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Positive-P and Wigner representations for quantum-optical systems with nonorthogonal modes
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We generalize the basic concepts of the positive-P and Wigner representations to unstable quantum-optical
systems that are based on nonorthogonal quasimodes. This lays the foundation for a quantum description of
such systems, such as, for example an unstable cavity laser. We compare both representations by calculating
the tunneling times for an unstable resonator optical parametric oscillator.
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INTRODUCTION

The usual quantization procedure for the electromagn
field involves an infinite set of quantized harmonic oscil
tors, each associated with an orthogonal field mode. S
the electromagnetic field Hamiltonian is Hermitian this str
egy is always possible. On the other hand, if we restrict
field Hamiltonian to a finite volume with an optically un
stable geometry this general feature fails. It turns out to
impossible to isolate the system due to the non-Hermi
boundary conditions. Within a classical optics descript
this represents no fundamental problem since the couplin
the outside reservoir may simply be described by an in
duced damping. Within a quantum description the proced
is more delicate since effects such as decoherence have
included. Usually this is handled by introducing a mas
equation for the field modes. On the other hand, unsta
resonator lasers~for example! are excluded from this genera
quantization procedure since the resonator will contain n
orthogonal modes. Of course this can, in principle, be pas
over by embedding the unstable system in a larger volu
and quantizing in this larger closed volume. This treatmen
usually known as the ‘‘modes of the universe’’ descripti
@1# but an attempt to use it computationally rapidly excee
the numerical capacity of any computer. In this paper
present an alternative quantum description based on a s
nonorthogonal quasimodes. Starting from the class
method we generalize the usual quantization procedure
end up with a phenomenological master equation describ
the time evolution of the unstable system separately. It
well-known fact that the nonorthogonality of the cavi
modes gives rise to enhanced quantum fluctuations, ca
excess noise@2,3#. This noise amplification becomes ve
clear within our description.

This approach has already been used to calculate
spontaneous emission rate of a single atom in an unst
cavity @4,5#, finding that the excess-noise factor due to t
nonorthogonality of the cavity modes can drastically enha
the spontaneous emission rate into the cavity modes. S
man’s law for the enhanced linewidth of an unstable cav
laser was also recovered.

As a natural next step we extended the theory to the p
cess of parametric down conversion@6,7#. Again we found
1050-2947/2002/65~5!/053813~8!/$20.00 65 0538
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that the excess-noise factor plays an important role for
genuine quantum-noise-driven process. The intensity of
nal photons may be strongly enhanced and the threshol
oscillation is noticeably lowered. On the other hand, the g
in intensity is accompanied by a decrease in field corre
tions. An enhanced twin-photon-generation rate in a sta
resonator has also recently been experimentally dem
strated@8# at the expense of a prolonged photon-coinciden
interval ~narrower bandwidth of the emitted photons!.

In this work we generalize the basic concept of t
positive-P and Wigner representations to the case of unsta
quantum-optical systems that are based on nonorthog
quasimodes. The generalization to other representation
then straightforward. As an application of the presen
phase-space methods we calculate the tunneling times
tween the two possible steady states of the unstable OP
has been shown for stable cavities that the tunneling t
predictions can be quite different@9# depending on whethe
they are calculated using the positive-P or truncated Wigner
representations. It is, therefore, of interest to calculate h
the introduced excess noise in unstable resonators affect
predictions.

I. CAVITY QED IN TERMS OF NONORTHOGONAL
QUASIMODES

For the free electromagnetic field confined to a volum
with partially absorbing boundaries it is usually possible
find a complete set of quasimodes$un(x)%, also known as
matched modes. The multiple indexn includes all longitudi-
nal, transverse, and polarizational degrees of freedom.
quasimodes are defined as self-reproducing field config
tions after one full round trip. Within the paraxial approx
mation this corresponds to eigenfunctions of Huygens’ in
gral operator, i.e.,L(un)5gnun ~see, e.g., Ref.@10#!. To
require the eigenvaluegn to be real and positive yields th
allowed wave vectorskn . An analytically soluble example is
a one-dimensional~1D! symmetric unstable resonator with
Gaussian reflectivity profile@5#. In general, these modes a
not necessarily orthogonal, but are biorthogonal to a sec
set of adjoint modes$vn(x)%, such that
©2002 The American Physical Society13-1
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E
V
dx vn* ~x!um~x!5dnm . ~1.1!

