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Abstract—Phase-space representations are of increasing importance as a viable and successful means to study
exponentially complex quantum many-body systems from first principles. This paper traces the background of
these methods, starting from the early work of Wigner, Glauber and Sudarshan. We focus on modern phase-
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INTRODUCTION

In this paper, we will trace how the concept of
coherence and coherent states has led an important
advance: the quantum phase-space representation.
Through the development of phase-space representa-
tions, the idea of coherence can help the understanding
and simulation of the physics of many-body systems,
both in thermal equilibrium, and in time-dependent,
quantum dynamical calculations. This is of increasing
importance beyond quantum optics, as new experi-
ments explore the quantum correlations and dynamics
of interacting particles.

We show that a more general approach to coherence
leads to the Gaussian phase-space method, which uni-
fies the representation of both bosonic and fermionic
many-body systems. This powerful idea has many ram-
ifications. It encompasses all the known bosonic repre-
sentations in a simple, clear formalism, and extends
these ideas to fermions as well. It is also extremely use-
ful in applications, as we will show using both equilib-
rium and non-equilibrium examples.

A particular quantum state that illustrates this is the
coherent state. It was introduced originally by
Schrodinger [1] for the harmonic oscillator, and later
applied to the radiation field through the seminal work
of Sudarshan [2] and Glauber [3]. These states are fully
coherent in the sense that normally ordered operator
moments factorize to all orders.

The definition of a coherent state is extremely simple.
If a is a field-mode annihilation operator, then the coher-
ent state is defined as a normalized eigenstate of a,

aloy = olo). (1)

! The text was submitted by the authors in English.

These states form a complete mathematical basis, pro-
viding examples of quantum states which are perfectly
coherent to all orders. The idea can be extended to other
algebras, for example the SU(N) coherent states, and
were used to construct the P-representation—a repre-
sentation of the radiation field in terms of diagonal
coherent state projection operators. This quantum oper-
ator representation has the form (for a single mode) of

p = [P(@le)od e @)

This representation maps a quantum state into a distri-
bution on a classical phase space. Other representations
like this exist, including the Wigner [4] representation
and the Husimi [5] Q-function. The closely related
operator associations of Lax [6], Agarwal [7, 8] and co-
workers were used to develop a quantum theory of the
laser. While useful for the laser, these all lack essential
ingredients that would allow them to be useful as a
probability distributions in first-principles many-body
dynamical simulations. Most are simply non-positive,
as in the case of the P-function and Wigner function.
Any representation that uses a classical-like phase
space has no corresponding exact stochastic equation
when there are inter-particle interactions.

We will explain how this problem is solved by
extending the phase-space dimension, giving rise to the
positive P-representation [9, 10]. A unifying principle
is the use of non-orthogonal basis sets, which leads to
the idea of a stochastic gauge symmetry [11], and more
general Gaussian phase-space methods [12, 13]. These
have many applications to interacting Bose and Fermi
systems. Both thermal equilibrium and first-principles
quantum dynamical time-evolution (either unitary or
dissipative) can be treated. Recent bosonic examples
include quantitatively tested predictions on quantum
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soliton time-evolution [14], as well as novel predictions
for topical experiments including: colliding Bose-Ein-
stein condensates [15], tunnel-coupled condensates
[16], superchemistry [17], molecular dissociation [18—
21], micro-mechanical resonators [22], triple EPR cor-
relations [23], and non-equilibrium criticality in para-
metric downconversion [24]. We also give results for
phase-space simulations of the fermionic Hubbard
model in thermal equilibrium [25].

QUANTUM MANY-BODY SYSTEMS

Quantum many-body theory is the generic theory
we currently use for describing all non-astronomical
physical systems from a microscopic point of view. It is
applicable to a wide range of problems.

