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INTRODUCTION 

One of the central properties which distinguishes
quantum mechanics from classical mechanics is that of
entanglement. Measurable continuous-variable bipar-
tite entanglement is readily producible experimentally
and there has been some progress in the production of
tripartite entangled beams, with the entanglement often
obtained by mixing squeezed vacua with linear optical
elements [1, 2]. Other methods which create the entan-
glement in the actual nonlinear interaction have been
proposed and are under investigation, using both cas-
caded and concurrent 

 

χ

 

(2)

 

 processes [3–7]. In the
present work we investigate the achievable tripartite
entanglement available from both the use of three con-
current 

 

χ

 

(2)

 

 nonlinearities and three independent
squeezed states mixed on beamsplitters, using an ap-
propriate version of the van Loock–Furusawa inequal-
ities. We also develop and use three-mode generalisa-
tions of the Einstein–Podolsky–Rosen (EPR) paradox
[8] which are an alternative for demonstrating the in-
separability of the system density matrix. 

A two-mode system is considered to be bipartite en-
tangled if the system density matrix cannot be ex-
pressed as a product of density matrices for each of the
two modes. The definition of tripartite entanglement
for three-mode systems is more subtle, with different
classes of entanglement having been defined, depend-
ing on how the system density matrix may be parti-
tioned [9]. The classifications range from fully insepa-
rable, which means that the density matrix is not sepa-
rable for any grouping of the modes, to fully separable,
where the three modes are not entangled in any way.
For the fully inseparable case, van Loock and Furusa-
wa[10], who call this genuine tripartite entanglement,
have derived entanglement criteria in terms of inequal-

ities which are experimentally measurable for continu-
ous variable processes. In this work we analyse two dif-
ferent systems in terms of these inequalities, as well as
in terms of our three-mode EPR criteria. We note here
that both these methods of detecting entanglement pro-
vide sufficient, but not necessary, conditions, so that
one or the other may be more sensitive and/or useful in
a given situation. 

CRITERIA FOR TRIPARTITE ENTANGLEMENT 

Genuine tripartite entanglement is verified if we
rule out any bipartition of the density matrix ( ), which
is to say that the full system density matrix cannot be
expressed in any of the following forms 

 

(1)

 

where 1, 2 and 3 are the mode indices. If these factori-
sations are ruled out then so is the fully separable form

 = . 

 

The van Loock–Furusawa Inequalities 

 

We will first review known inequalities which, if vi-
olated, demonstrate that a system exhibits true continu-
ous variable tripartite entanglement according to the
above definition. For three modes described by the an-
nihilation operators , where 

 

j

 

 = 1, 2, 3, we define
quadrature operators for each mode as 

 

(2)
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so that the Heisenberg uncertainty principle requires

 

V

 

( )

 

V

 

( ) 

 

≥

 

 1. A set of conditions which are suffi-
cient to demonstrate tripartite entanglement for any
quantum state have been derived by van Loock and Fu-
rusawa [10]. Using our quadrature definitions, the van
Loock–Furusawa conditions give a set of inequalities, 

 

(3)

 

where 

 

V

 

(

 

A

 

) 

 

≡ 〈

 

A

 

2

 

〉 

 

– 

 

〈

 

A

 

〉

 

2

 

. As shown in Ref. [10], if any
two of these inequalities are violated, the system is ful-
ly inseparable and genuine tripartite entanglement is
guaranteed. We note that genuine tripartite entangle-
ment may still be possible when none of these inequal-
ities is violated, due to the criteria being sufficient but
not necessary. We also note here that the interaction
Hamiltonians of the systems which we evaluate in this
work are symmetric under mode permutations if the 

 

χ

 

(2)

 

interactions are of equal strength, and by setting the in-
put fields equal, we need only consider the case where

 

g

 

1

 

 = 

 

g

 

2

 

 = 

 

g

 

3

 

 = 1, although in general this will not be the
case. In fact, the inequalities in the form we use here are
suitable, optimal and sufficient for our purposes. 

 

Entanglement 
and Einstein–Podolsky–Rosen Correlations 

 

In 1989 Reid [11], and Reid and Drummond [12]
proposed a physical test of the EPR paradox using op-
tical quadrature amplitudes, which are mathematically
identical to the position and momentum originally con-
sidered by EPR. Reid later expanded on this work,
demonstrating that the satisfaction of the 1989 two-
mode EPR criterion always implies bipartite quantum
entanglement [13]. It was also shown by Tan [14] that
the possible definition of two orthogonal quadratures,
the product of whose variances violates the limits set by
the Heisenberg uncertainty principle (HUP), provides
evidence of entanglement. In this work we extend Re-
id’s original approach, based on an inferred HUP be-
tween two quadratures, to the case of tripartite correla-
tions, where quadratures of three different optical
modes are involved. We find that there is more than one
way to define EPR correlations for a system exhibiting
tripartite entanglement. We have used two of the possi-
ble methods in a previous publication [5], while Bowen

 

et al

 

. have defined a third [15]. In this work we will use
the correlations we defined previously to demonstrate
the presence of tripartite entanglement. 

