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Abstract. Quantum degenerate Fermi gases and Bose–Einstein condensates
give access to a vast new class of quantum states. The resulting multi-
particle correlations place extreme demands on the detection schemes. Here
we introduce diffractive dark-ground imaging as a novel ultra-sensitive imaging
technique. Using only moderate detection optics, we image clouds of less
than 30 atoms with near-atom shot-noise-limited signal-to-noise ratio and show
Stern–Gerlach separated spinor condensates with a minority component of only
seven atoms. This presents an improvement of more than one order of magnitude
when compared to our standard absorption imaging. We also examine the
optimal conditions for absorption imaging, including saturation and fluorescence
contributions. Finally, we discuss potentially serious imaging errors of small
atom clouds whose size is near the resolution of the optics.
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1. Introduction

In recent years atomic physics has made enormous progress in its ability to manipulate and
coherently control atoms. Since the first Bose–Einstein condensation (BEC) of dilute gases
in 1995 [1–3], ultra-cold atom samples have become an almost universal resource. Early
experiments studied BEC physics deep into the Thomas–Fermi regime using a rather large
number of atoms. More recently, the focus has shifted toward correlations, squeezing and
entanglement of small atomic samples in one, two or three dimensions [4–6]. In matter-wave
interferometers, atom number squeezing combined with atom shot-noise-limited imaging would
make Heisenberg-limited detection possible, where sensitivity scales with atom number rather
than its square root [7]. In order to probe these strongly correlated quantum states, it is essential
to use highly accurate and sensitive imaging methods [8].

The ultimate detector would be capable of imaging matter waves with single-atom
resolution in situ. Trapped atoms are readily detected using fluorescence techniques, as has been
demonstrated for magneto-optic traps [9], single dipole traps [10] and, more recently, optical
lattices [11, 12]. In these cases, the detected signal is dominated by trapping potential in the
presence of detection light, rather than the initial shape of the matter wave. In some cases, it is
already possible to image free single atoms, albeit some distance below the atom trap. Examples
include multi-channel plate detection of metastable helium [13] and fluorescence imaging with
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a light sheet [14]. In many cases, it would be desirable to image the atoms in situ, for example
in order to study the expansion of a BEC. To this end, a variety of imaging techniques have
successfully been demonstrated for large atomic samples. These include standard destructive
absorption [15], non-destructive dispersive dark-ground [16], pure phase-contrast [17],
diffraction-contrast [18] and spatial heterodyne imaging [19]. A conclusive comparison of
minimally destructive imaging techniques shows that they are largely equivalent [20]. In situ
imaging of very small atomic samples still remains an important challenge.

In this paper, we present resonant diffractive dark-ground imaging as a novel technique to
image extremely small atom numbers. Using dark-ground imaging, we can picture atom clouds
down to only 30 atoms using very moderate detection optics. We begin in section 2 with a con-
cise description of the absorption of light by an atom cloud including saturation. In section 3
we look at the standard absorption imaging, and use this in section 3.1 to derive an analytic
expression for the atom column density in absorption imaging fully taking into account the con-
tribution of fluorescence and saturation effects. This is followed by a brief discussion of noise in
section 3.2. We present a brief discussion of fluorescence imaging in section 4 and turn to dif-
fractive dark-ground imaging in section 5. We demonstrate an improvement of the picture qual-
ity by about an order of magnitude allowing us to detect atom clouds containing only a few tens
of atoms. In section 6 we discuss imaging errors, which can reduce the atom numbers detected
and lead to deformations of the apparent shape of an atom cloud. We conclude with a discussion
in section 7 of the optimal imaging conditions for both absorption and dark-ground imaging.

2. Absorption

As the probe beam propagates through the atom cloud along z, its intensity decays as dI
dz =

−n3(z)σ (z)I , where n3 is the density of atoms and σ(z) = σ0/[1 + s(z) + δ2] is the cross-
section containing the saturation parameter s(z), which becomes smaller as light travels across
the cloud. σ0 stands for the resonant cross-section at very low saturation parameters, which
contains corrections due to the structure of the excited state, and the different Zeeman sublevel
populations [21]. We define I0 and IT as the initial and transmitted intensity, respectively, s0 =

I0/Isat as the initial resonant saturation parameter and σ = σ0/(1 + s0 + δ2) as the initial cross-
section. Neglecting contributions from the fluorescence, we find the transmittance (T = IT/I0)

of a column density n as

T =
1 + δ2

s0
W

[
s0

1 + δ2
exp

(
s0 − nσ0

1 + δ2

)]
, (1)

where W is the Lambert function of the first kind and δ = f/1 f is the normalized detuning with
the half-width at half-maximum (HWHM) linewidth 1 f of the imaging transition at s0 � 1.
For small saturation parameters (s0 � 1) and/or low optical depths (nσ), (1) is equivalent to
the well-known Beer–Lambert law: n = −ln(T )/σ .

3. Absorption imaging

3.1. Signal in absorption imaging

The most common imaging technique in matter-wave optics is absorption imaging, where a
probe beam is shone onto the atomic cloud and then imaged onto a camera. As can be seen in
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Figure 1. A typical optical setup for absorption optics using a relay telescope
in the 4f configuration. Left to right, the probe beam (blue) is launched from a
single-mode optical fiber (black) and collimated by a first lens, after which it
interacts with the atomic cloud. Two sets of lenses relay the diffracted image
of the absorption (green), the fluorescence (red) and the probe beam (blue) to
a charge coupled device (CCD) camera. Here the absorption and probe beams
interfere to form, together with the fluorescence, the image of the absorption.
Often an additional microscope objective is used to magnify the image.

figure 1, the image on the camera has three components: the probe beam (blue), the diffracted
and refocused absorption (green), and the fluorescence (red). The probe beam and the absorption
are coherent with each other but incoherent with the fluorescence. Equation (1) describes the
loss of light in the probe beam, where the atom cloud forms a dip on a bright background.

