PHYSICAL REVIEW A, VOLUME 65, 053813
PositiveP and Wigner representations for quantum-optical systems with nonorthogonal modes
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We generalize the basic concepts of the posiBvard Wigner representations to unstable quantum-optical
systems that are based on nonorthogonal quasimodes. This lays the foundation for a quantum description of
such systems, such as, for example an unstable cavity laser. We compare both representations by calculating
the tunneling times for an unstable resonator optical parametric oscillator.
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INTRODUCTION that the excess-noise factor plays an important role for this
genuine quantum-noise-driven process. The intensity of sig-
The usual quantization procedure for the electromagnetioal photons may be strongly enhanced and the threshold of
field involves an infinite set of quantized harmonic oscilla-oscillation is noticeably lowered. On the other hand, the gain
tors, each associated with an orthogonal field mode. Sinci intensity is accompanied by a decrease in field correla-
the electromagnetic field Hamiltonian is Hermitian this strat-tions. An enhanced twin-photon-generation rate in a stable
egy is always possible. On the other hand, if we restrict theesonator has also recently been experimentally demon-
field Hamiltonian to a finite volume with an optically un- strated 8] at the expense of a prolonged photon-coincidence
stable geometry this general feature fails. It turns out to bénterval (narrower bandwidth of the emitted photons
impossible to isolate the system due to the non-Hermitian |n this work we genera”ze the basic concept of the
boundary conditions. Within a classical optics descriptionpositive and Wigner representations to the case of unstable
this represents no fundamental problem since the coupling tguantum-optical systems that are based on nonorthogonal
the outside reservoir may simply be described by an introgasimodes. The generalization to other representations is
duced damping. Within a quantum description the procedurg,, straightforward. As an application of the presented

is more delicate since effects such as decoherence have to ﬁase—space methods we calculate the tunneling times be-

g‘clljt;?ii?]‘ fgfl:ﬁgyﬁg::js rﬁogzgdlgﬂ ?Ke'rgtrﬁgruﬂgg da u?gtségltween the two possible steady states of the unstable OPO. It
N : ’ as been shown for stable cavities that the tunneling time

resonator laser§or example are excluded from this general predictions can be quite differef] depending on whether

guantization procedure since the resonator will contain non: . - i
orthogonal modes. Of course this can, in principle, be passet(!i‘ey are ca!culated_usmg the posm_ r truncated Wigner
epresentations. It is, therefore, of interest to calculate how

over by embedding the unstable system in a larger volumEEP" o
and quantizing in this larger closed volume. This treatment idhe n_"ntr_oduced excess noise in unstable resonators affects the
usually known as the “modes of the universe” description Predictions.
[1] but an attempt to use it computationally rapidly exceeds
the numerical capacity of any computer. In this paper we
present an alternative quantum description based on a set of I. CAVITY QED IN TERMS OF NONORTHOGONAL
nonorthogonal quasimodes. Starting from the classical QUASIMODES
method we generalize the usual quantization procedure and . ,
end up with a phenomenological master equation describing 0" the free electromagnetic field confined to a volume
the time evolution of the unstable system separately. It is g_”th partially absorbing boundaries it is usually possible to
well-known fact that the nonorthogonality of the cavity find & complete set of quasimodgs,(x)}, also known as
modes gives rise to enhanced quantum fluctuations, calle@atched modes. The multiple indexncludes all longitudi-
excess noisé¢2,3]. This noise amplification becomes very nal, transverse, and polarizational degrees of freedom. The
clear within our description. quasimodes are defined as self-reproducing field configura-
This approach has already been used to calculate théons after one full round trip. Within the paraxial approxi-
spontaneous emission rate of a single atom in an unstabl®ation this corresponds to eigenfunctions of Huygens’ inte-
cavity [4,5], finding that the excess-noise factor due to thegral operator, i.e.L(u,)=vy,u, (see, e.g., Ref[10]). To
nonorthogonality of the cavity modes can drastically enhanceequire the eigenvalug, to be real and positive yields the
the spontaneous emission rate into the cavity modes. Sieglowed wave vectork,. An analytically soluble example is
man'’s law for the enhanced linewidth of an unstable cavitya one-dimensiondflD) symmetric unstable resonator with a
laser was also recovered. Gaussian reflectivity profil€5]. In general, these modes are
As a natural next step we extended the theory to the prorot necessarily orthogonal, but are biorthogonal to a second
cess of parametric down conversip$,7]. Again we found set of adjoint mode$v,(x)}, such that
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the optical or infrared regime. For some purposes it is useful