In fact, the adjoint modes correspond to quasimodes tra
ing in the opposite direction. Whereas the matched mo
can be normalized to unity, Eq.~1.1! gives rise to a normal-
ization constantKn for the adjoint modes, called the Pete
mann excess-noise factor@2#. The reason for this name wil
become clear below. In fact the connection between
excess-noise factor and the adjoint modes was found 1
after the prediction ofK-enhanced laser noise by Siegm
@3#.

These normalization properties can be concisely defi
by

E
V
dx un* ~x!um~x!5Anm with Ann51, ~1.2!

E
V
dx vn* ~x!um~x!5Bnm with Bnn5Kn , ~1.3!

where the integral extends over the resonator volume. O
ously A andB are just inverses. For the usual case of sta
geometry the adjoint modes are identical to the matc
modes and the overlap matricesA and B become simply
identity matrices. A further general property of these qua
modes is that they are complete. Hence every field distr
tion may be written as

A~x,t !5(
n
A \

2e0vn
@an~ t !un~x!1an

†~ t !un* ~x!#,

~1.4!

E~x,t !5 i(
n
A\vn

2e0
@an~ t !un~x!2an

†~ t !un* ~x!#,

~1.5!

where thevn denote the resonance frequencies of the qu
modes. Alternatively one may express the mode operato
terms of field operators

an~ t !52 i A e0

2\vn
E dx vn* ~x!@E~x,t !1 ivn A~x,t !#,

~1.6!

an
†~ t !5 iA e0

2\vn
E dx vn~x!@E~x,t !2 ivn A~x,t !#,

~1.7!

and consequently find the commutation relations for th
operators due to the canonical equal time commutation r
tions @11#,

@an ,am
† #5

vn1vn

2Avnvm
E dx vn* ~x!vm~x!'Bnm . ~1.8!

The frequency-dependent prefactor can be neglected f
large range of physically interesting cases as in, for exam
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the optical or infrared regime. For some purposes it is use
to define a second set of operators corresponding to an
pansion in the adjoint modes$bn5Anmam ,bn

†5Amnam
† % for

which one finds

@bn ,bm
† #5

vn1vm

2Avnvm
E dx un* ~x!um~x!'Anm , ~1.9!

@an ,bm
† #5

vn1vm

2Avnvm
E dx vn* ~x!um~x!5dnm . ~1.10!

Using the field expansion of Eqs.~1.4!, ~1.5! and taking
into account the fact that these quasimodes obey the He
holtz equation, one finds for the free-field Hamiltonian

HF5
1

2 E dx:S e0E2~x,t !1
1

m0
B2~x,t ! D : ~1.11!

5(
nm

\
~vn1vn!

2
Anman

†am ~1.12!

within the same approximation as in Eq.~1.8!. In general,
there may occur rapidly oscillating terms such asanam ,
an

†am
† whose effects vanish in the mean. For systems w

backward and forward propagation symmetry they cancel
actly.

So far we have not considered the effect of any losses,
for optically unstable systems this is an unavoidable featu
Since there exists no closed optical path we have a cont
ous flux of energy towards infinity even for perfectly reflec
ing mirrors. Physically the energy is scattered into the n
paraxial field and the mode amplitudes decay exponenti
with a mean ratekn ~determined by the quasimode eige
value gn!. In a proper quantum treatment this has to be
cluded by an input-output coupling@12,13#. It is a well-
known fact that an open system cannot be described b
single Hamiltonian. Usually it is possible to find an effectiv
but non-Hermitian, HamiltonianHeff , which includes the
classical mode damping@14#. In addition, a recycling term
has to be introduced to preserve the commutation relatio
This procedure is known as a master-equation treatmen
the density operatorr that describes the field state. Unfortu
nately for the system we consider here, i.e., an unstable
tical resonator, this procedure is rather involved, since
diffraction losses are indistinguishable from the losses du
mirror transmission in this picture.~Even for perfectly re-
flecting mirrors the loss rate is still finite!. Although a satis-
factory derivation of a master equation is to our knowled
not known or might even be impossible@15#, we may give a
mathematically and physically clear and consistent pro
dure describing the system together with any losses.
given form is inspired by the usual master-equation appro
and the calculated field Hamiltonian@Eq. ~1.12!#. Including
some basic requirements we find for a vacuum input