A small fraction (�) of the fluorescence from the atoms is emitted into the solid angle of the
detection optics, where it reduces the absorption dip. On its way to the camera, a fluorescence
photon travels through a cone-shaped section of the atom cloud, where it might be absorbed. We
can neglect the radial distribution of the atom density in the cloud if the opening of the detection
cone over the length 1z of the cloud is small compared to the smallest transverse size 1ρ of the
cloud. For a given numerical aperture (NA) of the detection optics, this condition is fulfilled if
1ρ � NA 1z. In this case we can take into account the contribution of the fluorescence in the
differential equation as dI

dz = −n3(1 − �)σ(z)I . This modified differential equation takes into
account the reduction of the absorption dip at the camera due to the fluorescence including its
reduction by reabsorption as it travels across the atom cloud. If the optical depths (σn � 1)

are small, this equation holds true for any cloud shape. The relative intensity of the absorption
image at the camera (Tabs = IT/I0) is

Tabs =
1 + δ2

s0
W

[
s0

1 + δ2
exp

(
s0 − n(1 − �)σ0

1 + δ2

)]
. (2)

The magenta-colored line in figure 2 shows the signal strength of the absorption image
I0(1 − Tabs) as a function of the optical depth for our typical experimental conditions.

In a typical experiment, usually three pictures are taken: an absorption image, a reference
image, and a background image. For the absorption image, one shines the probe beam onto the
atoms and then images it onto the camera (Iabs). The reference image contains only the probe
beam (Iref). The background image (Ibgr) is taken without the probe beam or atoms. We can
then calculate, for each pixel, Tabs = (Iabs − Ibgr)/(Iref − Ibgr) and s0 = (Iref − Ibgr)/Isat.7 We can

7 If the probe beam contains a small but non-negligible fraction (α) of non-resonant light—such as the repumper or
a non-resonant background—then Tabs = (Iabs − Ibgr − α Iref)/[(1 − α)Iref − Ibgr] and s0 = [(1 − α)Iref − Ibgr]/Isat.
Note also that the quantum efficiency of the camera and the transmission of the detection optics need to be taken
into account for the saturation intensity.
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Figure 2. Signal strength in imaging: a plot of the signal intensity of absorption,
fluorescence and dark-ground images versus atom column densities. The left and
lower axes stand for the number of photons and atoms per pixel, respectively,
using the experimental parameters described below. The upper axis is the optical
depth in units of nσ , and the right axis is the image intensity relative to the
intensity of the probe beam, here I0 = Isat. Rhodamine —— signal in absorption
imaging [I0(1 − T )] using (2). Black —— full dark-ground signal according
to (7). Red - - - - approximation of the dark-ground signal for low absorbances
(nσ � 1) according to (8). - - - contribution of the fluorescence to the dark-
ground and absorption signals. Lime green — · — contribution to the dark-
ground signal by light, which was diffracted by the atom cloud. The parameters
chosen correspond to those of figures 6(a) and (b), which used π -polarized
light on the D2 transition of 87Rb with an effective pixel area of a = 6.8 µm2

and an exposure time of τ = 200 µs. We set δ = 0, s0 = 1 and NA = 0.15 and
thus � = 0.005. The effective pixel size was 2.6 µm. Furthermore, we assume
that the cloud is well resolved by the imaging optics and that its shape obeys
1ρ � NA 1z.

use (2) to calculate the column density if the size of the cloud is larger than the diffraction limit
of the resolution of the imaging optics:

n =
1 + δ2

(1 − �)σ0

[
− ln(Tabs) +

s0

1 + δ2
(1 − Tabs)

]
. (3)

This equation includes the saturation caused by the probe beam and its reduction along the
path through the cloud, as well as the imaged fluorescence including its reabsorption by the
atoms as it travels toward the camera. For weak absorbance (A ≡ 1 − Tabs � 1) and/or low
saturation (s0 � 1) equation (3) turns into a modified Beer–Lambert law: n = −ln(T )/σ ′,
with the effective absorption cross-section σ ′

= (1 − �)σ0/(1 + s0 + δ2). For A � 1, the column
density is linear in the absorbance: n = A/σ ′.

Note that even at modest absorbances and saturations this approximation slightly
overestimates the column densities, thus distorting the shape of the imaged atom cloud. Even
for a saturation as low as s0 = 0.1 and a transmission of T = 0.1, using n = −ln(T )/σ ′ instead
of (3) results in an error of +6%.

New Journal of Physics 13 (2011) 115012 (http://www.njp.org/)

http://www.njp.org/


6

3.2. Noise in absorption imaging

3.2.1. Photon shot-noise. Due to the Poissonian statistics of photons in the coherent probe
beam, a pixel on the camera detecting on average N photons has a photon shot-noise of
Nnoise =

√
N . As stated earlier, three pictures are taken: an absorption image, a reference image

and a background image. The noise due to the background image can normally be neglected.
Using (3) and its derivatives with respect to the photon number in the absorption and reference
images times the square root of photon number itself, one finds for the photon shot-noise limit

SNRabs =

√
N0

(
Tabs[s0(1 − Tabs) − ln(Tabs)]2

1 + Tabs[1 + s0(4 + s0 + s0Tabs)]

)1/2

(4a)

=

{√
N0/ 2 [A + (A/2)2], for A � 1,

√
N0Tabs[s0−ln(Tabs)], for Tabs � 1,

(4b)

where N0 is the number of photo-electrons per pixel detected in the reference image. We neglect
the contribution of camera noise. Note that using numerical methods to model the reference
image [22] can largely remove the contribution of the reference image to the photon shot-noise
of individual pixels. This improves the SNRabs for A � 1 by a factor of

√
2.