Ultra-Cold Atomic Gases

As simple examples of interacting quantum sys-
tems, consider the ultra-cold atomic Bose-Einstein con-
densates and degenerate atomic Fermi gases. Ultra-cold
atoms are an ideal quantum many-body system. In
these experiments, the interacting atoms are isolated
from other matter, by virtue of being optically or mag-
netically trapped in a high-vacuum environment at low
temperatures. Important advances in the last decade
include: Bose-Einstein condensation (BEC), atom
lasers, superfluid Fermi atoms, superchemistry (stimu-
lated molecule formation), atomic diffraction, interfer-
ometers, and temperatures below 1 nK.

Such well-controlled and simple physical systems
present an opportunity to quantitatively test quantum
mechanics in new regimes, where macroscopic and
many-body effects play a dominant role.

Many-Body Quantum Dynamics

Before one can make quantitative predictions, there
is a significant problem to overcome: quantum many-
body problems are exponentially complex.

To illustrate this, consider a Bose gas with N atoms
distributed among M modes. Each mode can have one
or all atoms. The number N, of quantum states available
is:

(N+M-1)!
T NI ©

A typical BEC may have N = M = 500000, giving the
astronomical number of

N

300000

N =2"" =10

S

“

Hilbert space dimension can also be classified by the
number of equivalent quantum bits (qubits), which is
log, N, = 2N = 1000000, in this example.

There are a number of possible solutions to dynam-
ical problems. Here we focus on methods which are
exact, in the sense that errors can be estimated and
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reduced where necessary. As an example, while Den-
sity Matrix Renormalisation Group (DMRG) methods
[26] can be useful for one-dimensional calculations,
including dynamics, the Hilbert-space truncation is not
always a well-controlled approximation. Similar diffi-
culties occur in the density functional approach [27].
Uncontrolled approximations cannot be used as a basis
for testing quantum mechanics. Any discrepancies
observed may simply be caused by calculation errors,
rather than fundamental issues.

Candidates for exact solutions are as follows:

Path integrals and Monte-Carlo—these are useful
for bosons at thermal equilibrium. For quantum dynam-
ics and for fermions, there are phase and sign problems,
making these methods often impractical.

Perturbation theory—while applicable for certain
problems, this method generally doesn’t converge in
quantum field theory.

Numerical diagonalization—the problem of an
exponentially large matrix size rules out such brute
force methods, except for very small particle numbers.

Exact solutions—even if all the energy eigenstates
are known (which is unusual) evaluating the initial
expansion coefficients for quantum dynamics remains
exponentially difficult, and therefore impractical.

New hardware—Feynman proposed quantum com-
puters to solve many-body problems—currently, these
do not exist beyond 2—4 qubit capacity.

New software—Gaussian quantum phase-space
simulation methods can give practical techniques using
existing computers, simulating quantum systems equiv-
alent to nearly a million qubits.

QUANTUM PHASE-SPACE METHODS

The great power of phase-space methods is their
ability to accurately compute the quantum dynamics of
fully macroscopic systems directly from the Hamilto-
nian, without resorting to overarching approximations.
This confers several advantages over previous methods,
despite the introduction of randomness that limits pre-
cision:

Firstly, all uncertainty in the results is confined to
random statistical fluctuations, with no systematic bias.
Importantly, the magnitude of this uncertainty can be
reliably estimated from the distribution of sub-ensem-
ble means by using the central limit theorem.

Secondly, these methods lead to relatively simple
equations that can be easily adapted to trap potentials
and local losses, whose magnitude and shape can be
chosen arbitrarily. This is in stark contrast to approxi-
mate methods, which can become much more compli-
cated or even inapplicable under such conditions.

The Gaussian quantum phase-space representation
described here encompass all the earlier known phase-
space methods. Therefore, we start by reviewing these
earlier approaches.