ṙ52
i

\
~Heffr2rHeff

† !1 i(
nm

Anm~ṽm2ṽn* !amran
† ,

~1.13!
3-2
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POSITIVE-P AND WIGNER REPRESENTATIONS FOR . . . PHYSICAL REVIEW A65 053813
with

Heff5\(
n

ṽnbn
†an , ~1.14!

and

ṽn5vn2 ikn . ~1.15!

To guarantee self-consistency the given master equation
Lindblad form, it preserves the trace of any operator, such
the density operator, it preserves the commutation relat
for all mode operators, such asan , an

† and it guarantees th
damped oscillation ofan and an

† known from the classica
model, i.e.,

^ȧn&52~kn1 ivn!^an&, ~1.16!

^ȧn
†&52~kn2 ivn!^an

†&. ~1.17!

In principle, this treatment is very similar to the quantiz
tion procedure proposed by Dutra and Nienhuis@15#. They
quantize the electromagnetic field for a longitudinal Fab
Perot resonator by expanding the field in self-reproduc
Fox-Li modes. For this specific example one may clea
distinguish between the fields inside and outside the cavit
similar procedure has to be performed to include the tra
verse dynamics of unstable optical systems. The full w
equation, without the paraxial approximation, has to
solved, yielding a ‘‘modes of the universe description
Tracing over the ‘‘nonparaxial’’ degrees of freedom th
leads to a master equation for the system operators. Altho
the procedure is very clear in principle, it turns out to
almost impossible to solve in practice.

Let us now explore the consequences of the changed
namics. Since the free HamiltonianHF is Hermitian, it must
yield an orthogonal basis of eigenstates. Unfortunately th
are not stabilized by the full dynamics that includes t
damping. It turns out that the eigenstates of the effec
HamiltonianHeff represent a more adequate basis, a so-ca
‘‘damping basis’’ @14#. Interestingly the free field Hamil-
tonian describes the ‘‘real part’’ of the non-Hermitian ope
tor Heff , i.e.,

HF5Re$Heff%5
1

2
~Heff1Heff

† !. ~1.18!

In general, the eigenstates of the two operators do not c
cide, but, again neglecting the variation ofvn within one
longitudinal set of quasimodes, we find that they do. We n
here that the eigenstates of the effective Hamiltonian
very similar to the usual Fock-states, but created using
adjoint mode operators. For a distinct moden they take the
form

uNn&5
bn

†N

AN!
u0&. ~1.19!

These states describe field eigenstates containingN quanta of
‘‘energy’’ EN5\(vn2 ikn)N in the quasimoden. Hence ap-
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† or an from the left corresponds to

‘‘photon’’ creation and annihilation, respectively. As an illu
trative example of how these eigenstates evolve under
given master equation, we consider an initiallyN-photon
state r(0)5uNk&^Nku. We find a familiar time evolution
sincer simply decays as

ṙ~0!522Nkkr~0!12NkkuN21k&^N21ku. ~1.20!

In a similar way to that used to find the new set of eige
states, we can define generalized Bargmann states in term
the creation operators. Using a vectorial notationbW †

•aW
[(nbn

†an , we find

iaW &5exp$bW †
•aW %i0&. ~1.21!

These states can immediately be normalized by including
factor exp$2aW †

•A•aW /2%, thus giving a generalized form o
the coherent states, but for convenience we will continue
use the nonnormalized form. As usual these states are ei
states of the annihilation operatorsan and hence fulfill the
relations

aniaW &5aniaW &, ~1.22!

]

]an
ian&5bn

†iaW &5(
m

Amnam
† iaW . ~1.23!

The goal of the present paper is to generalize exist
phase-space techniques involving orthogonal modes to
case of unstable optical systems. We show that this ma
equation can similarly be transformed into stochastic diff
ential equations suitable for numerical computation. In p
ticular, we consider the positive-P and Wigner representa
tions. Other representations may easily be generalized
similar way. As we shall see the generalized definitions
slightly different from the usual orthogonal-mode analy
~see, e.g., Ref.@16#!.