In figure 3, the magenta-colored lines show the photon shot-noise-limited signal-to-noise
ratio (SNR) as a function of optical depth for our typical experimental parameters. The solid line
represents the full expression (4a), whereas the dashed lines show the approximate expressions
of (4b). Figure B.1 shows the same plot for a much increased numerical aperture (NA = 0.59
and � = 0.09) as used in [4]. Clearly, the NA of the objective has very little influence on the
SNR in absorption imaging. The main effect of the increased resolution is that smaller cloud
sizes can be resolved, which at a given minimal optical density contain fewer atoms.

3.2.2. Technical noise. In most experiments the detection is limited by fringes caused by small
reflections from optical elements in the beam path. A reflection resulting in an intensity of
10−5 I0 at the camera would already cause fringe noise equivalent to the photon shot-noise
caused by an average 25 × 103 photons. Clearly, it is very difficult to reach the photon shot-
noise-limited regime. Great care has to be taken to avoid unnecessary optical surfaces and
scatterers, and to use good antireflection coatings where possible. However, much of the fringe
problem can be alleviated by using numerical methods to model and partially remove the
interference fringes [22].

Another potential source of noise is the camera itself. Conversion and amplification noise,
dark-counts and quantum efficiency all contribute to the overall SNR. A detailed description
would exceed the scope of this paper. Absorption imaging does not pose very stringent
requirements on the camera since in most cases the SNR is limited by photon shot-noise due to
the large number of photons per pixel.

4. Fluorescence imaging

In fluorescence imaging, an atomic cloud is illuminated by a probe beam and the emitted
fluorescence is imaged onto a camera using a relay telescope (figure 4). Since the collection
efficiency (�) is proportional to the square of the numerical aperture, it is important to place a

New Journal of Physics 13 (2011) 115012 (http://www.njp.org/)

http://www.njp.org/


7

0.1 1 10 100

1

101

102

0.01 0.1 1

Atoms per Pixel

Si
gn

al
to

N
oi

se
R

at
io

Optical Depth n

Figure 3. Photon shot-noise limited SNR: a plot of the photon shot-noise-limited
SNR versus the optical depth for dark-ground, fluorescence and absorption
imaging of an atom cloud. The lower axis represents the number of atoms per
pixel and the upper axis the optical depth in units of nσ . Rhodamine ——
SNR of absorption imaging according to (4a). · · · · · · Approximations of the
SNR of absorption imaging for nσ � 1 and T � 1, respectively, according to
(4b). Black —— SNR of dark imaging for low absorbances according to (10).
Red - - - - SNR of the fluorescence alone. Lime green — · — SNR of the light
that was diffracted by the atom cloud. The parameters are the same as those of
figure 2.

f f2 f

C
C
D

Figure 4. A typical setup for fluorescence imaging. Left to right, the probe beam
(blue) is launched from a single-mode optical fiber (black) and collimated by a
first lens, after which it interacts with the atomic cloud. Two sets of lenses then
image the fluorescence (red) onto a CCD camera.

large lens close to the atoms. For low optical depths (nσ � 1), the total photon flux at the camera
is proportional to the atom number. At higher optical depth, the reabsorption of the fluorescence
and the attenuation of the probe beam have to be taken into account. In order to avoid a variation
of the saturation parameter across the image, we will assume that the probe beam is collinear
with the imaging axis. The only difference between the absorption signal (Tabs) in (2) and the
coherent transmittance (T ) in (1) is that in Tabs the fluorescence at the camera has been taken
into account, which therefore can be calculated as the difference between the absorption signal

New Journal of Physics 13 (2011) 115012 (http://www.njp.org/)

http://www.njp.org/


8

C
C
D

f fff

Figure 5. A typical optical setup for Fourier imaging using a relay telescope
in the 4f configuration. The probe beam (blue) is launched from a single-mode
optical fiber (black) and then collimated, after which it interacts with the atomic
cloud. A first set of lenses collimates the fluorescence (red) and the diffracted
image of the absorption (green). The same lens focuses the probe beam (blue)
to a spot, at which point it is (partially) blocked by an opaque disc. A second
set of lenses then images the fluorescence and diffracted probe light, where the
latter interferes with the non-diffracted probe light that was transmitted through
the opaque disc to form the image on the CCD camera. Often an additional
microscope objective (not shown) is used to magnify the image.

(Tabs) and the coherent transmittance (T ):

Ifluo = I0(Tabs − T ). (5)

For small absorbances this reduces to Ifluo = �nσ I0. In this regime, the SNR is SNRfluo =
√

N0�nσ . The dashed red lines in figures 2 and 3 show the intensity of the fluorescence
image and its SNR as a function of the optical depth for our typical experimental parameters.
Note that at higher optical depths the signal drops due to the reabsorption of the fluorescence
combined with a reduction in the saturation parameter. The fluorescence signal is usually small
compared to the absorption signal. However, in dark-ground imaging at very low optical depths,
the fluorescence signal can become dominant (see figure 2).

5. Dark-ground imaging

In section 3.2.1, we have seen that the SNR in absorption imaging is determined by the photon
shot-noise of the probe beam. Using optical Fourier filtering, the noise contribution of the probe
beam can be greatly reduced, albeit at the cost of also reducing the signal itself.

By placing a small opaque disc into the center of the Fourier plane of the image (see
figure 5), the probe beam can be reduced in intensity or even blocked completely. In order to
calculate the resulting image, one has to sum coherently the partially blocked light and the
diffraction of the absorption and then add incoherently the fluorescence.