Jvdx v (X)U(X) = S - (1. to define a second set of operators corresponding to an ex-
pansion in the adjoint modg®,,=A,nam ,bl=AmnaTm} for

In fact, the adjoint modes correspond to quasimodes travelhich one finds

ing in the opposite direction. Whereas the matched modes

can be normalized to unity, E¢l.1) gives rise to a normal-

ization constanK, for the adjoint modes, called the Peter-

mann excess-noise fact®]. The reason for this name will

become clear below. In fact the connection between the ot

excess-noise factor and the adjoint modes was found 10 yr [a, ,bIn]: uf dx vy (X)Up(X)= 8ym- (1.10

after the prediction oK-enhanced laser noise by Siegman 2Vwnon

[3].

These normalization properties can be concisely deflnegnto account the fact that these quasimodes obey the Helm-

by holtz equation, one finds for the free-field Hamiltonian

+ o, oy *
[bn,bm]Zz\/?fdXUn(X)um(X)%Anm, (1.9

n®Wm

Using the field expansion of Eqél.4), (1.5 and taking

* _ ; — 1 1
fvdxun(x)um(x) Anm  With - Apn=1, (1.2 H,:=§fdx:(eoEz(x,t)wLM—oBz(x,t): (1.11)

* — i — +
deXUn(x)um(x) Bym With By,=K,, (1.3 =%ﬁ(w”2w”)Anmalam (112

where the integral extends over the resonator volume. Obvbvithin the same approximation as in EG.8). In general
ously A andB are just inverses. For the usual case of stabl . o e '
geometry the adjoint modes are identical to the matche Tere may occur rapidly oscillating terms_such &gy,

modes and the overlap matricésand B become simply E\nam whose effects vanish in the mean. For systems with

identity matrices. A further general property of these quasi- ackward and forward propagation symmeiry they cancel ex-

. : .o actly.
modes is that they are complete. Hence every field distribu So far we have not considered the effect of any losses, but

tion may be written as for optically unstable systems this is an unavoidable feature.
7 Since there exists no closed optical path we have a continu-

Ax,H) =2, \/ [an(t)u,(X) +al(tuX (x)], ous flux of energy towards infinity even for perfectly reflect-

n 2€own ing mirrors. Physically the energy is scattered into the non-
1.4 paraxial field and the mode amplitudes decay exponentially

o with a mean ratex, (determined by the quasimode eigen-

—i el _atieyx value v,). In a proper quantum treatment this has to be in-

EOut) |§ 2¢p [2n(t)n(0) = an(t)thh ()1, cluded by an input-output couplinfL2,13. It is a well-

(1.5 known fact that an open system cannot be described by a

. single Hamiltonian. Usually it is possible to find an effective,
where thew,, denote the resonance frequencies of the quasig; non-Hermitian, HamiltoniarH ¢, which includes the

modes. Alternatively one may express the mode operators if5ssical mode dampinfl4]. In addition, a recycling term

terms of field operators has to be introduced to preserve the commutation relations.
This procedure is known as a master-equation treatment for

an(t)=—i |_€o f dxv* (O[E(X,t) +iwa A(X, D], the density operatgs that describes the field state. Unfortu-
2hw, nately for the system we consider here, i.e., an unstable op-