II. POSITIVE- P REPRESENTATION

For a given field-density operatorr, various types of char-
acteristic functions can be defined, from which suitable o
erator expectation values may be inferred. For the positivP
@17# ~as well as for the GlauberP! distribution the normally
ordered characteristic function is used, which gives rise
normally ordered operator expectation values, i.e.,

xN~hW !5Tr$reaW †
•hW e2hW 1

•aW%. ~2.1!

As usual operator moments correspond to derivatives of
characteristic function, we have, for example,

^an&52
]

]hn*
xN~hW →0!. ~2.2!

This can be transformed into a quasi-probability distributi
for the independent variablesan , an

1 corresponding to the
operatorsan , an

† ,
3-3
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LAMPRECHT, OLSEN, DRUMMOND, AND RITSCH PHYSICAL REVIEW A65 053813
P~aW ,aW 1!5E d2hW

p2N ehW 1
•aW 2aW †

•hW xN~hW !, ~2.3!

with N denoting the total number of considered modes.
should point out here that, as with the usual definition of
positive-P distribution this integral does not necessarily co
verge. The positive-P distribution is defined by the expansio
of a given density operator in nondiagonal coherent-s
projection operators, i.e.,

r5E d2aW d2aW 1
iaW &^aW 1i
^aW †iaW &

P~aW ,aW †!, ~2.4!

with

^aW 1iaW &5eaW 1
•A•aW . ~2.5!

This nondiagonal representation is chosen because, for m
interesting nonlinear optical processes, the GlauberP leads
to Fokker-Planck equations with nonpositive-definite diff
sion matrices. At the expense of the variablesan andan

† no
longer remaining complex conjugates except in the mea
a large number of integrations of a stochastic differen
equation, the phase-space doubling used in the positivP
always allows for a positive-definite diffusion matrix@17#.
We should note here that Eq.~2.3! is only one possible
choice for the given distribution. Although Eq.~2.3! is not a
general expression and does not exist in some cases we
use it to make clear the analogy to other representations
as the GlauberP or Wigner. However, for this definition on
may easily show that similar transformation rules are va
as in the usual orthogonal mode case. Taking into accoun
coherent state properties Eqs.~1.22!, ~1.23! we find

anr→anP~aW ,aW 1!, ~2.6!

ran
†→an

1P~aW ,aW 1!, ~2.7!

ran→S an2(
m

Bnm

]

]am
1D P~aW ,aW 1!, ~2.8!

an
†r→S an

12(
m

Bmn

]

]am
D P~aW ,aW 1!. ~2.9!

The only limitation is thatP(aW ,aW 1) must fall off sufficiently
fast for largean , an

1 , which is also a limitation for the
normal positive-P. For a given master equation such as E
~1.13! one may now immediately deduce the correspond
Fokker-Planck-equation via these operator corresponden
Using standard techniques this may further be mapped
stochastic differential equations. For example, the ma
equation Eq.~1.13! yields a zero-diffusion matrix. This give
rise to differential equations without noise terms

ȧn52~kn1 ivn!an , ~2.10!

ȧn
152~kn2 ivn!an

1 . ~2.11!
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The whole procedure is very similar to the stab
resonator case. We can even give an illustrative exam
where the positive-P distribution is exactly the same. From
the expansion Eq.~2.4! for a coherent stateubW &, the P dis-
tribution can be chosen as

P~aW ,aW 1!5d2N~aW 2bW !d2N~aW 12bW 1!, ~2.12!

identical to that in the stable case.

Existence proof

To show that a positive-P representation exists for an
arbitrary state we construct an orthogonal or ‘‘canonical’’ s
of operators corresponding to a ‘‘modes of the univers
description. Since the overlap matrices are Hermitian, p
tive and inverse, they may always be written asA5C†

•C,
B5C21

•(C†)21. The annihilation operators in this new ba
sis simply take the form

cW5C•aW 5C†21
•bW . ~2.13!