No. 1 2007



QUANTUM MANY-BODY SIMULATIONS 9

Classical and Quantum Phase Space

Wigner [4] originated the idea of a classical-like phase-
space or quasi-probability description. For M modes,
these methods scale linearly with mode number, having
just M complex dimensions. Variations on this theme
include the Husimi Q-function [5], and the Glauber-
Sudarshan [2, 3] P-representation. For many quantum
states, they result in a positive-valued distribution. For
the Q-function, this is always true. Despite this, one
finds that there is no corresponding stochastic equation
for cubic or quartic Hamiltonians. Thus, there is no
method for efficiently time-evolving a sampled distri-
bution of an interacting system, except through an
approximate truncation of the equations of motion.

The solution to this problem is to use an enlarged
phase space, which includes off-diagonal terms in a
coherent-state expansion. Intuitively, this allows for
quantum superpositions between more than one classi-
cal configuration. The simplest possibility is the posi-
tive-P (+P) distribution [10], which has 2M coordi-
nates. It results in a distribution function which is
always positive, and given certain conditions, obeys a
stochastic equation. It has the definition that

b = [Plo. B aa’p. )

Quantum Phase-Space Representations

Guided by the formalism of Egs. (2) and (5), one can
define a general quantum phase-space representation

by expanding the density matrix p using a complete

basis of operators A (K ):
R S . >
p = jP(x)A(x)dx. (©6)

9
Provided P(A) remains positive and sufficiently
bounded, quantum dynamics can be transformed into

> . D
trajectories in A . Different basis choices for A (A) then
result in different representations. For example, the
P-representation has a single complex dimension (for
M=1),s0A, =0, and:

Ao = Jooll. (7

As shown in Fig. 1, there are trade-offs in the choice
of basis, since the quantum variance is partly due to the
distribution, and partly due to the basis. By minimizing
the distribution variance, one can reduce the sampling
error of the representation. This typically involves an
over-complete, non-orthogonal basis in which each
member of the basis is closely matched to a physical
state that occurs in the simulation.
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Fig. 1. The full variance G, is composed of a distribution
variance Gp, and a basis variance 6.

Fermionic Phase Space

Coherent states for fermions [28, 29] can be defined
by means of anti-commuting Grassmann numbers, and
have been used, for example, in path-integral formula-
tions for fermions [30]. Like their bosonic counterparts,
fermionic coherent states provide an overcomplete
basis set, and as Cahill and Glauber showed, can be
used to defined phase-space representations for fermi-
ons [31]. Unlike their bosonic counterparts, the fermi-
onic coherent states have no direct physical meaning.
Moreover, while they are useful for formal calculations,
they have limited applicability as a basis for practical,
numerical calculations, because of the complexity that
arises from the anticommuting properties of the algebra
[32]. The coherent-state P-representation is then a func-
tion of Grassmann numbers, not a probability.

But this anticommuting complexity is related to the
unphysical states contained in the coherent basis. Fer-
mionic coherent states require Grassmann numbers
because of the way they include coherences between
states with an odd number difference. Consider a coher-
ent superposition of zero and one-particle states: |y) =
00) + B|1), which gives a nonzero value for the coher-
ence {a) = o*[. Because the state |1) involves an anti-
commuting operator, one of the amplitudes must also
be anticommuting, for consistency. This also means
that the coherent amplitude is anticommuting.

However, from superselection rules, we know that
fermions can only be created in pairs, and thus such
superpositions are excluded. Thus one can avoid this
anticommuting problem by considering an operator
basis which only includes coherences that are allowed
by the superselection rule.

General M-mode Gaussian Operator

The most general phase-space representation, for
both fermions and bosons, is obtained with Gaussian
operators. These provide an (over) complete basis for
fermions even when the coherences, and thus Grass-
mann components are excluded [33]. These also gener-
alize the concept of coherence: physical states with
Gaussian density operators have operator products that
factorize in a similar, but more general way than coher-
ent states.

