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Dynamical quantum noise in trapped Bose-Einstein condensates
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We introduce the study of dynamical quantum noise in Bose-Einstein condensates through numerical simu-
lation of stochastic partial differential equations obtained using phase-space representations. We derive evo-
lution equations for a single trapped condensate in both the positive-P and Wigner representations and perform
simulations to compare the predictions of the two methods. The positive-P approach is found to be highly
susceptible to the stability problems that have been observed in other strongly nonlinear, weakly damped
systems. Using the Wigner representation, we examine the evolution of several quantities of interest using from
a variety of choices of initial state for the condensate and compare results to those for single-mode models.
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I. INTRODUCTION

A key focus of the explosion of interest in the dilu
atomic gas Bose-Einstein condensates@1–3# has been the
study of the time evolution of condensates from some ini
state. Among many works, there have been theoretical in
tigations of the way condensates react to a range of pe
bations, such as ‘‘shaking’’ the trap to excite sound wav
@4–6#, removing a potential barrier to allow two condensa
to interfere@7,8#, applying electromagnetic fields to transf
condensate population into other possibly untrapped st
@9–12#, or ‘‘stirring’’ a condensate to excite vortices@13#.
All but the last of these effects have already been dem
strated experimentally. A common element in the theoret
works on these topics is the description of the conden
using the time-dependent Gross-Pitaevskii equation~GPE! or
coupled GPEs~or their approximate hydrodynamic ve
sions!. The GPE can be derived as an equation for the c
densate amplitude assuming that the condensate state
multimode coherent state~on the concept of coherent stat
see@14,15#!. Hence an implicit assumption underlying the
approaches is that the condensate is adequately describ
a coherent state. However, a number of experiments are
exploring issues such as coherence@16,17# and the diffusion
of relative phase between two condensates@18#. These con-
cepts are familiar from optical systems, but additional fact
arise in condensate physics such as the dispersion assoc
with the nonzero atomic mass and especially the effect
atomic interactions. In particular, several early models
atom lasers@19–21# suggest that coherence properties m
be strongly influenced by the nonlinear interactions. Mo
over, one of the principal themes of quantum optics is
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idea that processing of quantum noise by nonlinearities le
to interesting statistical properties@14,15#. It thus becomes
important to consider the nature of the condensate bey
the coherent state and in particular the influence of quan
noise on the coherence of the condensate and any eve
‘‘atom laser.’’ For example, we may ask how different lo
profiles for an output coupler@22# might affect the noise
statistics of an atom laser.

In fact, there have been a number of studies into intrin
cally quantum dynamical effects, in particular the collap
and revival of the relative phase between two coupled c
densates@23,24# and the robustness of such effects agai
environmental decoherence@25,26#. However, these studie
have been restricted to one or two modes and assume tha
condensate wave function is independent of the numbe
atoms. For large condensates, these approximations are
necessarily valid and a many-mode approach is required
single-mode model may give an estimate for the phase
fusion time@27#, for example, but can never describe spat
coherence properties or the role of local density and ph
fluctuations. Hence there is a need for techniques to trea
quantum dynamics of the condensate using a fully spati
dependent field rather than a few-mode approach.

Closely related issues are well known in the field of qua
tum optical solitons and nonlinear quantum optics in gene
In that situation, the propagation of the optical field is go
erned by a quantum nonlinear Schro¨dinger equation that in-
cludes the effects of fiber dispersion and the Kerr nonline
ity of the medium @28,29#. Such a model leads to th
prediction that a soliton pulse injected into the fiber expe
ences squeezing~for general discussions of squeezing s
@14,15#! in both the electric field amplitude@28,29# and the
photon number@30,31#. Both types of squeezing have no
been observed@32,33#. While estimates for the squeezin
have also been obtained from single-mode models of
Kerr nonlinearity @15#, the presence of fiber dispersio
means that accurate results can only be obtained from a
4824 © 1998 The American Physical Society
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timode treatment of the full quantum field. The Heisenbe
field operator describing a Bose-Einstein condensate~BEC!
confined in a one-dimensional potential well obeys a st
ingly similar equation to that of the fiber soliton system
differing only by the addition of the trapping potential an
the interpretation of the dispersive term that in a conden
represents the kinetic energy. Thus, given that multim
models have proved essential for the accurate predictio
quantum soliton properties, it is reasonable to assume
same may hold true in Bose condensates. In fact, we
below that the nonlinearity occurring in the condensate pr
lem is typically far larger than for the soliton case and th
the role of quantum noise should be more important.