It may easily be shown that those operators fulfill the cano
cal commutation relations. Hence the operatorscW† corre-
spond to photon creation and a canonical Bargmann s
may be written as

iaW c&c5ecW†
•aW cu0&5ebW †•C21

•aW cu0&5iC21
•aW c&. ~2.14!

Also a coherent state transforms in the same way

uaW c&c5uC21
•aW c&. ~2.15!

In this basis a positive-P function (Pc) always exists, i.e.,

r5E d2aW cd
2aW c

1Pc~aW c ,aW c
1!iaW c&cc^aW c

1ie2aW c
1
•aW c.

~2.16!

Transforming back to the original biorthogonal basis, i.
aW 5C21

•aW c , we immediately find

r5E d2aW d2aW 1@detA#2Pc~C•aW ,aW 1
•C†!iC•aW &c

3 c^aW
1
•C†ie2aW 1

•C†
•C•aW

5E d2aW d2aW 1@detA#2Pc~C•aW ,aW 1
•C†!iaW &^aW 1ie2aW 1

•A•aW .

~2.17!

Thus a generalizedP function is given in terms of a
positive-P representation in a ‘‘mode of the universe’’ bas
i.e.,

P~aW ,aW 1!5@detA#2Pc~C•aW ,aW 1
•C†!. ~2.18!

After we have shown that a positive-P representation al-
ways exists we give a constructive example of one poss
representation. Of course this form is, as in the canon
case, not unique. Here we have@17#
3-4
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Pc~aW ,aW 1!5
1

~2p!2N e2uaW 2u2
c^aW 1uruaW 1&c , ~2.19!

with aW 15(aW 1aW 1)/2, aW 25(aW 2aW 1)/2. Applying the trans-
formation rule we find

P~aW ,aW †!5
@detA#2

~2p!2N e2aW 2
†
•C†

•C•aW 2
c^C•aW 1uruC•aW 1&c

5
@detA#2

~2p!2N e2aW 2
†
•A•aW 2^aW 1uruaW 1&. ~2.20!

III. WIGNER REPRESENTATION

For the Wigner distribution@18# we use the symmetrically
ordered characteristic function, i.e.,

x~hW !5Tr$reaW †
•hW 2hW †a% ~3.1!

5xN~hW !e2hW †
•B•hW /2. ~3.2!

Again this can be transformed into a quasi-probability dis
bution for the variablesan , an* corresponding to the opera
tors an , an

† , i.e.,

W~aW ,aW †!5E d2hW

p2N ehW †
•aW 2hW •aW †

x~hW !. ~3.3!

But, unlike the positive-P variables,an , an* are now com-
plex conjugate to each other. As in the stable case the Wig
distribution is not necessarily positive. The appropriate
erator correspondences are

anr→S an1
1

2 (
m

Bnm

]

]am*
DW~aW ,aW †!, ~3.4!

ran→S an2
1

2 (
m

Bnm

]

]am*
DW~aW ,aW †!, ~3.5!

ran
†→S an* 1

1

2 (
m

Bmn

]

]am
DW~aW ,aW †!, ~3.6!

an
†r→S an* 2

1

2 (
m

Bmn

]

]am
DW~aW ,aW †!. ~3.7!

For the master equation Eq.~1.13! one finds a nontrivial
diffusion matrix that gives rise to the stochastic different
equations

ȧn52~kn1 ivn!an1jn~ t !, ~3.8!

ȧn* 52~kn2 ivn!an
†1jn* ~ t !, ~3.9!

where the complex Gaussian noise terms have the cor
tions

^jn~ t !jm* ~ t8!&5
1

2
~kW n1k̃m* !Bnmd~ t2t8!, ~3.10!
05381
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^jn~ t !jm~ t8!&50, ~3.11!

^jn* ~ t !jm* ~ t8!&50, ~3.12!

with kW n5kn1 ivn . This discussion shows that for a bio
thogonal system the amount of noise fluctuations can
strongly enhanced by the adjoint overlap matrixB. Consid-
ering a single mode separately this gives rise to an exc
noise factor ofBnn5Kn as predicted by Petermann. W
would like to mention at this point that the Wigner represe
tation gives exactly the same predictions as the positivP
representation when solving the stochastic differential eq
tions Eqs.~2.10!, ~2.11! and ~3.8!, ~3.9!.

