵn
( in)†(x,2v) will be present in Eq.~3.11!. This, in turn,

means that the solution for the interpolating field given
Eq. ~4.13! must be modified. In particular, a term propo
tional to the matter fields must be added. This is not surp
ing; it is usually accepted that in a dispersive medium th
must be absorption, and this in turn generally requires c
pling to a reservoir field. However, it would be rather su
prising to find quantum noise only occurring at discrete f
quencies corresponding to the band edge. We have alr
established, in particular, that absorption in the band at
quencies different from the resonances simply changes
transmission and reflection coefficients, without adding a
noise source. We will now show that even with the mat
terms included, our earlier conclusions still hold; there are
extra noise sources for the out fields.

In order to see this, we first note that

ĵn
( in)~x,t !5e2 iVnt ĵn

( in)~x!, ~4.20!
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whereĵn
( in)(x)5e2 iVntĵn

( in)(x,0). This implies that

ĵn
( in)~x,v!5A2pd~v2Vn!ĵn

( in)~x!,
~4.21!

ĵn
( in)†~x,2v!5A2pd~v1Vn!ĵn

( in)†~x!.

Application of the differential operatorc2]x
21v2 to Eq.

~3.11!, this time keeping the matter terms, gives

]xS c2

n2~x,v!
]xL̂~x,v!D 1v2L̂~x,v!5]xF̂ in~x,v!,

~4.22!

where we now include an inhomogeneous term defined

F̂ in~x,v!5c2(
n
A\pe0gn~x!

Vn
@d~v2Vn!ĵn

( in)~x!

1d~v1Vn!ĵn
( in)†~x!#. ~4.23!

This equation can be solved by means of a Green’s fu
tion that satisfies

]xS c2

n2~x,v!
]xG~x,x8!D 1v2G~x,x8!5d~x2x8!,

~4.24!

together with the proper boundary conditions. For the bou
ary conditions, we shall chooseG(x,x8) to have only outgo-
ing waves atx56`. Any fields produced by these matte
terms are generated in a finite region and propagate outw
so that these boundary conditions are the appropriate o
The Green’s function can be found by standard techniqu
and is given by

G~x,x8!5H 1

2ivcT~v!
ul ~x,v!ur~x8,v! @x.x8#

1

2ivcT~v!
ur~x,v!ul ~x8,v! @x,x8#.

~4.25!

The solution to Eq.~4.22! with only outgoing waves at
x56`, which we shall callL̂s(x,v) is then

L̂s~x,v!5E
2L

L

dx8G~x,x8!]x8F̂ in~x8,v!. ~4.26!

Substitution of L̂s(x,v) into Eq. ~3.11!—the integral
equation forL̂(x,v)—shows that it is, as expected, a sol
tion with L̂ in(x,v)50. A complete solution for genera
L̂ in(x,v) can then be obtained by adding toL̂s a solution of
the homogeneous equation with the properL̂ in , as discussed
in the previous section.

As has already been noted,F̂ in(x,v) is only nonzero if
v56Vn , for some indexn. At these values, which corre
spond to the upper boundary of each band edge, the inde
refraction vanishes inside the medium, and
5-7
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T~v!5
c

c2 ivL
e22ivL/c,

~4.27!

R~v!5
ivL

c2 ivL
e22ivL/c.

For 2L,x,L we have that

ul ~x,v!5ur~x,v!5
c

c2 ivL
e2 ivL/c. ~4.28!

Therefore, forv56Vn , it follows that the Green’s func-
tion is constant, andL̂s(x,v) is proportional to

E
2L

L

dx8]x8F̂ in~x8,v!5F̂ in~L,v!2F̂ in~2L,v!.

~4.29!

Here, however, we must be careful since the source func
F̂ in(x,v) is proportional toAgn(x), which is discontinuous
at x56L, so that the right-hand side of the above equat
is not well defined.

In order to resolve this difficulty, we must use the sam
technique as before, and consider a continuously chan
refractive index over a small boundary region. That is,
suppose thatn(x,v) is 1 for x,2L2d and x.L1d, is
equal to 0 for2L<x<L, goes continuously from 1 to 0 a
x goes from2L2d to 2L, and goes continuously from 0 t
1 asx goes fromL to L1d. A similar behavior is assume
for Agn(x). We can then take the limitd→0. Let us examine
what happens in the interval between2L2d and 2L; the
interval betweenL andL1d is similar.

For x.L1d, the integral we wish to consider is then

E
2L2d

L1d
dx8ur~x8,v!]x8F̂ in~x8,v!