(1.60  tical resonator, this procedure is rather involved, since the
diffraction losses are indistinguishable from the losses due to
t,n . | €0 : mirror transmission in this picturdEven for perfectly re-
(D) =i thJ dxvn()[ECGY ~ion AXD], flecting mirrors the loss rate is still finiteAlthough a satis-
(1.7  factory derivation of a master equation is to our knowledge,
not known or might even be impossill&5], we may give a
and Consequently find the commutation relations for thes%athemaﬂca”y and phys|ca”y C|ear and Consistent proce_
operators due to the canonical equal time commutation relagure describing the system together with any losses. The
tions[11], given form is inspired by the usual master-equation approach
and the calculated field Hamiltonidiq. (1.12)]. Including

opto some basic requirements we find for a vacuum input
[ay.al]= N”—_“ dX 0¥ (X)om(X)~Bym. (1.9 q P
WphWm

i
p=—=(Herp— pHl) +1 X, Apm(@m— @ )ampa,,
The frequency-dependent prefactor can be neglected for a * j, (HerP—pHer) % m(@m = n ) 8mP2y
large range of physically interesting cases as in, for example, (1.13
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with plying the operatorsbl or a, from the left corresponds to
“photon” creation and annihilation, respectively. As an illus-
Heﬂ:ﬁz Enbian, (1.14 trgtive example of hpw these eig_enstates. g\(olve under the
n given master equation, we consider an initiaNiyphoton
state p(0)=|N,){(N,|. We find a familiar time evolution
and sincep simply decays as

@n= @~ iky. (1.15 p(0)=—2Nkyp(0)+ 2Nk [N—1)(N—1,]. (1.20

To guarantee self-consistency the given master equation is of In a similar way to that used to find the new set of eigen-

Lindblad .form, It preserves the trace of any operator, such 8States, we can define generalized Bargmann states in terms of
the density operator, it preserves the commutation relation

for all mode operators, such as, aE and it guarantees the i‘; E[reatlon ofpedrators. Using a vectorial notatiof &
damped oscillation of,, and ag known from the classical ~ <n°n®n. We TN

model, i.e., |a)=exp{b- a}0). (1.2

(@) == (katiwn)(@n), (118 These states can immediately be normalized by including the
(ab:—(xn—iwn)(aﬁ}. (1.17  factor exg—a'-A-al2}, thus giving a generalizgd forr_n of
the coherent states, but for convenience we will continue to
In principle, this treatment is very similar to the quantiza-use the nonnormalized form. As usual these states are eigen-
tion procedure proposed by Dutra and Nienhi§]. They states of the annihilation operatoag and hence fulfill the
quantize the electromagnetic field for a longitudinal Fabry-relations
Perot resonator by expanding the field in self-reproducing
Fox-Li modes. For this specific example one may clearly apl|@) = aq @), (1.22
distinguish between the fields inside and outside the cavity. A
similar procedure has to be performed to include the trans-
verse dynamics of unstable optical systems. The full wave
equation, without the paraxial approximation, has to be
solved, yielding a “modes of the universe description”.  The goal of the present paper is to generalize existing
Tracing over the “nonparaxial” degrees of freedom thenphase-space techniques involving orthogonal modes to the
leads to a master equation for the system operators. Althougiase of unstable optical systems. We show that this master
the procedure is very clear in principle, it turns out to beequation can similarly be transformed into stochastic differ-
almost impossible to solve in practice. ential equations suitable for numerical computation. In par-
Let us now explore the consequences of the changed dyicular, we consider the positiie-and Wigner representa-
namics. Since the free Hamiltoniddy: is Hermitian, it must  tions. Other representations may easily be generalized in a
yield an orthogonal basis of eigenstates. Unfortunately thessimilar way. As we shall see the generalized definitions are
are not stabilized by the full dynamics that includes theslightly different from the usual orthogonal-mode analysis
damping. It turns out that the eigenstates of the effectivesee, e.g., Ref.16)).
HamiltonianH ¢ represent a more adequate basis, a so-called