As an analytical example we give the Wigner distributi
for a pure coherent stateubW & @cf. Eq. ~2.12!#. One has to
perform the complex Fourier transform of the exponen
factor in Eq.~3.2! to obtain

W~aW ,aW †!5S 2

p D N

detAe22~aW 2bW !†
•A•~aW 2bW !. ~3.13!

Existence proof

Similarly to the positive-P representation the Wigne
function may be obtained from the always existing Wign
function in a ‘‘modes of the universe’’ basis. In order to s
this we first transform the characteristic function from o
basis to the other, i.e.,

xc~hW c!5Tr$re2hW c
†
•cW1cW†

•hW c% ~3.14!

5Tr$re2hW c
†
•C•aW 1aW †

•C†
•hW c%5x~C†hW c!. ~3.15!

In the canonical basis the Wigner function is given by

Wc~aW c ,aW c
1!5E d2hW c

p2N ehW c
†
•aW c2aW c

1
•hW cxc~hW c!. ~3.16!

Changing the integration variableshW 5C†
•hW c and using the

transformation rule for the characteristic function leads to

Wc~aW c ,aW c
1!5E d2hW

p2N det~A21!

3ehW †
•C21

•aW c2aW c
1
•C21†

•hW xc~C†21
•hW !

5E d2hW

p2N det~A21!ehW †
•C21

•aW c2aW c
1
•C21†

•hW x~hW !.

~3.17!

Comparing with the definition of the Wigner function@Eq.
~3.3!# and again changing the variables toaW 5C21

•aW c , we
obtain immediately

W~aW ,aW †!5detAWc~C•aW ,aW †
•C†!. ~3.18!

We would like to remark here that the Wigner function for
coherent state Eq.~3.13! may be obtained from the well
known Wigner function in an orthogonal basis applying th
general transformation rule.
3-5
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IV. TUNNELING TIMES FOR AN UNSTABLE OPO

As we have seen the positive-P and the Wigner distribu-
tions are equivalent representations of a given density op
tor. Hence it seems arbitrary which representation is us
This is of course correct. Problems may occur when tra
forming a given master equation into stochastic differen
equations since the normal procedure is to neglect third
higher-order derivatives within the corresponding Fokk
Planck equation for nonlinear processes, although meth
have recently been developed to avoid this problem@19#. As
a demonstrative example we consider the parametric osc
tor in an unstable cavity. Using the positive-P representation
only derivatives up to second order occur, so that it may
treated exactly. On the other hand the Fokker-Planck eq
tion using the Wigner representation contains third-order
rivatives. Following a widely used procedure, we can tru
cate the resulting Fokker-Planck equation at second ord
treatment that gives evolution equations equivalent to th
of the semiclassical theory of stochastic electrodynam
@20#. Although following this procedure gives exactly th
same predictions for the signal and pump intensities as d
the positive-P @7#, there are differences for the tunnelin
times. As is well known, this discrepancy also exists fo
stable cavity without excess noise@9,21#.

We consider a geometrically unstable 1D cavity w
symmetric mirrors with a Gaussian reflectivity profile in o
der to use analytically given expressions for the matched
adjoint modes@22#. For the sake of simplicity we assume
uniform classical pump field of frequencyvP and a longitu-
dinally thin @23# but transversely large crystal. Besides t
free cavity dynamics described by the phenomenolog
master equation@Eq. ~1.13!# discussed above, we have
include the interaction with the pump field described by
Hamiltonian@7#

H5Heff1HP1Hext1H int ~4.1!

with
as
is

05381
ra-
d.
s-
l

or
-
ds

a-

e
a-
-

-
, a
e
s

es

d

al

e

Heff5\(
n

ṽnbn
†an, ~4.2!

HP5\vPAP
†AP , ~4.3!

Hext5 i ~AP« in* 2AP
†« in!, ~4.4!