Let us consider as a probe beam a plane wave of initial intensity I0, which reduces to
Itr = TI0 after interaction with the small atom cloud. In order to study its propagation, we have
to consider its electric field amplitudes. Just after the atoms, the probing wave can be thought of
as having two components: the plane wave of the probe beam (E0) plus the localized wave of the
absorption (Eabs) that is 180◦ out of phase with respect to the probe beam. The field amplitude
of the probe beam is E0 =

√
2µ0cI0 and that of the absorption is

Eabs = (1 −
√

T )E0. (6)
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After the first lens—in the Fourier plane of the image—the plane wave of the probe beam
focuses to a small spot, whereas the absorption is spread out. If the opaque disc is much larger
than the focused probe beam though much smaller than the diffraction from the atoms, then it
leaves the absorption untouched and selectively removes the intensity of the probe beam. In the
image plane, the image of the atom cloud appears bright on a dark background. Assuming that
transmission through the opaque disc is negligibly small, the image intensity in dark-ground
imaging can be written as

Idark = I0[(1 −
√

T )2 + (Tabs − T )], (7)

where the (1 −
√

T )2 term originates from the diffraction signal and the (Tabs − T ) term from
the contribution from the fluorescence. With (1) we can then calculate the intensity of the full
dark-ground signal, including the contribution from the fluorescence and the spatially varying
saturation parameter. The result is shown as the solid black line in figure 2 using our typical
experimental parameters. The dashed green line contains the pure dark-ground signal without
the contribution from fluorescence and the dashed red one the fluorescence only.

In principle, (7) allows us to determine the column density of atoms from the dark-ground
image. However, in order to derive an analytic expression for the atom column density, we have
to assume that the optical depth is relatively low (nσ0 < s). The intensity of the image is

Idark = I0

[(
1

2
nσ

)2

+ �nσ

]
. (8)

For intermediate optical depths [(1 + s0 + δ2) > nσ0 � 4�], the signal is dominated by the
term stemming from diffraction of light by the atoms: Idark = I0(n σ)2. For very low optical
depths (nσ � 4�), the fluorescence term dominates: Idark = I0 nσ . Figure 2 shows the full
expression (7) as a solid black line and the approximation (8) as a dashed black line.

The atom column density from a dark-ground image at low optical depth (nσ < 1),

including fluorescence and dark-ground contributions, is

n =
2

σ

(√
Idark

I0
+ �2 − �

)
. (9)

Note that one requires knowledge of neither the quantum efficiency of the camera nor the
transmission of the optics in order to calculate the atomic column density in dark-ground
imaging.

5.1. Noise in dark-ground imaging

The signal from absorption imaging as seen in figure 2 is clearly much larger than that from
dark-ground imaging. Absorption imaging, however, has large shot-noise due to the bright
background of the image, which dark-ground imaging strives to eliminate. The photon shot-
noise-limited SNR at low optical depth (nσ � 1) can be approximated as

SNRdark =

√
N0

√
(nσ)2 + �nσ . (10)

This equation is shown for our standard experimental parameters as the solid black line in
figure 3, which depicts the contribution from the fluorescence term (�nσ) as a dashed red line
and the one from the diffracted light (nσ)2 as a dashed green line. For moderately low optical
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depths (� � nσ � 1) , the diffraction term dominates. For very low optical depths (nσ � �),

the signal originates mainly from the fluorescence term.
Figure B.1 shows the same plot as figure 3 for a much increased numerical aperture

(NA = 0.59 and � = 0.09) as used for example in [4]. For a given optical density, the objective
with larger NA collects a larger fraction of fluorescence, resulting in a higher SNR, especially
at low optical densities. Furthermore, the higher resolution means that smaller cloud sizes can
be resolved, which at a given minimal optical density contain fewer atoms.

5.2. Technical noise in dark-ground imaging

The preceding discussion focused on the photon shot-noise limit. As mentioned in section 3.2.2
for absorption imaging, it is very difficult to avoid technical noise such as spurious reflections
and scattering by dust particles. Dark-ground imaging has the additional advantage of filtering
out much of the technical noise. If, however, there is a remainder of this technical background
present in the image, it will interfere with the signal of dark-ground imaging. Since the phase of
the scattered background will be unknown and may vary spatially, this can cause considerable
deterioration of the image.

5.3. Experimental dark-ground imaging

A striking example of the advantage of dark-ground imaging over absorption imaging can be
seen in figure 6, demonstrating an increase in the SNR by almost one order of magnitude.
Figure 6(a) shows an absorption image of 300–600 atoms with an SNR of about two. The
atom clouds in the dark-ground images of figure 6(b) contain only about half as many atoms.
The SNR however, is about five times better than that in absorption imaging. Both pictures were
taken under the same imaging conditions. Despite figure 6(c) containing only 27 and 30 atoms, it
achieves an SNR of 5, which is of the order of the atom-shot noise. This is especially impressive
since the numerical aperture in the last image was limited to NA = 0.1, corresponding to a
fluorescence collection efficiency of only 0.25%. It should also be noted that the imaging optics
were constructed from standard off-the-shelf optics and had a working distance of 95 mm (see
section A.1). It is worth noting that one can easily and reproducibly switch between dark-ground
and absorption imaging simply by changing the angle of the probe beam and thus its position
relative to the opaque disk.

In figure 7 we compare the atom numbers detected via dark-ground and absorption imaging
in the diffraction-limited regime (nσ = 0.2–1.2), and find excellent agreement between the two
methods. For each data point, we switched repeatedly between the two imaging techniques,
taking a total of 250 pictures. Again, the only difference between the absorption and dark-
ground images within one dataset was the angle of the probe beam.