To define these, we introduce a as a column vector
of M bosonic/fermionic annihilation operators (indi-
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cated as the upper or lower sign respectively), and a'
the corresponding row vector of creation operators,.
Their commutation relations are

[ &;]; = Skj' @)

A Gaussian operator is defined as a normally
ordered exponential of a quadratic form in annihilation
and creation operators. Introducing extended 2M-vec-

tors of operators: a = (4, (a")7), with adjoint defined

as a’ =(a', al ), the operator fluctuation is then: 4 =
a — o, where o = (o, p*) is a 2M-vector c-number.
A Gaussian operator can therefore be written as:

A = Qfg/™"”: exp[sgf(zlf—%g”)sa} SN ()

In the fermionic case the square root of the determinant
(for normalization purposes) is to be interpreted as the
Pfaffian of the matrix, in an explicitly antisymmetric

form. The additional factor / in the exponent only

appears in the fermionic case:

1= |0
= o1

Operator Mappings

(10)

The covariance g is best thought of as a kind of

dynamical Green’s function. It can be expanded as:

~T
_ |En m\ (11)

+ ~
m n
Here n is a complex matrix whose average is the normal

Green’s function for particles, while n = 1 £ n. In

many-body terminology, m and m* correspond to
anomalous Green’s functions. The representation phase

9
space is therefore A =(Q, &, B, n, m, m*) for bosons; in
the case of fermions, one must set o = § = 0.
The significance of the definition of n and m is that
it leads to useful bosonic and fermionic operator iden-
tities. For example, one finds that

<&j&j> = (Bio; +ny)p, (12)
where the weighted average is defined as
A > > > >
(0) = (O(M, = [OMQP(G, VL. (13)

For representations with fixed n;, one thus obtains a
generalized operator-ordering. Classical phase-space
distributions are recovered on setting o; = B;*, and n; =
cd;;. For example, the Glauber-Sudarshan P-representa-
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tion has ¢ = 0, while the Wigner distribution has ¢ =
—1/2. More generally, this type of phase space allows
for a stochastic covariance, which can dynamically
change in time and space to suit the physical system.

Other useful identities involve the relationship
between the action of operators on the kernel, and the
corresponding differential operators acting on the dis-
tribution itself. For simplicity, these are given in the
number-conserving case (o = =0, m =0, m* = 0):

E)
AN —= nP—(I£n)=—nP,
on
g (14)
AR —=nP-n=—=(I+n)P,
on

xd xd
where (d/dn); = d/dn; is a differential operator that
acts both to the left and the right.

Evolution Equations

There are three main types of problems studied with
this approach, which provides a unified method for
interacting fermions and bosons:

Canonical ensembles—thermal initial conditions.

Quantum dynamics—unitary nonlinear time-evolu-
tion.

Master equations—open system time-evolution to a
steady-state.

The purpose of the phase-space representation is to
transform exponentially complex operator equations
into tractable phase-space equations, which can then be
effectively sampled via probabilistic means. For exam-
ple, suppose that we wish to calculate a thermal ensem-
ble. The grand-canonical density operator can be writ-
ten as an operator differential equation,

dp _ 1.» O T
T = lH-pN.pl. = Lipl.

Similarly, one can also treat unitary evolution or
evolution under a master equation as a generalized
Liouville operator. By making use of the operator iden-
tities above, and provided conditions of compactness
that allow partial integration are satisfied, one can
transform the exponentially large operator equation
into a stochastic equations that can be treated either
numerically or, in some cases, even analytically. The
generic form that results, in the Ito calculus, is:

dQ/or = Q[U + g§1,
dhot = A+ B(§-g),

where € is a vector of Gaussian white noises. The func-
tion g is a ‘“stochastic gauge” function, that can be
adjusted to guarantee the stability of the resulting drift
equations.

In summary, this method greatly extends the
approaches of Glauber, Sudarshan, Husimi and Wigner.

(15)

(16)
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No approximations are needed, apart from the sampling
error, which can be estimated and reduced by using
more samples. The representations use positive, nons-
ingular distributions on a relatively small (non-expo-
nential) phase space. This reduces the overall complex-
ity enormously. The price that is paid is that many tra-
jectories can be needed to control sampling error,
which typically grows with time. One must also design
an appropriate stabilizing gauge g, as stable trajectories
are essential to remove boundary terms. The overall
procedure is outlined schematically in Fig. 2.

