
Andromeda stream, a number of follow-up observational pro-
grammes are required, including an extension of the panoramic
survey not only to the northern regions of the halo of M31, but also
out to larger radii, as it is evident in the present data that the stream
extends beyond the 40-kpc limits of the survey. The proximity of
M31 also provides us with an opportunity to undertake a spectro-
scopic survey of individual stars within the stream, allowing us to
map its kinematic and chemical properties. As with the tidal
material detected in the halo of our own Galaxy, studies of
the Andromeda stream would allow us to map the distribution of
dark matter within the halo of our nearest neighbouring galaxy, as
well as furthering our understanding of the process of galaxy
formation. M
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The divergence of quantum and classical descriptions of particle
motion is clearly apparent in quantum tunnelling1,2 between two
regions of classically stable motion. An archetype of such non-
classical motion is tunnelling through an energy barrier. In the
1980s, a new process, `dynamical' tunnelling1±3, was predicted,
involving no potential energy barrier; however, a constant of the
motion (other than energy) still forbids classically the quantum-
allowed motion. This process should occur, for example, in
periodically driven, nonlinear hamiltonian systems with one
degree of freedom4±6. Such systems may be chaotic, consisting
of regions in phase space of stable, regular motion embedded in
a sea of chaos. Previous studies predicted4 dynamical tunnelling
between these stable regions. Here we observe dynamical tun-
nelling of ultracold atoms from a Bose±Einstein condensate in
an amplitude-modulated optical standing wave. Atoms coher-
ently tunnel back and forth between their initial state of
oscillatory motion (corresponding to an island of regular
motion) and the state oscillating 1808 out of phase with the initial
state.

Tunnelling between discrete states is coherent and reversibleÐ
that is, the particle oscillates between the states, which is the process
we describe here. Coherent tunnelling oscillations are especially
signi®cant, as the system must pass through states corresponding to
superpositions of distinct classical motions. It has been suggested7

that such states are strongly suppressed by decoherence, a subject of
central importance to quantum information. Our system should

0

q (scaled units)

p
 (s

ca
le

d
 u

ni
ts

)

π–π
–3

3

0

p0

–p0

Figure 1 PoincareÂ section for position p and momentum q of a classical particle in an

amplitude-modulated optical lattice. Data are shown for k � 1:66 and e � 0:29,
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motion. Chaos separates this region from two period-one resonances located above and
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provide a test of this suggestion in the context of tunnelling in a
nonlinear dynamical system.

Atoms in optical potentials8±11 provide an ideal test bed to
explore quantum nonlinear dynamics. The quantum driven pen-
dulum, a paradigmatic system for the study of `quantum chaos', is
realized by a periodically modulated optical standing wave, which
can provide a highly non-dissipative, one-dimensional potential.
Using ultracold trapped atoms whose action is of the order of
Planck's constant makes quantum effects signi®cant. Atoms in a
standing wave, detuned far from an atomic resonance, with sinu-
soidal amplitude modulation, are described by the centre-of-mass
hamiltonian:

H�t� �
p2

2
� 2k�1 � 2e sinqt� sin2

�q=2�

where q � 2kx and p � �2k=mq�px are the scaled position and
momentum variables respectively, t is the time, k � 4U2

0qR=q
2 is

the scaled well depth, q is the modulation frequency, qR � ~k2=2m
is the atomic recoil frequency, U0 is the well depth in units of ~qR,
and e is the modulation parameter. The position and momentum
along the standing wave are x and px, m is the mass, k � 2p=l is the
wavevector, and l is the wavelength of the optical standing wave.
The classical system described by this hamiltonian has a mixed
phase space having regions of regular motion embedded in a sea
of chaos. The PoincareÂ section shown in Fig. 1 displays strobo-
scopically the atomic position and momentum at time intervals
equal to the modulation period. The PoincareÂ section is plotted for
experimental parameters k � 1:66 and e � 0:29. Islands of regular
motion (boomerang-shaped ringsÐsee Fig. 1 inset) surround
period-one resonances (®xed points) where the atomic motion
remains exactly in phase with the modulation (a period-one
resonance rotates 3608 around the origin in one modulation
period).