There are two forms of the criteria that we need to
consider, arising from one and two mode inference.
The first inference scheme that we will use to prove tri-
partite entanglement and EPR correlations involves us-
ing experimental observations of two modes to infer
properties of a third. The proof for this scheme is essen-

X̂ j Ŷ j

V12 V X̂1 X̂2–( ) V Ŷ1 Ŷ2 g3Ŷ3+ +( ) 4,≥+=

V13 V X̂1 X̂3–( ) V Ŷ1 g2Ŷ2 Ŷ3+ +( ) 4,≥+=

V23 V X̂2 X̂3–( ) V g1Ŷ1 Ŷ2 Ŷ3+ +( ) 4,≥+=

tially the same as for the original bipartite entanglement
result of [13] and has been detailed in [7]. In practice
one usually has access to certain moments of quadra-
ture variables, in particular, the elements of the covari-
ance matrix. Hence we can find sufficent conditions for
entanglement which may be of great practical value, in
that experiments have been performed to measure their
bipartite versions [16] and can be generalised to the tri-
partite case without undue difficulty. 

To begin, we make a linear estimate  of the

quadrature  for the mode i from the properties of the
combined mode j + k, so that, for example 

(4)

where a and c are parameters which can be optimised,
both experimentally and theoretically [11, 16]. It has
been shown [12] that this corresponds to minimising
the variance 

(5)

with respect to a. The minimum is achieved when 

(6)

In the above V( , ) =  – . Defining the

optimal inferred variance for  as V inf( ) ≡
≡ , we obtain 

(7)

We follow the same procedure for the  quadratures to
give expressions which may be obtained by swapping

each  for a  in the above to give the optimal inferred
estimate 

(8)

A demonstration of the EPR paradox can be claimed

whenever it is observed that ( ) ( ) < 1, and
we have shown that such an experimental outcome is
possible whenever the theory predicts 

(9)

This demonstration for the 3 possible values of i is then
sufficient to establish genuine tripartite entanglement. 

Our alternative scheme uses information about one
mode to infer the combined properties of the other two.

In this case one measures Vinf(  ± ) = (  ±  –
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− . Linear inference leads to the expression
for the optimal (minimum) variance in the inferred

quadrature  +  

(10)

which is merely a different form of the expression giv-
en in Ref. [5], 

(11)

The same expressions hold for the Y quadratures, and it
is then straightforwardly shown that the HUP requires
that 

(12)

There is thus a demonstration of this three mode form

of the EPR paradox whenever (  ± ) (  ±
± ) < 4, which is predicted to be possible when 

V inf(  ± )V inf(  ± ) < 4. (13)

As above, this demonstration for the 3 possible combi-
nations also serves to establish complete inseparability
of the density matrix. 

ENTANGLEMENT VIA BEAMSPLITTERS 

It is simple to show that one quadrature squeezed
state, with squeezing parameter r, mixed on a beam-
splitter with a vacuum input, results in a bipartite entan-
gled state with a value of 2(1 + e–r) for the Duan crite-
rion [17] for bipartite entanglement (see also Simon
[18]), where a value of less than 4 represents bipartite
entanglement. If an amplitude squeezed state is mixed
with a phase-squeezed state on a beamsplitter, both
with squeezing parameter r, this gives a value of 4e–r

for the same criterion. In this section we will quantify
one possible way in which tripartite entanglement may
be obtained, using squeezed states obtained from indi-
vidual χ(2) processes, which are subsequently combined
utilising beamsplitters. 

A schematic of an apparatus which has been used by
Aoki et al. [2] to produce tripartite entanglement by this
method is given in Fig. 1, showing the three optical
parametric oscillators (OPO) and the two beamsplitters
used. They experimentally measured continuous vari-
able tripartite entanglement, obtaining values for the
criteria of (3) which were just above 3 using our
quadrature definitions. To perform a realistic analysis
of this scheme we must consider that OPOs do not pro-
duce minimum uncertainty squeezed states with a

aX̂i) a amin=

X̂ j X̂k

V
inf

X̂ j X̂k±( )  =
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------------------------------------------.–
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inf

Ŷ j

Ŷ k

X̂ j X̂k Ŷ j Ŷ k

monotonically increasing squeezing parameter, but ex-
hibit quite different behaviours above and below the os-
cillation threshold. Here we consider output quadrature
amplitudes at a particular frequency ω, so that, follow-
ing Collett and Gardiner [19], we define the associated

spectral quadratures (ω) and (ω), j = 1, 2, 3, and
the associated spectral variances. This then means that

we can define S inf( ), for example, as the inferred

spectral variance corresponding to V inf( ) and so on.