BOSONS

The simplest general model of an interacting Bose
gas is the Bose—Hubbard model, which includes non-
linear interactions at each site, together with linear
interactions coupling different sites:

H(a,a') = h[EEwU ,a-+2: ﬁjz- 1,

where the frequency term ®; is a nonlocal coupling,
which includes chemical potential. The boson number

A7)

operator is #1; = a; a;. The most commonly used tech-

nique here is the positive-P representation, although
more general Gaussian methods are also possible.

Single-Mode Phase-Diffusion

As an example, consider the case of a single poten-
tial well containing a BEC in an initial coherent state.
After applying the relevant operator mappings, one
obtains the following time-evolution equations:

do‘ = [Re[Ba] + @ + il ()]t

_,ﬂilé [Re[Bo] + & + /=i, (1)1,

L2 = Q8.0 + 6],

Here, unitary evolution leads to nonlinear phase-dif-
fusion, as has been experimentally observed [34]. The
stochastic technique can be utilized to carry out a sim-
ulation of quantum evolution of an initial coherent state
of up to 10% bosons!

This is shown in Fig. 3, where first 100 atoms, and
then 10> atoms were simulated after appropriate
choices of gauges g; , and noises {; , [35]. A time-
reversal test of unitary evolution was carried out by
reversing the sign of the Hamiltonian, in order to
observe a recurrence to the initial physical state. This is
even possible experimentally, using Feshbach reso-
nances to control the interaction.

The distribution graphs in Fig. 4 demonstrate that
the mechanism for the recurrence is not through a
recurrence of the entire distribution, as only the physi-
cally observable moments have to show recurrence.

(18)
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Fig. 2. Strategies that need to be considered and optimized
in quantum simulations.
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Fig. 3. Simulation of (a) 100 and (b) 1023 atoms in a single-
mode trap, showing phase-decay together with a recurrence
due to time-reversal.

The non-uniqueness of the basis means that the final
distribution is actually different to the initial one; the
effect of time-reversal is to change the detailed struc-
ture of the diffusive broadening, so that the final and
initial distributions have an equivalent physical density
matrix.

Optical Fibre Squeezing Experiment

To a very good approximation, photons in an optical
fiber, with the Kerr nonlinearity present, are an experi-
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Fig. 4. Phase-space distribution in the single-mode trap
simulations with N = 100 showing (a) time-reversal, (b) no
time-reversal.
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Fig. 5. Polarization-squeezing experiment [38].

mental implementation of the famous one-dimensional
Bose gas model in quantum field theory [36, 37].
Phase-space methods were used to make first-princi-
ples, testable predictions of quantum squeezing in this
environment. We will show that these results are in
excellent quantitative agreement with experiment, even
including dissipation.

We focus on recent polarization squeezing experi-
ments [38], which are an efficient and flexible method
for generating quantum states in the fiber [14]. The
experimental set-up is illustrated in Fig. 5. Pulses are
generated in pairs and propagate down orthogonal
polarization modes of an optical fiber. They are then
combined in a Stokes measurement of polarization
squeezing by means of a polarization rotator, a beam
splitter and two detectors.
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Because the experiment involves ultrashort pulses,
the quantum description must use photon-density oper-

ators W, (1, z) and ¥, (¢, z) that include a range of spec-
tral components:

i(k—ko)z+iwyt

Wo(1,2) = ﬁjdk&o(t, ke . (19)

where ¢ = x, y. The commutation relations of these
operators are [¥s (¢, 2), ‘i’; (t, 7)) =0(z - 7)05¢ -

For convenience, we use scaled variables in propa-
gative frame: 1= (1—z2/v), {=2/zp and b = Vo /vt /i1,
where ¢, is the pulse duration, z, = tg /1k"| is the disper-

sion length and 21 = 2[k"|Ac/(n,h 0)3 ty) is the photon
number in a soliton pulse.