As can be seen in figure 8, we also verified the dependence of the detected atom number
in (9) on detuning (δ) and saturation (s0). Figure 8(a) shows experimentally that the atom
number calculated for dark-ground imaging according to (9) does not depend on the saturation
parameter within a range of s0 = 0.05–2. Figure 8(b) depicts a frequency scan over the atomic
line. For this we scanned the detection frequency over the resonance, taking a total of 117
images. We then fitted a Gaussian to each image and calculated the ‘atom number’ using (9)
with the detuning set to zero (δ = 0). Fitting a Lorentzian line-shape to the data, we find a
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a) Absorption Imaging b) Dark-Ground Imaging

(573, 541, 295) atoms (169, 250, 149) atoms

64 µm 50 µm

(7, 23, 34) atoms

42 µm

c) Dark-Ground Imaging

Figure 6. Images of spinor 87Rb condensates after Stern–Gerlach separation. The
exposure time was 200 µs with π -polarized light at s = 1 on the F = 2 → 3
transition of the D2 line. (a) shows the transmittance T of an absorption image
as described in section 3.1. The peak absorbance is about A = 0.1. (b) is the
photon count in dark-ground images with a peak count of 200 photons per pixel
corresponding to A = 0.06. (c) is the raw image of dark-ground imaging with a
peak count of 60 photons per pixel corresponding to A = 0.02. The lowest atom
number in the image corresponds to our detection limit of about seven atoms at
an SNR of one. The only difference between the imaging conditions of (a) and
(b) is the angle of the probe beam, which was changed by a few degrees for it
to miss the dark spot and thus switch from dark-ground to absorption imaging.
In all cases the dark spot had a diameter of 500 µm. Note that the dark-ground
image contains far fewer atoms than the absorption image.

linewidth of 4.1 MHz, which is—due to saturation broadening—30% larger than the natural
linewidth of the D2 transition in rubidium.

It is interesting to note that the optical setup of this experiment can also be used for non-
destructive imaging of dense atom clouds [16]. However, here we are concerned with low optical
depths, where the contribution of the refractive dark-ground signal rapidly tends to zero because
the refraction becomes too small to cause the light to be refracted around the dark spot. This
can be seen in figure 8(b), where the signal strength fits nicely to the Lorentzian line shape
predicted by (9). Complications due to refraction at higher optical depths can be avoided by
resonant dark-ground imaging (δ = 0).

6. Imaging errors

In both absorption and diffractive dark-ground imaging, it is important to understand how
imperfections affect the shape of an image or the number of atoms detected. There are two
different types of imaging errors: aberrations and diffraction. Aberrations distort the image:
the shape of a small atom cloud might appear deformed or blurred, although generally
no photons are lost. Diffraction causes part of the imaging information (photons) to be
filtered out. The main effect of aberrations is to blur the image without losing photons. This
does not affect fluorescence or absorption imaging at very low densities. At higher densities
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Figure 7. Direct comparison of the number of atoms detected with absorption
and dark-ground imaging. Red —— is the fit of a straight line to the data
resulting in a slope of 1.0. The error bars are the standard error of the mean
over 60 experimental realizations per point plotted. The main contribution to
the error is probably a drift of the atom number when switching between the
imaging techniques. The saturation parameter was on average s0 = 0.36 and the
detuning δ = 0. The optical depth (nσ) ranged from 0.2 to 1.2, which means that
the dark-ground imaging was performed in the diffraction-dominated regime.

and for dark-ground imaging though, the procedure for retrieval of atom column density
from the images is nonlinear (see (3) and (9)). Any non-negligible aberration will result in
an underestimation of the atom number. Since aberrations can be avoided by a high-quality
objective and are difficult to treat generally, we will focus here on diffraction effects.

The diffracted image from a small atomic cloud evenly illuminates the objective lens.
The observed image is therefore an Airy disc, which—when fitted with a Gaussian—gives the
resolution limit of the objective as

wmin = 0.595
λ

NA
. (11)

wmin is the 1/e2 radius of a Gaussian fitted to the image of an object of negligible size. NA = ρ/ f
is the numerical aperture of the objective and ρ is the radius of its limiting aperture. The solid
green line in figure 9(a) shows this for our experimental conditions.

In order to investigate this effect more quantitatively, we have produced atom clouds close
to the resolution limit of our imaging optics. We then artificially reduced the aperture of our
imaging optics by placing an iris just after the second set of lenses. Figure 9(a) shows the 1/e2

radii of the fit of a Gaussian to the raw images as a function of numerical aperture. The solid
green line shows the diffraction limit for a given numerical aperture according to (11). For
small apertures, the images of the clouds are clearly diffraction limited. The e−2 radii of the
fully resolved images are 1x = 3.6 µm and 1y = 5.2 µm.

As mentioned earlier, the diffraction-limited image of an object is not ‘smudged’ by the
limiting aperture but filtered. Figure 9(b) shows the loss in the integrated image intensity as

New Journal of Physics 13 (2011) 115012 (http://www.njp.org/)

http://www.njp.org/


13

Saturation [s0]

D
et

ec
te

d 
N

um
be

r 
of

 A
to

m
s

800

600

400

200

0
0 0.5 1.0 1.5 2.0

a)

0

Detuning [MHz]

R
el

at
iv

e 
Si

gn
al

 S
tr

en
gt

h b)1.0

0.5

-10 -5 0 5 10

Figure 8. (a) Atom number in diffractive dark-ground imaging as a function of
the saturation parameter from s0 = 0.05 to s0 = 2. The intensity of the probe
beam was determined separately for each dark-ground image by multiplying
the average intensity of the reference image by the measured extinction ratio
of the dark spot (Iccd/I0 = 9500). The atom number was determined using (9).
(b) Signal strength of diffractive dark-ground images versus detuning of the
probe laser beam. The signal strength was determined using (9) with δ = 0. Lime
green —— fit of a Lorentzian line to the data. The fitted half-width of 4.1 MHz is
close to the saturation-broadened linewidth at s0 = 1. The atom cloud contained
about 7500 atoms with a resonant optical depth of nσ0 ' 2. In both plots, the
error bars correspond to the standard error of the mean of about 30 dark-ground
images per plotted point.
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Figure 9. Effect of numerical aperture on dark imaging. (a) Size of the detected
image as a function of numerical aperture. Lime green —— diffraction limit
according to (11). Blue - - - - guide for the eye with the upper and lower lines
standing for 1x and 1y, respectively. (b) Integrated intensity of the images as
a function of numerical aperture. Blue —— truncation of a Gaussian beam by
the limiting aperture, calculated for a measured beam waist of 3.6 µm × 5.2 µm.
Red —— calculated truncation by the limited numerical aperture for a beam size
of the calculated size of the atom cloud, which is