Figure 2 shows a graphical representation of these period-one
resonances. For small changes in k and e (within our experimental
uncertainties), the period-one regions of regular motion can split
into two closely spaced period-two regions. For initial conditions
re¯ecting the Heisenberg uncertainty limit in our experiment, such
behaviour would be indistinguishable from period-one motion.
The chaotic sea of Fig. 1 (dotted region) is bounded in momentum
by the region of regular unbound motion, where atoms have enough
energy to move along from one well to the next. The ellipses in
Fig. 1 represent Kolmogorov±Arnold±Moser (KAM) surfaces12,
the crossing of which is forbidden by classical mechanics. A detailed
experimental and theoretical study of the dynamics of the
driven pendulum using cold atoms may be found in previous
publications10,11.

The quantum dynamics of a periodically driven hamiltonian
system can be described in terms of the eigenstates of the Floquet
operator F, which evolves the system in time by one modulation
period. The Floquet eigenstates can be associated with regions of
regular and irregular motion of the classical map4. The localized

Floquet eigenstates do not necessarily overlap well with the regions
of regular motion of the classical PoincareÂ map, except in the
semiclassical limit of large action. Initial states localized in the
stable region around a ®xed point in the PoincareÂ section can be
associated with superpositions of a small number of Floquet
eigenstates. For an appropriate choice of parameters the phase
space exhibits two period-one ®xed points, which for a suitable
PoincareÂ section lie on the momentum axis at 6p0, as in Fig. 1. For
certain values of k and e there are two dominant Floquet states jf6i
that are localized on both ®xed points but are distinguished by being
even or odd eigenstates of the parity operator that changes the sign
of momentum. A state localized on just one ®xed point is therefore
likely to have dominant support on an even or odd superposition
of these two Floquet states: jw� 6 p0�i < �jf�i 6 jf2i�=

���
2

p
. The

evolution is described by repeated application of the Floquet
operator. As this is a unitary operator, Fjf6i � e2if6 jf6i. Thus at
a time which is n times the period of modulation, the state initially
localized on +p0 evolves to jª�n�i < �e2inf� jf�i � e2inf2 jf2i�=

���
2

p
.

Ignoring an overall phase and de®ning the separation between
Floquet quasi-energies as Df � f2 2 f�, we obtain jª�n�i <
�jf�i � e2inDfjf2i�=

���
2

p
. At n � p=Df periods, the state will form

the anti-symmetric superposition of Floquet states and thus is
localized on the other ®xed point at -p0. In other words, the
system has tunnelled from one of the ®xed points to the other4,6.
This is reminiscent of barrier tunnelling between two wells, where a
particle in one well, a superposition of symmetric and antisym-
metric energy eigenstates, oscillates between wells with a frequency
given by the energy difference between the eigenstates.

We prepared atoms in a superposition of Floquet states associated
with one of the ®xed points as follows. A Bose±Einstein condensate
with approximately 3 ´ 106 sodium atoms was prepared13 in a
magnetic trap with trapping frequencies 2qx �

���
2

p
qy � qz �

2p 3 33 Hz, which, using a scattering length of 2.8 nm, results in
calculated Thomas±Fermi diameters of 83, 57 and 42 mm, respec-
tively. We release the condensate and adiabatically turn on a one-
dimensional standing-wave lattice along z. The gaussian lattice
beams are detuned ,14 GHz above the atomic D2 resonance
(l � 589 nm) and have a waist w < 250 mm, leading to an intensity
variation of less than 5% across the atomic cloud. We determine k
from a one-dimensional band structure calculation using the
measured oscillation frequency of atoms in the unmodulated
standing wave. Its 10% uncertainty is due to uncertainty in
measuring the oscillation frequency and to variations in the laser
intensity (all reported uncertainties are 1 s.d. combined systematic
and statistical uncertainties).