To describe the evolution of the photon flux s (1, {),
we employ a quantum model of a radiation field propa-
gating along a silica fiber, including ¥® nonlinear
responses of the material and non-resonant coupling to
phonons [39, 40]. The phonons provide a non-Mark-
ovian reservoir that generates additional, delayed non-
linearity, as well as spontaneous and thermal noise.
Because of fiber birefringence, the two polarization
components do not temporally overlap for most of the
fiber length, and so the cross-polarization component of
the Raman gain is neglected. The result, after discreti-
zation, is a Hubbard model like Eq. (17), except with
additional coupling to phonon reservoirs.

The quantum operator equations are obtained by
integration of the Heisenberg equations for the phonon
operators to derive quantum Langevin equations for the
photon-flux field:

5286(5.0) = 5 250u(8 0+ iFe(z. 0e(z. 0
o (20)
+1 [ dTh(T- )BT, Obe(T, Dbo(r, 0.

where the nonlinear response function A(T) includes
contributions from both the instantaneous electronic
response and the Raman response determined by the
gain function of(w) [39, 41, 42]. The correlations of the
reservoir fields are

<f$((l)‘, C‘)fc'(wa C»
R o (21)
= 2L, (o) + O-0)18(C - £)5(0 - )80,

where ng, is the temperature-dependent Bose distribu-
tion of phonon occupations. The Stokes (w < 0) and
anti-Stokes (® > 0) contributions to the Raman noise
are included by means of the Heaviside step function ©.
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Fig. 6. Antisqueezing (a) and squeezing (b) for L; = 13.4 m (squares) and L, = 30 m (diamonds) fibres. Solid and dashed lines show
the simulation results for L; = 13.4 m and L, = 30 m, respectively. Dotted lines indicate sampling error in simulation results. Sim-
ulations are adjusted for linear loss of 24% and low-frequency GAWBS noise, which mainly affects the squeezing only at low power.
Parameters are: 1y = 74 fs, zp=0.52m, n =2 X 108, E;=54pJ,and Ay = 1.51 um.

In all, we have over 10® photons in more than 10?
modes, corresponding to an enormously large Hilbert
space. Quantum dynamical simulations of such sys-
tems have been performed exactly using the +P repre-
sentation [36, 43]. However, for large photon number 7
and short propagation distance L, these exact squeezing
predictions agree with a truncated Wigner phase-space
method [44], which allows faster calculations. In effect,
the Wigner representation maps a field operator to a sto-

chastic field: §o ({, T) —= 04(&, T). Stochastic averages
involving this field then correspond to symmetrically
ordered correlations of the quantum system. Because of
the symmetric-ordering correspondence, quantum
effects enter via vacuum noise.

After the mapping, we obtain a Raman-modified
stochastic nonlinear Schrodinger equation for the pho-
ton flux that is of exactly the same form as Eq. (20) [39,
45]. The correlations of the Raman noise fields I'; and
the initial vacuum noise are, respectively,

<Fc(m’ C)FG'(O)'7 Cv»

R
= LU (ol + 5 [8(C - )80~ )8 22

(Ado(T, 0)AGE(T, 0)) = (127)8(T—1)34s.

Because of the symmetrically ordered mapping, the
Stokes and anti-Stokes contributions to the Wigner—
Raman noise are identical.