We will consider an OPO where  and  represent the
signal and pump modes, with respective cavity damp-
ings γa and γb. With the classical pump represented by
� and the effective nonlinearity by κ, we find that there
is a critical threshold pump value �c = γaγb/κ, below
which the signal mode is not macroscopically occu-
pied. The output spectra for this OPO system are well
known [19], with the below threshold spectral varianc-
es for mode  being 

(14)

while above threshold they are 

(15)

The output field  exhibits squeezing and three such
outputs of three OPOs are used as the inputs , , 
of Fig. 1. We note here that, as the results (14) and (15)
are derived using a linearised fluctuation analysis, they
are not valid in the immediate region of the threshold.

X̂ j Ŷ j
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Fig. 1. The Aoki scheme, which mixes three squeezed states
on two beamsplitters with different reflectivities. BS1 has
reflectivity µ and BS2 has reflectivity ν. 
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Following Reid and Drummond [12], it is possible to
use these expressions as inputs to calculate the EPR
correlations in the spectral domain. 

In Fig. 2 we show results for the inference of one
quadrature from a combination of the other two, for the
system of Aoki et al. [2]. In this case, a value of

S inf( )S inf( ) < 1 indicates EPR correlations, and
therefore genuine tripartite entanglement. The results
for inferring the combined quadratures from the single
ones are found in this case by multiplying the results of

Fig. 2 by 4, replacing, for example the S inf( )S inf( )

with S inf(  ± )S inf(  ± ) and noting that the up-
per bound for EPR correlations is then 4. We see that
this system demonstrates entanglement and the EPR
paradox for a wide range of pumping strengths, these
correlations persisting well into the region where the
output fields are relatively intense and truly macro-
scopic. 

ENTANGLEMENT VIA THREE CONCURRENT 
INTRACAVITY NONLINEARITIES 

We now turn our attention to a process in which the
entanglement is produced in a single nonlinear interac-
tion which combines three concurrent nonlinearities.
The system we investigate in this section is derived
from work by Pfister et al. [20], who raised the possi-
bility of concurrent parametric down conversion in a
single optical parametric amplifier (OPA). They also

X̂i Ŷ j

X̂1 Ŷ1

X̂2 X̂3 Ŷ2 Ŷ3

gave some solutions for equations of motion derived di-
rectly from the interaction Hamiltonian in the undeplet-
ed pump approximation, as well as experimentally ob-
serving triply coincident nonlinearities in periodically
poled KTiOPO4 [21]. 

The system has three inputs which interact with the
crystal to produce three output beams at frequencies ω0,
ω1 and ω2, which may be equal. The interactions are se-
lected to couple distinct polarisations, and the scheme
relies on tuning the field strengths in order to compen-
sate for differences in the susceptibilities since it is usu-
ally the case that χyzy ≠ χzzz. Note that x is the axis of
propagation within the crystal. The mode described by

 is pumped at frequency and polarisation (ω0 + ω1, y)
to produce the modes described by (ω0, z) and

(ω1, y), the mode described by  is pumped at

(ω1 + ω2, y) to produce the modes described by  and

(ω2, z), while the mode described by  is pumped

at (2ω1, z) to produce the modes described by  and

. The interaction Hamiltonian for the six-mode sys-
tem is then 

(16)

with the χj representing the effective nonlinearities. In
what follows, we will set χj = χ and the high frequency
input intensities as equal, with vacuum inputs at the
lower frequencies. These are the conditions that we
have previously found to give maximum violation of
the entanglement inequalities. 

The experimentally realistic case where this interac-
tion takes place inside a pumped Fabry–Perot cavity,
has been previously investigated theoretically by Brad-
ley et al. [5] and is currently under experimental inves-
tigation by Pfister et al. [22]. In the best case, where the
three pumping inputs and nonlinearities are equal, rela-
tively simple analytic expressions can be found for the
output spectral correlations equivalent to (3) by follow-
ing the usual linearised fluctuation analysis procedure.
We make the proviso that these are not valid in the im-
mediate region of the oscillation threshold, which oc-
curs at a pump amplitude of �th = γκ/2χ, where γ is the
cavity damping rate at the high frequencies and κ is the
low-frequency damping rate. Below threshold, the

steady-state solutions for the αj are all zero, while 

= �/γ. Above threshold these solutions become  =

κ/2χ and  = . We note here that, due to
the presence of the square-root, there is an ambiguity in
the sign of these solutions. However, closer analysis
shows that all must have the same sign, whether this is
positive or negative. The full spectral correlations have
been presented in [5] for the damping ratio γ/κ = 10 in
which case the maximum violation of the van Loock–
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â1
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ω/γ