J
&T”an>:bg”a>:% Amnazq”a- (1.23
n

“da_mping bgsis” [14]. Interestingly the free fiel_d_ Hamil- Il. POSITIVE- P REPRESENTATION
tonian describes the “real part” of the non-Hermitian opera-
tor Heg, i€, For a given field-density operatpr various types of char-

acteristic functions can be defined, from which suitable op-
erator expectation values may be inferred. For the posRive-
[17] (as well as for the Glaubd?) distribution the normally
ordered characteristic function is used, which gives rise to
In general, the eigenstates of the two operators do not coimormally ordered operator expectation values, i.e.,

cide, but, again neglecting the variation ef, within one i

longitudinal set of quasimodes, we find that they do. We note xn( ) :Tr{peéT- g7 -a), (2.1
here that the eigenstates of the effective Hamiltonian are

very similar to the usual Fock-states, but created using thAs usual operator moments correspond to derivatives of the
adjoint mode operators. For a distinct madé¢hey take the characteristic function, we have, for example,

form

1
He=Re{He} = 5 (Hert Hep)- (1.18

J
b (an)=— o xn(7—0). (2.2
INp) = \/m|0> (1.19

This can be transformed into a quasi-probability distribution
These states describe field eigenstates contaMigganta of ~ for the independent variables,, a, corresponding to the

“energy” Ey=7(w,—1x,)N in the quasimod®. Hence ap- operatorsa,,, a;ﬂ,
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d?n ., - . The whole procedure is very similar to the stable-
R 7 ata-aty - : - .
P(a,a”)=| —ve XN(7), (2.3 resonator case. We can even give an illustrative example

where the positivé? distribution is exactly the same. From

with N denoting the total number of considered modes. Wehe expansion Ec(2.4) for a coherent statgg), the P dis-
should point out here that, as with the usual definition of theribution can be chosen as
positiveP distribution this integral does not necessarily con-

verge. The positivé? distribution is defined by the expansion P(a,a®)=6MNa—-p)sMNa*-p"), (212
of a given density operator in nondiagonal coherent-state. | )
projection operators, i.e., identical to that in the stable case.
H&)(&*” Existence proof
— 242 >+ > ot
p—J d ad”a (a'l|a) Pla,a’), 2.4 To show that a positiv€ representation exists for any
arbitrary state we construct an orthogonal or “canonical” set
with of operators corresponding to a “modes of the universe”
) ) description. Since the overlap matrices are Hermitian, posi-
<&+||&>=e“+'A‘”‘. (2.5 tive and inverse, they may always be writtenfs C'-C,

B=C~!.(C") 1. The annihilation operators in this new ba-
This nondiagonal representation is chosen because, for masys simply take the form
interesting nonlinear optical processes, the Glaubézads R
to Fokker-Planck equations with nonpositive-definite diffu- ¢=C-a=Cc’1.p. (2.13
sion matrices. At the expense of the variabdgsand a,‘: no ] ] .
longer remaining complex conjugates except in the mean of May easily be shown that those operators fulfill the canoni-
a large number of integrations of a stochastic differentialcal commutation relations. Hence the operatofscorre-
equation, the phase-space doubling used in the pogive-spond to photon creation and a canonical Bargmann state
always allows for a positive-definite diffusion matrifig7].  may be written as
We should note here that E@2.3) is only one possible - N
choice for the given distribution. Although E(R.3) is not a lag) =6 a0y =t C a0y = C 1. 4y). (2.14
general expression and does not exist in some cases we will _
use it to make clear the analogy to other representations suéfSO & coherent state transforms in the same way
as the GlaubeP or Wigner. However, for this definition one N P
may easily show that similar transformation rules are valid, |Ge)e=[C™" dc). (219
as in the usual orthogonal mode case. Taking into account the . : - . : .
coherent state properties Eq$.22, (1.23 we find In this basis a positivé function (P.) always exists, i.e.,