Antisqueezing and squeezing results are shown in
Fig. 6, for 13.4 m and 30 m of fiber, with and without
the excess phase noise included. The theoretical results
for both squeezing and antisqueezing closely match the
experimental data. The results also show a deterioration
of squeezing at higher intensity due to Raman effects,
especially for longer fiber lengths.
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BEC Collision with 150000 Atoms
Jrom First Principles

The collision of pure ?’Na BECs, as in a recent
experiment at MIT [46], represents another opportunity
for observational tests of first-principles quantum
dynamical simulations [15, 47]. In the simulations, a
1.5 x 10° atom condensate is prepared in a cigar-shaped
magnetic trap with frequencies 20 Hz axially in the
“X direction, and 80 Hz radially (“Y” and “Z”). A brief
Bragg laser pulse coherently imparts an X velocity of
2vy = 20 mm/s to half of the atoms, which is much
greater than the sound velocity of 3.1 mm/s. Another
much weaker pulse generates a small 2% “seed” wave-
packet at a Y velocity of v, = 9.37 mm/s relative to the
center of mass.

At this point the trap is turned off so that the wave-
packets collide freely. In a center-of-mass frame, atoms
are scattered preferentially into a spherical shell in
momentum space with mean velocities v, = v,. Simul-
taneously, a four-wave mixing process generates a new
coherent wavepacket at Y velocity —v,, as well as grow-
ing the strength of both of the wavepackets at v, by
Bose enhanced scattering.

The dynamics of the distribution of atom velocities
and correlations between the scattered atoms have been
calculated and are shown in Figs. 7 and 8. Such corre-
lations have recently become experimentally measur-
able [48-50], and correlation behavior qualitatively
similar to that predicted by this model have been seen
[51]. The system is described by

2
= [[Eveves 7|0 @)
2m 2

The simulation is carried out using the positive-P rep-
resentation in the center-of-mass frame from the
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Fig. 7. Momentum space snap-shots in the center-of-mass
frame =0 (a), 32 (b), 189 (c), 411 us (d). Left: Velocity dis-
tributions in the axial (x) and radial (y) directions. Right:
Radial distribution at x = 0. The formation of the fourth
coherent wavepacket at v, = —v; and the scattered shell at |
|[vl = vy = 9.37 mm/s are seen. Logarithmic color scale.
Average of 1492 trajectories.

Fig. 8. Correlations between scattered atoms: time evolu-
tion. Plate (a) shows the extremely strong number correla-
tions g(z)(vo, —vp) between atoms with opposite velocity
(solid line) in the scattered shell at |vy| = v (away from the

coherent wavepackets), and thermal correlations g(z)(vo,
vp) = 2 between scattered atoms at the same velocity
(dashed). Triple lines indicate uncertainty. Plate (b) shows
the coherence width in velocity space for scattered atoms at
similar velocities centered around v: /—in radial direc-
tion, 2—intangential direction, 3—in axial (x) direction.
Plotted is the full-width at half-maximum (FWHM) of

lgV (v, vo + V).
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moment the lasers and trap are turned off (r = 0). The
initial wavefunction is modeled as the coherent-state
mean-field Gross—Pitaevskii (GP) solution of the
trapped ¢ < O condensate, but modulated with a factor

(/049" 1+ J0.49¢ ™" " + J0.02¢ "M,

which imparts the initial velocities. The field Hamilto-
nian is discretized with a lattice size of 432 x 105 x 50,
again generating a Hubbard-type Hamiltonian like
Eq. (17).

As one might expect of a method that attacks such
an exponentially complex problem, there are limita-
tions. Most significantly, the size of the sampling
uncertainty grows with time, and eventually reaches a
size where it is no longer practical to produce enough
trajectories to get useful precision. In the above case a
useful observable-to-noise ratio lasted until ¢ < 410 ps.
In general the simulation time possible depends on sev-
eral factors: coarser lattices, weaker interactions, or
smaller density all extend it. This time can be estimated
using the formulae found in [52]. Comparisons were
made with a previous approximate simulation [53],
using a truncated Wigner method [4, 44]. The approxi-
mate method was less accurate at large momentum cut-
off, due to a diverging truncation error.

The model treats M = 2.268 x 10° interacting
momentum modes. Since each of the N = 1.5 X
10° atoms can be in any one of the modes, the Hilbert
space contains about N, = MV = 10900090 orthogonal
quantum states. In terms of accessible states at fixed
number, there are N, = (M/N)N = 2600000 gtates, or
600000 qubits.