The atoms are loaded into the bottom of the lowest band
(quasimomentum equal to 0) of the optical lattice (we have veri®ed
that . 99% of the atomic population is in the lowest band). Each
individual well contains a minimum uncertainty wave packet with
an r.m.s. spread of 0.6 in scaled units. To load selectively only the
region around one resonance, we suddenly shift the position of the
standing wave by inducing an appropriate phase shift with an

t = 0 t = 0.25 T t = 0.5 T t = 0.75 T t = T

Figure 2 Diagram of period-one resonances of an atom in an amplitude-modulated

sinusoidal potential. These resonances correspond to atomic motion that remains in

phase with the modulation frequency. The anharmonicity of the sinusoidal potential is

compensated by the amplitude modulation for atoms around these resonances, creating

the regions of regular period-one motion shown in Fig. 1. The appearance of the second

ball at 0.5T depicts tunnelling into the initially empty resonance. T is the modulation

period, and t is time.
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acousto-optical modulator. Shortly (100±300 ns) before the phase
shift, we start (at t � 0) to modulate the standing wave at
q=2p � 220±320 kHz. The modulation frequency was chosen to
optimize both the overlap between the wave packet and the region
of regular motion, and to make the typical action of a particle10

small enough to observe quantum effects. After the atoms have
interacted with the modulated standing wave for a selected number
of modulation periods, the standing wave is turned off with the
modulation phase chosen so that the resonance lies on the momen-
tum axis at that time. Classically at that phase (n � 0:25 or 0.75
periods) the atoms, contained inside the region of regular motion,
are at the bottom of the well, moving with maximum momentum,
6p0 (see ®g. 2). We measure the atomic momentum distribution
with absorption imaging after 1.5 ms of free ¯ight. The momentum
distribution appears as a set of `diffraction' peaks at integer multi-
ples of 2~k due to the atomic coherence over the multiple wells of
the optical lattice13.

Figure 3 depicts atomic momentum distributions for different
interaction times with the modulated standing wave. In Fig. 3a we
show the distribution immediately after loading one resonance
region. This distribution consists mainly of a pair of diffraction
peaks at 4~k and 6~k. Classically, the atoms should remain in the
resonance so the stroboscopically measured momentum distribu-
tion is unchanged. To the contrary, in Fig. 3b about half of the atoms
have appeared with opposite momenta, which correspond to the
other resonance region. Most of the atoms are found there by 5.25
modulation periods (Fig. 3c). At 9.25 modulation periods the atoms
have returned to the original resonance as shown in Fig. 3d. This
transfer of atoms back and forth between the regions of regular
motion is coherent dynamical tunnelling.

In Fig. 4a we plot the mean atomic momentum after multiples of
the modulation period. The blue (red) data points correspond to
turning off the standing wave at the maximum (minimum) of the
amplitude modulation (see Fig. 2 at t � 0:25 T and t � 0:75 T). We
observe an oscillation of the mean momentum indicating the
occurrence of dynamical tunnelling for each set of data points.
The period-one character of the motion is veri®ed by the reversal of
the momentum between the blue and red curves in Fig. 4a, which
are separated in time by 0.5 modulation periods. By Fourier-
transforming our data, we ®nd the tunnelling period to be

10.3(2) modulation periods where the uncertainty is statistical.
We performed a quantum simulation11 for the system parameters of
our experiment. The period of the tunnelling oscillation agrees with
the experiment within the uncertainty (dominated by the uncer-
tainty in k); however, the envelope of the oscillations is different.
Our simulations assume the presence of only 6 wells, whereas in the
experiment about 150 are populated. The initial conditions of the
calculations populated a single well (a superposition of all quasi-
momenta), and showed that the envelope of the oscillations
depends sensitively on the number of wells. It is clear that coherence
between wells (associated with quasimomentum � 0) must be
included to accurately model our experiment. We note that the
mean momenta of the blue and the red data points in Fig. 4a are
slightly different for the same number of modulation periods.
Classical theory predicts slightly different momenta of the ®xed
points when viewed at the phases corresponding to Fig. 2 at
t � 0:25 T and t � 0:75 T:

In Fig. 5 we display the atomic momentum distributions corre-
sponding to the blue curve of Fig. 4a, as a function of the number of
modulation periods. Because all atoms start on one side of the
potential well, at 0.25 modulation periods essentially all atoms have
negative momentum. By 1.25 periods the atoms that were loaded
into the chaotic region have begun to spread out, forming a broad
background, while the other atoms are bound inside the region of
regular motion. For subsequent pictures the coherent oscillation
between the two regions of regular motion is evident. We note that
there is no signi®cant (above-background) zero momentum peak
even in the case of approximately zero mean momentum (when the
atoms have tunnelled half way). This indicates that at half the tunnel
period the system is in a coherent superposition of two distinguish-
able classical motions: one with positive momenta and one with
equal but opposite momenta. We expect this, because quantum
Floquet analysis shows that atoms tunnel from one region of regular
motion into the other and it is impossible for them to enter the
central island of stability at �p; q� � �0; 0�.