- 2- NN s amdt
anpﬁanp(&:&Jr)a (2.6) P:f dzacdzagpc(ac’a;r)”ac>cc<ac+”e cc
(2.19

Transforming back to the original biorthogonal basis, i.e.,

pal—aP(a,a"), (2.7)

P a=C™ 1. a., we immediately find
pa,— an—§ Bnm(m—+> P(a,a"), (2.9
m
p=f d?ad?a*[detA]?P,(C-a,a*-Ch)|C- a).
J
T +_ > >4 - -
anpﬂ( ap, ; an&am) P(a,a™). (2.9 X (& CT||efa+'CT‘C‘a
The only limitation is thaP(&, &™) must fall off sufficiently =f d2ad2a " [detA]2P(C-a,a*-Chla)(at|e A,
fast for largea,, «. , which is also a limitation for the
normal positiveP. For a given master equation such as Eq. 217

(1.13 one may now immediately deduce the correspondin ) ) ) ) )
Fokker-Planck-equation via these operator correspondenceiUS @ generalized® funcﬂop IS given in terms ”of a
Using standard techniques this may further be mapped OntB03|tlveP representation in a “mode of the universe” basis,
stochastic differential equations. For example, the master®-
equation Eq(1.13 yields a zero-diffusion matrix. This gives

- 2 oot et
rise to differential equations without noise terms P(a,a7)=[detA]"P¢(C-a,a"-C1). (218

After we have shown that a positierepresentation al-

an=~(kntiwn)an, (2.10 ways exists we give a constructive example of one possible
. ] . representation. Of course this form is, as in the canonical
an =—(kp—lop)ay, . (2.11) case, not unique. Here we ha\¥/|
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(En(t)fm(t/»zoi (3.1)
(&n(DER(L))=0, (3.12

with k,=k,+iw,. This discussion shows that for a bior-
thogonal system the amount of noise fluctuations can be
R [detA]®> .+ 4 . - strongly enhanced by the adjoint overlap maBixConsid-
(a,a")= (z—w)me_a*'c G- (CoaylplCray)e ering a single mode separately this gives rise to an excess-
noise factor ofB,,=K, as predicted by Petermann. We
[detA]? it aa - _ would like to mention at this point that the Wigner represen-
:We -Ma(aylplay). (220 tation gives exactly the same predictions as the posRive-
representation when solving the stochastic differential equa-
tions Egs.(2.10, (2.11) and(3.8), (3.9).
As an analytical example we give the Wigner distribution

For the Wigner distributiof18] we use the symmetrically for a pure coherent stadqé) [cf. Eq. (2.12]. One has to

ordered characteristic function, i.e., perform the complex Fourier transform of the exponential
factor in Eq.(3.2) to obtain

.. 1 -2 L
Pc(a,a+)=me 1" (a.lplas)e, (2.19

with @, =(a+a*)/2, a_=(a—a™)/2. Applying the trans-
formation rule we find

IIl. WIGNER REPRESENTATION

X(7)=Tr{pes 773y 3.1) i Q Q
S ah=[Z —2(a=p)"-A-(a=pB)
o ?])e_;’T'B';’/Z. (32 W(a,a'") (77) detAe . (8.13