√
2 times larger than the beam

waist for the blue line. The error bars are the standard error of the mean of about
30 realizations for each point.

a function of numerical aperture. We can calculate the expected reduction in integrated signal
intensity by assuming that the images taken at large aperture represent a real object. We then
propagate its shadow until the objective and integrate the transmitted intensity over the limiting
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aperture. The blue line in figure 9(b) shows this for object sizes 1x = 3.6 µm and 1y = 5.2 µm,
which we determined from figure 9(a). The theory is clearly in good agreement with the data.

Figure 9, however, shows the sizes of the images, which are not necessarily equal to those
of the atom clouds. For moderately low optical depths (1 > nσ � 4�), the diffracted signal
is proportional to the square of the optical depth (see the discussion below (8)). Therefore, a
Gaussian-shaped cloud produces a Gaussian-shaped absorption shadow with a radius that is√

2 smaller than the radius of the atom cloud. The red line in figure 9(b) shows the relative
signal strength calculated without taking into account the increased diffraction for optically thin
clouds. Clearly, the aperture of the imaging optics truncates the imaging beam much more than
one would trivially expect from the size of the atomic cloud.

It should be noted that the reduction in the number of atoms detected can also lead to
distortions of the cloud shape. Take the example of an elongated BEC that is well resolved in
the axial direction and just below the resolution limit in the radial direction at the center of the
BEC. Then the fraction of atoms detected will be larger in the center of the cloud as compared
to the ends. This is because as one moves along the axis of the BEC the radial size of the BEC
becomes smaller with the axial distance to the centre. Therefore, it becomes less resolved and a
smaller fraction of the real atom number is detected. Since these arguments hold true for both
absorption and dark-ground imaging, experimenters have to take great care when interpreting
images of optically thin objects taken close to or below the diffraction limit of their optics. The
resolution limit in this case is then 1ρmin = 0.84 λ

NA .

7. Optimal conditions for the imaging of small atom number clouds

7.1. Optimal detuning and saturation

We now consider optimal conditions for the imaging of atom clouds with low atom numbers,
where the corresponding optical depths are small (nσ0 � 1). Whereas [20] discusses minimally
destructive imaging, here we are interested in measuring the shape of an atom cloud with the
best SNR possible.

7.1.1. Absorption imaging. For small absorbances A ' nσ ′
� 1, we can rewrite (4b) as

SNRabs =
n(1 − �)σ0

1 + s0 + δ2

√
s0 Nsat

2
, (12)

where Nsat ≡ N0/s0 is the number of photo-electrons per pixel in the reference image at
saturation intensity (I0 = Isat). Optimal detuning and saturation are therefore δ = 0 and s0 = 1,
respectively. As mentioned earlier, numerical methods to model the reference image [22] can
largely remove the photon shot-noise of the reference image, thus improving SNRabs by a factor
of

√
2.
Experimenters often use a weak probe beam in order to be able to neglect saturation effects.

Using, for example, s0 = 0.1 instead of the optimal s0 = 1 reduces SNR by almost a factor of
two.

7.1.2. Dark-ground imaging. For moderately low optical depths (1 > nσ � �) the contribu-
tion from the dark-ground term (nσ)2 dominates over that from the fluorescence term (�nσ)2

New Journal of Physics 13 (2011) 115012 (http://www.njp.org/)

http://www.njp.org/


15

and we can rewrite (10) as

SNRdark =
nσ0

1 + s0 + δ2

√
s0 Nsat, (13)

which differs from SNRdark in (12) only in that it is a factor of
√

2 larger. The optimal parameters
for detuning and saturation are again δ = 0 and s0 = 1, respectively.

At even lower optical depths the contribution from fluorescence becomes more important,
and for nσ0 � � the term for fluorescence in (10) dominates the SNR. The SNR is then
proportional to

√
s0, and the image quality continues to increase with the saturation parameter

until it becomes limited by the technical noise.

7.2. Optimal exposure time

Let us now optimize the detection for the lowest atom number in an atom cloud, which initially
has a radius ρ. On the one hand, it is desirable to make the cloud as small as possible, because the
SNRs in (12) and (13) are proportional to the column density. On the other hand, we would like
to illuminate the atoms for as long as possible, because the SNRs are proportional to the square
root of τ . Unfortunately, the scattered photons cause a random walk of the atoms in velocity
space orthogonally to the imaging beam8, resulting in diffusion of the atoms by a distance

1ρ =
vrec

3

(
20s0τ

3

1 + s0 + δ2

)1/2

(14a)

=
vrec

3

√

0τ 3, for δ = 0 and s0 = 1, (14b)

where 0 is the upper state decay rate and vrec = h̄k/m is the recoil velocity.

A cloud with a radius ρ0 before the imaging will therefore have a size of ρ ′
=

√
1ρ2 + ρ2

0

after interaction with the probe beam. Using this size in order to calculate the SNR in (12)
or (13) and then optimizing the exposure time, we find that the optimum exposure time for both
dark-ground and absorption imaging is

τopt =

(
9ρ2

0

2v2
rec0

)1/3

. (15)

A more thorough analysis requires one to calculate the average of the signal over the
expansion time rather than its final size only. In absorption imaging, one then finds a slightly
longer optimal expansion time of τ ′

opt = 1.46τopt, resulting in an increase in the fitted cloud size
by 11% during the imaging process. For an exposure time of τopt, the fitted cloud size increases
by only 5%. One also finds that even if the initial and final clouds are of Gaussian shape, the
final image will not be Gaussian, since the image is the result of the sum over Gaussians of
increasing size. Similar arguments apply to the inverted parabola of condensates. In absorption
imaging, the exposure time does not affect the atom number as detected by integrating the signal.
A Gaussian fit will underestimate the atom number by 0.5% at τopt, by 3% at τ ′

opt, and by 8%
at 2τopt.