Classical simulations using a gaussian phase space distribution
corresponding to our experimental wave packet (which is always
bigger than the classical region of regular motion) show that for the
conditions of Fig. 1 and for all experimental conditions, there is no
behaviour similar to the observed oscillatory quantum tunnelling.
The decay of the tunnelling oscillations may be due to a number of
factors. One likely cause for the decay is spatial variations of k, which
lead to a dephasing of the tunnelling oscillations. Another possibil-
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ity is that the tails of the oscillating quantum wave packets may
extend outside the region of regular motion, allowing the atoms to
`leak out' into the classically chaotic region. This possibility is
currently under investigation. The contribution of multiple Floquet
states could lead to complicated multi-frequency oscillations, and
an envelope for the tunnel oscillations appearing as decay, as
observed for some parameters in our simulations. The effects of
spontaneous emission and atom±atom interactions should be
small.

Quantum theory predicts dynamical tunnelling to occur for
various values of the scaled well depth k, the modulation parameter
e and modulation frequency q, and also predicts a strong sensitivity
of the tunnelling period and amplitude on these parameters. For
e � 0:23, k � 1:75 and q=2p � 250 kHz we measured a tunnelling
period of approximately 13 modulation periods. As shown in
Fig. 4b, for e � 0:30, k � 1:82 and q=2p � 222 kHz we ®nd a
tunnelling period of 6 modulation periods with a signi®cantly
longer decay time than in Fig. 4a. We have also experimentally
observed an increase in the tunnelling period when k is decreased
and when all other parameters are held constant. This is the
opposite of what one would expect for spatial barrier tunnelling.

Our observation of dynamical tunnelling of atoms in a modu-
lated standing wave opens the door to further studies in quantum
nonlinear dynamics. By varying the hamiltonian parameters and the
initial conditions, we observe dynamical tunnelling for a variety of
mixed phase space con®gurations. This may be `chaos-assisted
tunnelling', and a tunnelling rate that varies wildly as system
parameters are changed would be a signature of such tunnelling1.
By introducing noise or spontaneous emission in a controlled
manner, we could systematically investigate the role of decoherence
in tunnelling and explore the classical limit of chaotic systems. By
carefully following the evolution of wave packets loaded into the
chaotic region from a Bose±Einstein condensate, we could probe
`quantum chaos' with the unprecedented resolution afforded by
minimum uncertainty wave packets.

During the preparation of this Letter, we learned of an
experiment14 reporting tunnelling of a different motional state in
a similar system. M
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Celebrated interference experiments have demonstrated the
wave nature of light1 and electrons2, quantum interference
being the manifestation of wave±particle duality. More recently,
double-path interference experiments have also demonstrated
the quantum-wave nature of beams of neutrons3, atoms4 and
Bose±Einstein condensates5. In condensed matter systems,
double-path quantum interference is observed in the d.c. super-
conducting quantum interference device6 (d.c. SQUID). Here we
report a double-path quantum interference experiment involv-
ing a liquid: super¯uid 3He. Using a geometry analogous to the
superconducting d.c. SQUID, we control a quantum phase shift
by using the rotation of the Earth, and ®nd the classic inter-
ference pattern with periodicity determined by the 3He quantum
of circulation.

Our basic interferometer topology is shown in Fig. 1a. Schemati-
cally, the device is a circular loop of radius R which includes two
super¯uid 3He Josephson weak links7,8. These weak links each
consist of a 65 ´ 65 array of 100-nm apertures etched in a 60-nm-
thick silicon nitride membrane. Similar arrays have previously been
shown to be characterized by a current±phase relation given9 by the
Josephson formula:

I � Ic sinf �1�

Here I is the mass current ¯owing through the array, f is the
quantum phase difference across the array, and Ic is the critical
current characterizing the array.

The interferometer is predicted to behave as a single weak link
with an effective critical current, Ip

c (see Methods). If the inter-
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