Again this can be transformed into a quasi-probability distri-

- . . Existence proof
bution for the variables,,, ay corresponding to the opera-

torsa. al ie Similarly to the positiveP representation the Wigner
e function may be obtained from the always existing Wigner
d2% -4 - - function in a “modes of the universe” basis. In order to see
W(&,&T):f e’ T x( 7). (3.9 this we first transform the characteristic function from one
basis to the other, i.e.,
But, unlike the positive? variables,a,,, « are now com- L _iterdt
plex conjugate to each other. As in the stable case the Wigner Xc(7c)=Tr{pe" " °} (3.1
distribution is not necessarily positive. The appropriate op- Ctcaratcn ‘o
erator correspondences are =Tr{pe 7= *® = "Tel=x(C'ne).  (3.19
1 9 In the canonical basis the Wigner function is given by
anp— an+_z Bom>—= W(&u&T)- (3.9
2 m &am L dzﬁc »T'& st R
We(ae,ag )= 2N g7 e % ey (7c). (3.1
12 B, — |W(a,a' 3
pan—| an” 5 £ Mok, (aa%), @9 Changing the integration variablés=C"- 7, and using the
transformation rule for the characteristic function leads to
1 J
T * > =t 2~
a + =2, B |W(a,a), 3.6 .. d
pay—| a, 2§m: mn&am (a a ) ( ) WC(aC'a:): W_zzde(A—l)

St o-l.; a2t o1t 1 -
x e -C ac—a, -C nXC(CT 1.7])

d*7 Sf a1 - =+ -1t -
— —1\a7' 'C “ac—ea. -C -7 el
For the master equation E¢L.13 one finds a nontrivial J 2N de(A e ¢ x(7).

diffusion matrix that gives rise to the stochastic differential

equations (3.17
. . Comparing with the definition of the Wigner functigiqg.
an= = (knFiop)ant &(b), (38 (3.3] and again changing the variablesde=C - G, we
i . obtain immediatel
ay= —(Kn—lwn)ag-l- & (1), (3.9 y

_ _ W(a,a’)=detAW,(C-a,a’-CT). (3.18
where the complex Gaussian noise terms have the correla-
tions We would like to remark here that the Wigner function for a
1 coherent state Eq.3.13 may be obtained from the well-
XN 2~ L known Wigner function in an orthogonal basis applying this
{En(DER()) 2('(r‘+'<"“)l3r"7‘5(t ), (19 general transformation rule.
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IV. TUNNELING TIMES FOR AN UNSTABLE OPO ~
. . L Heff:ﬁz wnbnan- (4.2
As we have seen the positi®and the Wigner distribu- n

tions are equivalent representations of a given density opera- +
tor. Hence it seems arbitrary which representation is used. Hp=fiwpApAp, (4.3
This is of course correct. Problems may occur when trans-

i * _ At
forming a given master equation into stochastic differential Hex=1(Apein—Apein), 4.4
equations since the normal procedure is to neglect third or " Al
higher-order Qerivatives yvithin the corresponding Fokker- im:ﬂE AP\/K—an_ r aﬁ , (4.5)
Planck equation for nonlinear processes, although methods 2 5 JK,,

have recently been developed to avoid this probj&fj. As ) ] ]
a demonstrative example we consider the parametric oscilld?h€résin is the pump strengthg is the coupling constant
tor in an unstable cavity. Using the positiferepresentation and _the mte_grallextends over the volume of the nonlinear
only derivatives up to second order occur, so that it may bénedium, which is assumed to be transversally very large
treated exactly. On the other hand the Fokker-Planck equgompared with the mode widii. We would like to mention
tion using the Wigner representation contains third-order del€re that although each single term of the interaction Hamil-
rivatives. Following a widely used procedure, we can trun-{onian shows a clear asymmetry between upconversion and
cate the resulting Fokker-Planck equation at second order, @oWnconversion the asymmetry vanishes exactly during
treatment that gives evolution equations equivalent to thosgummation oven. Alternatively the sum may be written as
of the semiclassical theory of stochastic electrodynamics«nApan/ VKp, recovering the obviously Hermitian form.
[20]. Although following this procedure gives exactly the But we still keep the asymmetric form since the operators
same predictions for the signal and pump intensities as dod,.a, actually correspond to photon creation and annihila-
the positiveP [7], there are differences for the tunneling tion in the subharmonic field. Finally the pump field losses
times. As is well known, this discrepancy also exists for axp are treated by a standard reservoir coupling to give
stable cavity without excess noif@,21]. .