5E
2L2d

2L

dx8ur~x8,v!]x8F̂ in~x8,v!1ur~L,v!@ F̂ in~L,v!

2F̂ in~2L,v!#1E
L

L1d
dx8ur~x8,v!]x8F̂ in~x8,v!.

~4.30!

For x in other intervals, the situation is similar. Note th
ur(x8,v) is now a solution of the homogeneous version
Eq. ~4.24!, including the modified index of refraction. From
this equation it is relatively straightforward to show that, f
d small,

E
L

L1d
dx8ur~x8,v!]x8F̂ in~x8,v!'ur~L,v!

3@ F̂ in~L1d,v!2F̂ in~L,v!#, ~4.31!

and this becomes an equality asd→0. A similar relationship
holds for the integral from2L2d to 2L:
01381
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E
2L2d

2L

dx8ur~x8,v!]x8F̂ in~x8,v!'ur~2L,v!

3@ F̂ in~2L2d,v!2F̂ in~2L,v!#. ~4.32!

Adding these contributions up, and noting that ifn(x,v)
50 for 2L<x<L, thenur(2L,v)5ur(L,v), we find that

lim
d→0

E
2L2d

L1d
dx8ur~x8,v!]x8F̂ in~x8,v!50. ~4.33!

This implies that the matter operatorsdo not contributeto
the interpolating field solution, even at the resonance
quencies that we did not consider in detail previously. Th
the previous relation between the in and out operators
holds at the resonances wherev56Vn . At first sight, this
seems difficult to understand, since in general one wo
need to include noise operators to conserve commutation
lations, and hence unitarity. However, this is consistent
cause, as can be seen from Eq.~4.28!, we haveuT(v)u2
1uR(v)u251, even whenv56Vn for n51, . . . ,N. In
summary, we reach the somewhat surprising conclusion
no additional noise operators are needed in the asymp
properties of the present model, even at resonance.

V. PHOTODETECTION EXAMPLE

Given the state of the in field, these equations allow us
calculate the properties of the out field, and hence calcu
observable scattering properties. In order to see how
works let us consider an example. We shall find the pr
ability that a photo detector located atx, wherex.0 and is
far from the medium, will fire at timet. At the long times
required for propagation to this location, the fields will a
ymptotically become out fields. The photodetection proba
ity is therefore proportional to

^ inuD̂out
(2)~x,t !D̂out

(1)~x,t !u in&5^ inu@]xL̂out
(2)~x,t !#

3@]xL̂out
(1)~x,t !#u in&,

~5.1!

whereu in& is the in state,

L̂out
(1)~x,t !5E dkA \ce0

4pAuku
âk

(out)ei (kx2ukuct), ~5.2!

and L̂out
(2)(x,t)5@L̂out

(1)(x,t)#†. Now let f (k) be a function
that is zero ifk,0. The Fourier transform off (k) is closely
related to the shape of the pulse that is being sent into
medium. Define

âin
† @ f #5E dk f~k!~ âk

( in)!†, ~5.3!

and let

u in&5exp~ âin@ f #2âin
† @ f # !u0& in . ~5.4!
5-8
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This is a coherent state composed of wave packets with
intensity of the field and the shape of the wave packet de
mined by f (k). For this state the correlation function in E
~5.1! is given by

^ inuD̂out
(2)~x,t !D̂out

(1)~x,t !u in&

5
\ce0

4pA
U E dk f~k!T~ck!ei (kx2ukuct)U2

, ~5.5!

where we have used Eq.~4.19! to relate the in and out op
erators, and we have explicitly indicated thek dependence o
the transmission coefficient.

As expected, this equation demonstrates explicitly t
photodetection rates are suppressed for frequency com
nents that correspond to the dielectric absorption ban
whereT(v)→0. At these frequencies, the predominant
fect will be a strong reflection, with no photodetection o
curring at the detector location on the other side of the m
ror.

VI. CONCLUSION

We have presented an analysis of a quantized electrom
netic wave scattering off a linear, dispersive medium of fin
extent. The medium consists of harmonic oscillators wh
energy-level spacings can be chosen to match those o
actual medium in the spirit of the classical Sellmeir expa
sion. What emerges is a relation between thein andout fields
that is most simply stated in terms of their annihilation o
erators. The overall results are exact, and simply expre
in terms of linear transmission and reflection coefficien
The medium has both transmission and absorption ba
Since the model is a full quantum-field version of the wide
used Lorenz model that leads to the Sellmeir expansion
has a wide area of applicability to realistic dielectric med
with a variety of dispersion relations.