This is the largest Hilbert space ever treated in a
first-principles quantum dynamical simulation.

FERMIONS
Hubbard Model

To demonstrate the utility of this fermionic repre-
sentation, we next consider the fermionic Hubbard
model [54]. This is well-known in condensed matter
physics as the simplest model of interacting fermions
on a lattice:

H(hy, fiy) = = Y tyhy o+ UD Ry ufy 1. (24)
ij,© J
Here 7;; 5 = &z o, o » for lattice index j and spin index
= (T, J/) = (=1, 1), while #; is the inter-site coupling
and U is the strength of on-site interaction between par-
ticles.

Thought to be relevant to high-T, superconductors
[55], the Hubbard model has had renewed interest
because it describes an ultra-cold gas in an optical lat-
tice [56], as has been experimentally realized by Kohl
et al. [57]. Within this simple model is a great complex-
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Fig. 9. 1D Hubbard model: Correlation function (nn1) ver-
sus temperature. The 100-site numerical solution (/—
repulsive, 2—attractive) is compared with the zero-temper-
ature exact solution (3) of an infinite lattice [60]: 7 = 1 and
U=2.

ity, that leads to sampling error problems for quantum
Monte Carlo (QMC) methods because of negative
weights [58]. Such sign problems occur for repulsive
interactions away from half-filling in two or more
dimensions, and increase with lattice size and interac-
tion strength [59].

Results of recent phase-space numerical simulations
[25] in one and two dimensions are shown in Figs. 9
and 10. The sampling error remains well-controlled at
low temperatures, even for filling factors in 2D for
which other QMC methods suffer sign problems.

To explain the method used, we first note that the
Hubbard Hamiltonian conserves number, so the num-
ber-conserving subset of Gaussian operators provides a
complete basis, i.e., the anomalous variables remain
zero. The mappings given above can be applied to the
grand canonical equilibrium equation to give the Ito
phase-space equations [13]:

dngldt = (112){(I-n )T ng+n TS (1 -ng)t. (25)
The propagation matrices are defined for U > 0, as

(r)
tii— 85,/‘{ Un;; c—U+ GE,:j j

where the stochastic terms are Gaussian white noises
with the correlations

T =

i, ], 0

(26)

(EVMET (1)) = 208(1-1)5, 8, . 27

Associated with each stochastic path is a weight, gov-
erned by dQ/dt = -QH(n,, n_;). Importantly, because
the choice of mapping, the phase-space equations are
real and the weights thus remain positive, avoiding the
usual manifestation of the sign problem.

More precise numerical simulations by Assaad et al.
[61] have revealed that there is difficulty in sampling
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Fig. 10. 2D Hubbard model on a 16 x 16 lattice: Energy as
a function of temperature for various chemical potentials.
t=1and U=4.

ground state properties with these phase-space equa-
tions. However, they also show that the correct ground-
state results can be obtained by a supplementing the
phase-space simulations with a symmetry projection
procedure.

Finally, we remark that the mapping from the Hub-
bard model to phase-space equation is far from unique.
Thus these phase-space simulations of the Hubbard
model may well be improved by appropriate choice of
basis subset and stochastic gauge, as for bosonic simu-
lations.

SUMMARY

In summary, coherence theory and coherent-state
methods leads to a unified phase-space representation
for bosonic and fermionic quantum many-body sys-
tems, which are useful in simulations both in real time
and in inverse temperature. Calculations have been car-
ried out in one, two and three dimensions, with up to
10?3 particles and 10° modes. This is equivalent to a
Hilbert space of nearly a million qubits. Phase-space
ideas are also applicable to other complex systems [62,
63]—ranging from genetics, astrophysics, and bio-
chemistry, to condensed matter, particle physics and
possibly even molecular physics.
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