H int5
i\g

2 (
n

S APAKnbn
†22

AP
†

AKn

an
2D , ~4.5!

where« in is the pump strength,g is the coupling constan
and the integral extends over the volume of the nonlin
medium, which is assumed to be transversally very la
compared with the mode widthw. We would like to mention
here that although each single term of the interaction Ham
tonian shows a clear asymmetry between upconversion
downconversion the asymmetry vanishes exactly dur
summation overn. Alternatively the sum may be written a
SnAPan

†2/AKn, recovering the obviously Hermitian form
But we still keep the asymmetric form since the operat
bn

† ,an actually correspond to photon creation and annih
tion in the subharmonic field. Finally the pump field loss
kP are treated by a standard reservoir coupling to give

ṙ52
i

\
@Hr2rH†#

1kP~2APrAp
†2AP

†APr2rPAP
†A!

1(
nm

Anm$~ k̃n* 1k̃m!amran
†2k̃man

†amr2k̃n* rn
a†am%,

~4.6!

with k̃n5kn1 iDn andDn5vn2vP/2. For the sake of sim-
plicity we will restrict the subsequent calculations to res
nance. Using the positive-P representation this can be turne
into a Fokker-Planck equation using the operator corresp
dences of Eqs.~2.6!–~2.9!, giving
Ṗ~an ,an
1 ,aP ,aP

1!5H 2(
n

]

]an
S 2k̃nan1gaPAKn(

m
Amnam

1D 2(
n

]

]an
1 S 2k̃n* an

11gaP
1AKn(

m
AnmamD

2
]

]ap
S 2kpap2

g

2 (
n

an
2

AKn

1«mD 2
]

]ap
† S 2kpap

12
g

2 (
n

an
12

AKn

1« in* D 1
1

2 (
n

]2

]an
2 gaPAKn

1
1

2 (
n

]2

]an
12 gaP

1AKnJ P~an ,an
1 ,aP ,aP

1!. ~4.7!
This equation can then be mapped onto a set of stoch
differential equations which includes the real Gaussian no
sourceshn ,hn

1 associated withan and an
1 , respectively.

The noise correlations
tic
e

^hn~ t !hm~ t8!&5gaPAKndnmd~ t2t8!, ~4.8!

^hn
1~ t !hm

1~ t8!&5gaP
1AKndnmd~ t2t8!, ~4.9!
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^hn~ t !hm
1~ t8!&50, ~4.10!

may be derived immediately from the nonzero diffusi
terms in Eq. ~4.7!. Interestingly the dynamics include
cross-mode coupling due to the nonorthogonality of the c
ity modes and the noise amplitude is directly enhanced
the excess noise. Again this lends support to the interpr
i
sti
s
p

u
in
ed
al

at

ib
in
ts
ho
ac

05381
-
y
a-

tion of excess noise as a local enhancement of the vac
quantum fluctuations.

Using the Wigner representation and hence the trans
mation rules@Eqs.~3.4!–~3.7!# we find exactly the same drif
terms representing the deterministic part of the stocha
differential equations. Differences occur within the secon
order derivatives, giving rise to different noise correlation
and there are also third-order derivatives present,
Ẇ~an ,an* ,aP ,aP* !5H 2(
n

]

]an
S 2k̃nan1gaPAKn(

m
Amnam* D 2(

n

]

]an*
S 2k̃n* an

11gaP* AKn(
m

AnmamD
2

]

]aP
S 2kpap2

g

2 (
n

an
2

AKn

1« inD 2
]

]ap*
S 2kpap* 2

g

2 (
n

an*
2

AKn

1« in* D
1(

nm

]2

]an]am*
1

2
~ k̃n1k̃m* !Bnm1

]2

]aP]aP*
kP1

1

8 (
n

]3

]an
2]aP*

gAKn

1
1

8 (
n

]3

]an*
2]aP

gAKnJ W~an ,an* ,aP ,aP* !. ~4.11!
ss
-
ble
. 1

ess

nite
As mentioned above, we will neglect the third-order terms
order to perform the numerical integration of the stocha
equations. The nontrivial correlations for the complex Gau
ian noise termsjn ,jp associated with the signal and pum
field take the form

^jn~ t !j~ t8!m* &5
1

2
~ k̃n1k̃m* !Bnmd~ t2t8!, ~4.12!

^jp~ t !jp* ~ t8!&5kpd~ t2t8!. ~4.13!