8 The acceleration of atoms toward the camera due to light pressure can usually be neglected due to the Rayleigh
range of imaging optics being much larger than the resolution.

New Journal of Physics 13 (2011) 115012 (http://www.njp.org/)

http://www.njp.org/


16

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.5

1.0

2.0

5.0

10.0

Numerical Aperture

M
in

.d
et

ec
ta

bl
e

A
to

m
N

nu
m

be
r

Figure 10. Plot of the minimum detectable atom number in an 87Rb atom
cloud with SNR = 1 at the central pixel assuming optimal imaging parameters
using (15), δ = 0 and s = 1: Rhodamine —— absorption, red - - - - fluorescence
and black —— dark-ground imaging.

In dark-ground imaging, the photon shot-noise-limited SNR continues to increase with the
exposure time but saturates quickly after a few τopt. At τ = τopt, the SNR reaches 81% of its
maximum. The fitted cloud size increases by only 5% and the atom number calculated by a
Gaussian fit using (9) stays accurate to within 1%. At τ = τ ′

opt, the SNR reaches 93% of its
maximum value, the apparent cloud size increases by only 9%, and the atom number calculated
from a Gaussian fit using (9) stays accurate to within 5%.

7.3. Optimal size of the dark spot and probe beam

As pointed out in section 5, the dark spot has to be much larger than the focal spot of the probe
beam, but much smaller than the collimated diffraction from the atom cloud. The size of the
dark spot therefore imposes a lower limit on the size of the probe beam and an upper limit on
the size of the atom cloud:

w0 �
f λ

πwdark
� wprobe, (16)

where wprobe is the 1/e2 radius of the probe beam and w0 is the 1/e2 radius of the image of
the cloud. Since in practice one is usually limited by optical fringes and scattered light, it
is advantageous to use a small wprobe and to choose a much larger wdark than suggested by
the right side of the inequality. Inserting our standard conditions (λ = 780 nm, f = 95 mm,
wdark = 200 µm and wprobe = 1 mm) into (16), we find for the cloud size w0 � 120 µm � 1 mm.

7.4. Optimal cloud size

If we input the optimal expansion time, saturation parameter and detuning into (12) or (13),
we find SNRopt ∝ ρ

−2/3
0 . Both for absorption imaging and in the diffraction-dominated regime

of dark-ground imaging, it is therefore desirable to make the atom cloud as small as possible.
However, as seen in section 6, care has to be taken to stay well within the resolution limit of the
imaging optics.
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7.5. Minimum detectable atom number

Assuming that the atom cloud is slightly (2×) larger than the optical resolution9, we can
calculate the optimum exposure time 1.5τopt for absorption and dark-ground imaging from (15).
We set the pixel size equal to the optical resolution. We insert these conditions into the SNR
for the central pixel in absorption imaging (4a) and dark-groud imaging (10). Figure 10 shows
the result of setting SNR = 1 for the central pixel and solving numerically for the atom number.
In interpreting the results, care has to be taken because the validity of the equations for the
absorption and dark-ground images relies on the coherent addition of the contribution of many
atoms, whereas the description of fluorescence contribution is valid down to a single atom.
For the parameter regime chosen here, the dark-ground signal is dominated by the contribution
from the fluorescence and reaches the single-atom limit at about NA = 0.45. Note that over the
whole range dark-ground imaging (black) can detect far fewer atoms than absorption imaging
(magenta).

8. Conclusions

In this paper, we demonstrated and analyzed a novel imaging technique—diffractive dark-
ground imaging—and showed experimentally that using very moderate detection optics (NA =

0.1) it can detect down to a few tens of atoms with near-atom shot-noise-limited precision. Using
high-NA optics, in situ dark-ground imaging will be possible for the first time with single-atom
resolution.

We also analyzed absorption imaging and presented for the first time an analytic expression
for the atom column density from absorption images, including saturation and fluorescence
effects. We pointed out some potentially serious imaging errors and how to avoid them.
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Appendix A. Experimental setup

A.1. Imaging optics

We use a relay telescope that consists of two identical sets of off-the-shelf achromatic lenses
(see figures 1 and 5 ) followed by a microscope objective and the CCD camera. Each of the two
sets of lenses consists of an achromatic doublet (Melles-Griot, LAO-160.0-31.5-780, effective
diameter 28.35 mm, focal length f = 160.0 mm) and a companion meniscus lens (Melles-
Griot, MENP-31.5-6.0-233.6-780, f = 233.6 mm)10. We place the meniscus 1 mm after the

9 Note that as the atom number approaches unity the diffraction part of (7) is strongly reduced, since the size of a
single atom is not well defined. However, for clouds of a few atoms this contribution is already negligible.
10 The part-numbers and trade names used in this paper are for identification purposes only and do not constitute
an endorsement by the authors or their institutions.
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Figure B.1. Signal strength in imaging: a plot of the signal intensity of the
absorption, fluorescence and dark-ground images versus atom column densities.
The left and lower axes stand for the number of photons and atoms per pixel,
respectively, using the experimental parameters described below. The upper axis
is the optical depth in units of nσ , and the right axis is the image intensity
relative to the intensity of the probe beam, here I0 = Isat. Rhodamine ——
signal in absorption imaging [I0(1 − T )] using (2). Black —— full dark-
ground signal from (7). Black - - - - approximation of the dark-ground signal
for low absorbances (nσ � 1) according to (8). Red - - - - contribution of the
fluorescence to the dark-ground signal. Lime green — · — contribution to the
dark-ground signal by the light that was diffracted by the atom cloud. The
parameters are the same as in figure 2, except for the numerical aperture and
thus collection efficiency, which are here NA = 0.59 and � = 0.09, respectively.
The pixel size is 1 µm.

doublet, thus reducing the total focal length to 95.5 mm. For magnification, we use DIN
Microscope Objectives (Edmund Optics) that provide us with magnifications M = 10 (NT43-
907) and M = 4 (NT38-341). The effective numerical apertures are NA = 0.15 and NA = 0.08,
respectively. The collection efficiencies are � = 0.5% and � = 0.25%. In some of the images,
2 × 2 binning in the camera was employed, resulting in an effective magnification of 5× and an
effective pixel size of 2.6 µm.