We consider a geometrically unstable 1D cavity with bZ—I—[Hp—pHT]
symmetric mirrors with a Gaussian reflectivity profile in or- h
der to use analytically given expressions for the matched and
adjoint modeg22]. For the sake of simplicity we assume a
uniform classical pump field of frequeney, and a longitu-

+ kp( ZAPPA; ~ALApp—ppALA)

dinally thin [23] but transversely large crystal. Besides the + 2 And (R + ) ampa) — kmatamp — %5 pElam},
free cavity dynamics described by the phenomenological nm
master equatiodEq. (1.13] discussed above, we have to (4.6

m;mﬁ%;ﬁ\aenl[r;t]eractmn with the pump field described by thewith %= ko +iA, andA, = o, — wpl2. For the sake of sim-

plicity we will restrict the subsequent calculations to reso-
H=Heg+Hp+Heqt Hint (4.2) nance. Using the positiverepresentation this can be turned

into a Fokker-Planck equation using the operator correspon-
with dences of Egs(2.6)—(2.9), giving

. J J
P(an,a: !aPla;): _2 _%nan‘*'gaP\/K_nE Amnar-; _2 T ( _T(: a:-i—ga; \/K—nE Anm@m
n day m n da, m
2 +2 2
1% g a, a . 9 a, . 1 1%
&ap( Ko~ 3 2 m*sm) Eg( K% "3 2 G e |52 z0ae ks
1 9 + + +
+52 557985 Kn [ Plan,aq ap.a8). 4.7)
n [ 2%
|
This equation can then be mapped onto a set of stochastic (7)) 7m(t")) = gap VK 8pmd(t—t'), (4.9
differential equations which includes the real Gaussian noise
+ . . + .
sourcesy,,n, associated withe, and «, , respectively.
The noise correlations (7 () (")) =gad VK Symd(t—t), (4.9
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(ma(t) 7 (1"))=0, (4.10  tion of excess noise as a local enhancement of the vacuum
quantum fluctuations.

Using the Wigner representation and hence the transfor-
may be derived immediately from the nonzero diffusion mation rule§Egs.(3.4—(3.7)] we find exactly the same drift
terms in Eq.(4.7). Interestingly the dynamics include a terms representing the deterministic part of the stochastic
cross-mode coupling due to the nonorthogonality of the caveifferential equations. Differences occur within the second-
ity modes and the noise amplitude is directly enhanced byrder derivatives, giving rise to different noise correlations,
the excess noise. Again this lends support to the interpretaand there are also third-order derivatives present,

d

dap

d

*
dag

( _7<nan+gaP\/K—n% Amna:n) _; ( _’R: arT—’_ga; \/K—né Anma’m)

W(a,,af ap ,a"F‘,)=| —;

2 *2
J g an, Jd g a,
__( _Kpap—§2 —+8m> _E( —Kpap*—EE _+8i*n>

dap n VK, n VK,
#? 1 9 1 3°
+> ———— = (Rn+t & )Bymt —— kpt = 2, —5—= VK
%"1 dangar, 2 Kot Km)Bamt 2020 K 8§n: aaﬁaa;g\/—”
+EE —63 g\/K_ W(ap,,al ap,ay) (4.11
8 - 0&:25ap n ns%n . ap,ap/- .

As mentioned above, we will neglect the third-order terms in
order to perform the numerical integration of the stochastic ™ .
equations. The nontrivial correlations for the complex Gauss- \/Rg

ian noise termst,,,§, associated with the signal and pump
field take the form

KpK

(4.16

In the following we investigate the influence of excess
noise on the tunneling times. For this purpose we con-

1 tinuously change the curvature of the mirrors from the stable

(En(DEMR)m)= 5(7<n+7<m)3nm5(t—t'), (4.12  to the unstable regime. Scaling the horizontal axis in Fig. 1
to the excess-noise factor, we see thaincreases approxi-