3εc

1.2εc

0.9εc

Sinf(Xi) S
inf(Yi)

Fig. 2. The EPR spectral correlations, S inf( )S inf( ) of
the Aoki scheme, for different ratios of the pumping rates to
the critical threshold pumping rate. We have set µ = 2/3,
ν = 1/2, and the outputs are calculated via a linearised
fluctuation analysis of the standard OPO equations, with
γa = γb = 1 and κ = 10–2. The three curves are for different
ratios of the pumping rates to the critical threshold pumping
rate. All three correlations are equal for these parameters.
The value Sij = 1 defines the upper boundary for true tripar-
tite entanglement. 

X̂i Ŷ i
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Furusawa inequalities is found at zero frequency. These
zero-frequency correlations are then found as (where Sij

corresponds to the spectral output equivalent of Vij in-
side the cavity) 

(17)

When the damping ratio is changed so that κ/γ = 10, the
below threshhold results are unchanged, but above
threshold the spectra bifurcate so that the maximum vi-
olation is found at non-zero frequencies. In Fig. 3 we
present the minimum of the correlation functions (max-
imum violation of the inequalities) for each of these
cases. It is immediately obvious that the entanglement
persists much further above threshhold in the bifurcat-
ed case. As this is no longer close to zero frequency,
where technical noise can be a real problem, this may
be a real operational advantage 

The expressions for the EPR correlations are rather
more unwieldy and it is therefore not practical to give
these here. They are plotted for various ratios of the
pumping to the critical pumping rate in Fig. 4 and
Fig. 5. In the results of Fig. 4, γ = 10κ and we find that
the violation of the inequalities disappears rapidly
above the threshhold pumping value. On the other
hand, when κ = 10γ, as shown in Fig. 5, the spectra bi-
furcate and a large degree of violation is found in the
sidebands at well above threshhold. We also note here
that, above threshold, the output modes are macroscop-

Sij
below

0( ) 5
8κγχ� 4κ2γ 2

10κγχ� 7χ2
�

2
+ +( )

κγ χ�+( )2 κγ 2χ�+( )2
---------------------------------------------------------------------------------,–=

Sij
above

0( ) 5
κ2γ 2

3κ2γ 2
6κγχ� 19χ2

�
2

+ +( )
4χ2

�
2 κγ χ�+( )2

----------------------------------------------------------------------------.–=

ically occupied, with intensities |αj |2 = (� – �th)/χ, so
that, especially for the case with κ > γ, genuine contin-
uous-variable tripartite entanglement is potentially
available with intense outputs. 

CONCLUSIONS 

We have examined two different interaction
schemes in terms of their potential as sources of contin-
uous variable tripartite entanglement, in terms of both
the well-known van Loock–Furusawa correlations and
two three-mode EPR criteria which we have developed.
We find that both give broadly similar results for the
specific cases we have examined here as there is a sym-
metry which makes a simple choice of the quadrature
combinations possible. This may not always be the case

4

2

0 2 4

Minimum of Sij

ε/εc

γ/κ = 10

κ/γ = 10

Fig. 3. The Sij correlations as a function of the ratio of the
cavity pumping to the threshold value and for different ra-
tios of the cavity damping rates for the intracavity triply
concurrent scheme. The dashed line at 4 defines the upper
boundary for true tripartite entanglement. The parameter
values for the solid line were γ = 10, κ = 1 and χ = 10–2, and
for the dash-dotted line, γ = 1, κ = 10 and χ = 10–2. 
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Fig. 4. The spectral EPR correlations for different ratios of
the pumping rate to the critical pumping rate, for the intra-
cavity triply concurrent scheme. The parameter values are
γ = 10, κ = 1 and χ = 10–2. 
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Fig. 5. The spectral EPR correlations correlations for differ-
ent ratios of the pumping rate to the critical pumping rate,
for the intracavity triply concurrent scheme. The parameter
values are γ = 1, κ = 10 and χ = 10–2.
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for an arbitrary system. As for the actual schemes, we
have shown that the one which mixes the outputs of
three OPOs on beamsplitters and that in which the three
entangled modes are created in the one intracavity non-
linear material have similar performance except in the
far above threshold region. Which of these two
schemes is preferable for practical purposes would
seem to depend more on the robustness of the experi-
mental setup and the preferences of individual experi-
mentalists rather than any inherent advantages that ei-
ther may have. On the one hand, individual OPOs are
familiar technology while the type of crystal needed for
the concurrent scheme is relatively new technology. On
the other hand, it may prove easier to stabilise one cav-
ity rather than having to simultaneously stabilise and
synchronise three OPOs.
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