The final results are very similar to the classical expr
sions that relate the amplitudes of the incoming and outgo
waves. The transmission and reflection coefficients that
finds from the quantum and classical analyses are ident
as they should be, given that the model is a linear one,
must reduce to the classical theory in the corresponde
limit. Expressions such as those appearing in Eq.~4.19! are
often used in quantum optics, and we believe it is usefu
a
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e
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see how they emerge from the underlying scattering theo
An important feature of the theory treated here is tha

has absorption bands, without any corresponding noise te
in the field equation. This is due to the dielectric model us
here, in which the dielectric constant is always either pur
real or purely imaginary. In this type of model, all photo
absorbed are reemitted. Thus, absorption simply results
strong reflection, with purely evanescent fields inside the
electric. In a related phenomenological treatment@9#, one
finds similar behavior: if the dielectric constant is alwa
either purely real or purely imaginary, it is possible to ha
dispersion without any additional noise terms.

The reason for this is that the scattering terms alone
sufficient to ensure that the input-output relations rem
unitary, with no change in the commutators. Thus, in t
present model, there is no need for any additional sou
terms. The theory therefore provides a justification for t
use of simple input-output relations to describe idealized
electric or metallic mirrors, even when the dielectric r
sponse is dispersive. However, for realistic media it is g
erally the case that absorption can also occur even in
transmission bands. Treating this would require the use
more sophisticated models, including a complex refract
index.

Finally, one can ask if taking into account modes th
have momenta with components transverse to the prop
tion direction of the input field would lead to noise operato
This is not necessarily the case. If scattering into th
modes takes place, then the unitary transformation betw
the in and theout operators would transform an annihilatio
operator for a mode propagating in thex direction into a
linear combination of annihilation operators for modes, so
of which would have wave vectors withy andz components.
Because, in the scattering approach employed here, a
these modes are retained in the theory and not traced out
often done in quantum optics, the scattering into them d
not lead to noise operators. We acknowledge that the th
dimensional case needs further investigation, but we beli
that qualitatively it is similar to the one-dimensional case
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@6# L. Knöll and U. Leonhardt, J. Mod. Opt.39, 1253~1992!.
@7# B. Huttner and S. Barnett, Phys. Rev. A46, 4306~1992!.
@8# P.D. Drummond and M. Hillery, Phys. Rev. A59, 691~1999!.
@9# R. Matloob, R. Loudon, S. Barnett, and J. Jeffers, Phys. R
-

v.

A 52, 4823~1995!.
@10# M. Born and E. Wolf,Principles of Optics~Pergamon, Oxford,

1975!.
@11# T. Gruner and D-G. Welsch, Phys. Rev. A53, 1818~1996!.
@12# R. Lang, M.O. Scully, and W.E. Lamb, Phys. Rev. A7, 1788

~1973!.
@13# R. Lang and M.O. Scully, Opt. Commun.9, 331 ~1973!.
@14# K. Ujihara, Phys. Rev. A12, 148 ~1975!; 16, 652 ~1977!.
@15# J. Gea-Banacloche, N. Lu, L.M. Pedrotti, S. Prasad, M

Scully, and K. Wodkiewicz, Phys. Rev. A41, 369 ~1990!.
@16# B. Yurke and J. Denker, Phys. Rev. A29, 1419 ~1984!; B.
5-9



nn

y

MARK HILLERY AND PETER D. DRUMMOND PHYSICAL REVIEW A 64 013815
Yurke, ibid. 32, 300 ~1985!.
@17# M.J. Collett and C.W. Gardiner, Phys. Rev. A30, 1386~1984!;

C.W. Gardiner and M.J. Collett,ibid. 31, 3761~1987!.
@18# H. Carmichael, J. Opt. Soc. Am. B4, 1588~1987!.
@19# R.J. Glauber and M. Lewenstein, Phys. Rev. A43, 467~1991!.
@20# M. Fleischhauer and M. Schubert, J. Mod. Opt.38, 677~1991!.
@21# V. Savona, Z. Hradil, A. Quattropani, and P. Schwendima
01381
,

Phys. Rev. B49, 8774~1994!.
@22# S. Savasta and R. Girlanda, Phys. Rev. A53, 2716~1996!.
@23# Z. Hradil, Phys. Rev. A53, 3687~1996!.
@24# E. Henley and W. Thirring,Elementary Quantum Field Theor

~McGraw-Hill, New York, 1962!.
@25# B.J. Dalton, S.M. Barnett, and P.L. Knight, J. Mod. Opt.46,

1107 ~1999!.
5-10