(€p(D & (1)) =Kpd(t—t). (4.13 6
Obviously the third-order derivatives also survive without 5.5 { -
excess noiseK,—1). It has been already pointed out in }
Refs.[9,21] that for stable cavity geometries the predicted 5t } ;
tunneling timed; between the two possible steady state val- }
ues, §45 I % % |
[
2ux e 172 -~ 4r
s =* _g_(| m|_1) ) (4.14 § i : }
g €th 3.5? ; 3
may differ strongly between the positie-and truncated 3 fﬂ ¢ t
Wigner representations. Starting initially with one eigenstate
the time evolution will be given as 25 15 ” 3 75
— —t/t
(@)=(a)e ", (4.15 FIG. 1. This picture compares the tunneling tintesusing the

. o . . positiveP representatioidiamond$ with the results of a truncated
and one ends up with a statistical mixture of the two possiblgyigner simulation(circles. We find that for both methodg enters

states. Thi_S is a genuine quantum noise-dri.ven effect sincgyproximately linearly, so that the ratio is independent of the excess
without noise(a); would not decay at all. Taking the effects nojse. Here we are well above the stable thresheld

of excess noise into account one also finds that the threshole1 5¢«,/g. For the other parameters we have chogerxp= «.
of oscillation is shifted downwards by the excess-noise facThe error bars correspond to the sampling errors due to the finite
tor so that we havé7] number of trajectorie10 000.
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mately linearly withK. Whereas the positive-representa- representations, to the case of unstable resonators featuring
tion has been proven to give accurate req@ig for the case  nonorthogonal modes. We have developed the operator cor-
of a stable cavity, the values corresponding to the Wignerespondences connecting the underlying density operator
simulations could be quite different. We see in Fig. 1 that thisyith the corresponding Fokker-Planck equations. These
is also the case here, but the ratio between the predicteshuations may be easily mapped onto stochastic differential
values does not seem to depend Kn Furthermore, the equations that may form a basis for more extensive studies of
growth of the tunneling times can be directly attributed 0 aynstable optical systems. The usual case of orthogonal
shifted oscillation threshold. Since we have kept the pumpnqges is found as a straightforward limit of our equations.
strength constant at 50% above tsable threshold value As an illustrative example we have calculated the tunnel-
(ein=1.5¢kp /g the signal field effectively interacts with a ing times of an unstable OPO, as these are known to be

stronger pump field for increasing excess noise. For the Othecfif'ferent in the two representations. Well above threshold

parameters we have chosap=« and g=«. SINCEx IS 4 vithin the strong-coupling regime we obtained clear dif-
strongly increasing when changing from a stable to an un; . .

. : . . ferences. The Fokker-Planck equation for the posiBvep-
stable cavity configuration one would have to increase the

coupling strength to compensate. Of course, in practice iEesentation contains derivatives up to the second order and
would be very difficult to reach this strong conyjpling regime can thus be mapped directly onto stochastic differential equa-
in unstable resonators(e.g., g(L/f=—0.2)~7.8g(L/f tions. On the other hand, when using the Wigner equations

=0.2)). Nevertheless the result still has some physical mear?"€ usually neglects the third-order derivatives, which

ing since the ratio between the methods does not depend &RUSes easily visible discrepancies fo_r the predicted tunn_el-

the coupling strengtfi21]. The big advantage of this rather INg times. We have shown that the ratio between the predic-

“unphysical” assumption is that it clearly demonstrates thetions of the two methods is essentially unaffected by the

effect of the excess noise. excess noise. The differences are identical to the differences
To produce these results we considered the analyticalljhat occur for corresponding stable parameters. However, the

soluble model of a 1D unstable resonator with symmetrigoredictions for the field intensities are exactly the same for

spherical mirrors of Gaussian reflectivity profil@]. We  both methods even with included excess noise.

changed the ratio between cavity length and focal length

such that 0.2L/f=-0.2, continously switching from the

optically stable to the optically unstable regime. The trans- ACKNOWLEDGMENTS
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