Obviously the third-order derivatives also survive witho
excess noise (Kn→1). It has been already pointed out
Refs. @9,21# that for stable cavity geometries the predict
tunneling timestT between the two possible steady state v
ues,

ass56F2kpk

g2 S u« inu
« th

21D G1/2

, ~4.14!

may differ strongly between the positive-P and truncated
Wigner representations. Starting initially with one eigenst
the time evolution will be given as

^a& t5^a&0e2t/tT, ~4.15!

and one ends up with a statistical mixture of the two poss
states. This is a genuine quantum noise-driven effect s
without noisê a& t would not decay at all. Taking the effec
of excess noise into account one also finds that the thres
of oscillation is shifted downwards by the excess-noise f
tor so that we have@7#
n
c
s-

t

-

e

le
ce

ld
-

« th'
kPk

AKg
. ~4.16!

In the following we investigate the influence of exce
noise on the tunneling timestT . For this purpose we con
tinuously change the curvature of the mirrors from the sta
to the unstable regime. Scaling the horizontal axis in Fig
to the excess-noise factor, we see thattT increases approxi-

FIG. 1. This picture compares the tunneling timestT using the
positive-P representation~diamonds! with the results of a truncated
Wigner simulation~circles!. We find that for both methodsK enters
approximately linearly, so that the ratio is independent of the exc
noise. Here we are well above the stable threshold« in

51.5kkp /g. For the other parameters we have choseng5kP5k.
The error bars correspond to the sampling errors due to the fi
number of trajectories~10 000!.
3-7
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mately linearly withK. Whereas the positive-P representa-
tion has been proven to give accurate results@21# for the case
of a stable cavity, the values corresponding to the Wig
simulations could be quite different. We see in Fig. 1 that t
is also the case here, but the ratio between the predi
values does not seem to depend onK. Furthermore, the
growth of the tunneling times can be directly attributed to
shifted oscillation threshold. Since we have kept the pu
strength constant at 50% above thestable threshold value
(« in51.5kkP /g the signal field effectively interacts with
stronger pump field for increasing excess noise. For the o
parameters we have chosenkP5k and g5k. Since k is
strongly increasing when changing from a stable to an
stable cavity configuration one would have to increase
coupling strength to compensate. Of course, in practic
would be very difficult to reach this strong coupling regim
in unstable resonators~e.g., g(L/ f 520.2)'7.8g(L/ f
50.2)!. Nevertheless the result still has some physical me
ing since the ratio between the methods does not depen
the coupling strength@21#. The big advantage of this rathe
‘‘unphysical’’ assumption is that it clearly demonstrates t
effect of the excess noise.

To produce these results we considered the analytic
soluble model of a 1D unstable resonator with symme
spherical mirrors of Gaussian reflectivity profile@7#. We
changed the ratio between cavity length and focal len
such that 0.2>L/ f >20.2, continously switching from the
optically stable to the optically unstable regime. The tra
verse cavity extension was fixed with a Fresnel numbe
N520. We found that considering 10 transverse modes
sufficient to obtain convergence in the solutions.

CONCLUSIONS

We have generalized two standard phase-space met
widely used in quantum optics, the positive-P and Wigner
s.
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representations, to the case of unstable resonators feat
nonorthogonal modes. We have developed the operator
respondences connecting the underlying density oper
with the corresponding Fokker-Planck equations. Th
equations may be easily mapped onto stochastic differen
equations that may form a basis for more extensive studie
unstable optical systems. The usual case of orthogo
modes is found as a straightforward limit of our equation

As an illustrative example we have calculated the tunn
ing times of an unstable OPO, as these are known to
different in the two representations. Well above thresh
and within the strong-coupling regime we obtained clear d
ferences. The Fokker-Planck equation for the positive-P rep-
resentation contains derivatives up to the second order
can thus be mapped directly onto stochastic differential eq
tions. On the other hand, when using the Wigner equati
one usually neglects the third-order derivatives, wh
causes easily visible discrepancies for the predicted tun
ing times. We have shown that the ratio between the pre
tions of the two methods is essentially unaffected by
excess noise. The differences are identical to the differen
that occur for corresponding stable parameters. However
predictions for the field intensities are exactly the same
both methods even with included excess noise.
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