For dark-ground imaging, a dark spot (Melles–Griot) is placed between the two sets of
lenses in the relay objective. The mask consists of an antireflection-coated window of diameter
30 mm and thickness 2 mm with an opaque disc in its center. The disc is made of chrome-
LRC and has optical density OD > 4 and reflectivity R < 15% at 780 nm. The diameters of the
dots on the mask range from 20 µm to 5 mm. In order to minimize scattering and interference,
the diameter of the probe beam was kept as small as possible, typically 2 mm. Note that one
can change between dark-ground and absorption imaging simply by changing the angle of the
imaging beam and thus whether or not it is blocked by the dark-ground mask.

Our camera is the Andor iKon-M (DU934N-BR-DD) low-noise CCD camera. The pixel
size is 13.3 mm × 13.3 mm image area. The well depth is 100 000 electrons with a dynamic
range of 65 535. The quoted quantum efficiency is 95% at 780 nm.
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Figure B.2. Photon shot-noise limited SNR: a plot of the photon shot-
noise-limited SNR versus the optical depth for dark-ground, fluorescence and
absorption imaging of an atom cloud. The lower axis represents the number
of atoms per pixel and the upper axis is the unsaturated resonant optical depth
nσ0. Rhodamine —— SNR of absorption imaging according to (4a). Rhodamine
· · · · · · approximations of the SNR of absorption imaging for nσ � 1 and
T � 1, respectively, according to (4b). Black —— SNR of dark imaging for
low absorbances according to (10). Red - - - - SNR of the fluorescence alone.
Lime green — · — SNR of the light that was diffracted by the atom cloud. The
parameters are the same as in figure B.1. They are the same as in figure 3,
except for the numerical aperture and thus collection efficiency, which are here
NA = 0.59 and � = 0.09, respectively. The pixel size is 1 µm.

We image on the F = 2 → F = 3 transition of the D2 line in 87Rb at 780 nm. The images
presented in the paper were taken with an expansion time of 1.5–2.5 ms and exposure times of
100–200 µs.

A.2. Low atom number generation

To reach the desired atom number, we load for 7–20 s an atom flux of 2 × 108 atom s−1 from
a 2D-MOT into the 3D-MOT (B ′

ρ = 4 G cm−1). After compression, optical molasses, and
transfer to the TOP trap (B ′

ρ = 56 G cm−1, BTOP = 40 G) we find about 2 × 109 atoms in the
|F = 2, mF = 2〉 state at a temperature of about 100 lK. The quadrupole field is then ramped
up to 216 G cm−1 in 15 s. We then ramp in 25 s the TOP field down to BTOP = 4 G. Finally,
we ramp in 4 s the TOP field down to BTOP = 70–100 µG, resulting in trapping frequencies of
up to ωρ/2π = 700 Hz and ωz/2π = 2 kHz. This procedure reliably produces BECs of tens to
hundreds of atoms even without using RF-induced forced evaporation. If we wish larger BECs
we choose larger TOP field amplitudes and evaporate the atoms using an RF-field that is ramped
from 50 to 2.2 MHz in 25 s. During the switching-off of the quadrupole field, we can apply a
rapid sweep of the magnetic field, which for very low BTOP partially depolarizes the sample.
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The distribution among the mF states can be adjusted by changing the duration and magnitude
of the sweep.

Appendix B. Additional graphs

B.1. Large NA optics

Here, we re-plot figures 2 and 3 for the objective used in [4], which has a diffraction-limited
numerical aperture of NA = 0.59 and a collection efficiency of � = 0.09, resulting in a
resolution of 1.1 µm at 780 nm (figures B.1 and B.2). The pixel size is set at 1 µm. The minimum
detectable optical depth improves by a factor of ten as compared to our previous experimental
parameters (see figure 3). Single-atom detection should be possible with this objective.

References

[1] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687–90
[2] Davis K, Mewes M, Andrews M, van Druten N, Durfee D, Kurn D and Ketterle W 1995 Phys. Rev. Lett.

75 3969–73
[3] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198–201
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[6] Fölling S, Gerbier F, Widera A, Mandel O, Gericke T and Bloch I 2005 Nature 434 481–4
[7] Bouyer P and Kasevich M A 1997 Phys. Rev. A 56 R1083–6
[8] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885–964
[9] Hu Z and Kimble H 1994 Opt. Lett. 19 1888–90

[10] Frese D, Ueberholz B, Kuhr S, Alt W, Schrader D, Gomer V and Meschede D 2000 Phys. Rev. Lett.
85 3777–80

[11] Bakr W S, Gillen J I, Peng A, Folling S and Greiner M 2009 Nature 462 74–7
[12] Weitenberg C, Endres M, Sherson J F, Cheneau M, Schausz P, Fukuhara T, Bloch I and Kuhr S 2011 Nature

471 319–24
[13] Schellekens M, Hoppeler R, Perrin A, Gomes J V, Boiron D, Aspect A and Westbrook C I 2005 Science

310 648–51
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