While we thus have strong motives for seeking the co
plete evolution of the field operator, such a calculation is
first sight a formidable task, if for no other reason than t
the Hilbert space for the system is truly vast. The numer
calculation of the evolution of just a single operator w
significant excitation requires a large basis. The problem
the field is far worse. Nevertheless, in this paper we inten
demonstrate how techniques of quantum optics may be u
to provide a complete description of the condensate fi
operator such that we can calculate virtually any desi
quantum expectation value. The key to our approach is
representation of the density operator using phase-space
siprobability functions. These functions then lead natura
to a description in terms ofclassicalfields that are subject to
evolution equations similar to the semiclassical tim
dependent GPE satisfied by the mean field but with the
cial addition of stochastic driving terms. These terms do
correspond to any physical noise sources, but are define
such a way as to recapture exactly the operator charact
the fully quantum-mechanical field. In particular we use tw
representations: the positive-P function and the well-known
Wigner distribution. While we can perform exact calcul
tions in the positive-P representation, we find the syste
rapidly succumbs to the instabilities that have been obse
previously for that representation@34,35#. Therefore, we also
consider an approximate but robust method using the Wig
representation. We are then able to extract a large rang
interesting averages.

It is worth noting that in terms more familiar in conven
tional quantum field theory, the stochastic techniques
present in this paper constitute a method of numeric
evaluating path-integral representations of quantum field
erages~see@36–38#!. The phase space of the classical fie
is in these terms the space of the Feynman paths, while
phase-space quasiprobability functions are measures ove
respective path integrals. These measures are construct
characterized by the corresponding stochastic evolu
equations, which allows the path integrals to be calcula
This point highlights the significance of the positive-P rep-
resentation. Provided certain boundary conditions are s
fied @14,15#, the positive-P representation is anexactmethod
for propagating the field in real~as opposed to imaginary!
time. While it may blow up in certain cases as tim
progresses, all other exact methods fail at all times. Dir
integration of the Feynman path integrals for example
numerically useless due to the oscillatory phase factors.

The stochastic techniques are well known in quantum
tics and may be familiar to readers with a background in t
g
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subject. However, many of these ideas may be new to th
who have come to Bose-Einstein condensation from ot
disciplines. Therefore we have taken a pedagogic appro
in deriving the fundamental stochastic equations. Bef
treating the full quantum field problem, we review the tec
niques in the single-mode approximation for which t
Hamiltonian corresponds to the anharmonic oscillator. T
analysis for the complete field then follows in a natural wa
Readers already well versed in the stochastic approac
quantum dynamics may wish to pass over this earlier ba
ground in Sec. II C.

The paper is structured as follows. In Sec. II we provid
detailed demonstration of the techniques for propagation
quantum fields using phase-space representations. After
ing the complete problem in Sec. II B, we simplify to th
corresponding one-mode Hamiltonian in Sec. II C and der
the equivalent stochastic equations in the positive-P repre-
sentation in detail. We generalize this approach to the
field in Sec. II D and find an approximate but more stab
method using the Wigner function in Sec. II E. There is co
siderable freedom in the choice of initial states for our sim
lations. We discuss these issues and present some na
choices in Sec. III. Our numerical results illustrating some
the possibilities of the stochastic approach are given in S
IV before we conclude in Sec. V.

II. TECHNIQUES FOR PROPAGATION
OF QUANTUM FIELDS

A. General ideas

There are a number of well-established techniques
quantum optics for the propagation of a complete quant
field. Typically, these ideas involve a generalization of sta
dard procedures for finding the time evolution of averages
a system with a single mode or a few modes@14,15#. In
summary, the procedure is as follows. The system den
operator is expressed in the coherent state basis using a
siprobability function such as theP, Wigner, or positive-P
distributions. The master equation describing the evolut
of the density operator is converted to an equivalent par
differential equation~PDE! for the distribution. If certain
conditions are satisfied@14,15#, the PDE may then be con
verted to a set of classical stochastic ordinary differen
equations~Langevin equations! that yield quantum expecta
tion values as ensemble averages of moments of the ph
space variables. This procedure has the significant advan
of providing a natural numerical implementation in whic
we calculate the evolution of a small number of phase-sp
variables rather than that of a very large number of variab
describing the density matrix or a distribution function on
large complex grid. This advantage becomes essential
systems of several modes for which the Hilbert space is
large that a direct numerical simulation would be impossib
Now when we consider a quantum field, unless we are
tunate enough to have an analytic solution, the problem m
be treated numerically as a system with a large but fin
number of modes and the associated Hilbert space is t
vast. One thousand atoms with just 100 modes, for exam
occupy a Hilbert space of dimension 1001000. The stochastic
treatment is now vital. One uses essentially the same pr
dure but works withfunctionalPDE’s and thus obtains sto
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4826 PRA 58M. J. STEELet al.
chastic equations for a classical field@28,29,39,40#. In the
following sections we provide a detailed derivation for t
case of a Bose condensate in one dimension.

B. Trapped Bose-Einstein condensates

We model a one-dimensional system by assuming
highly anisotropic harmonic trap with the longitudinal an
radial trap frequencies (vz and v r , respectively! satisfying
l5vz /v r!1. Below we use parameters corresponding t
cigar-shaped trap such as that in Refs.@7,11#. With strong
radial confinement, we assume that the nonlinearity play
negligible role in the radial direction. The field operator
then assumed to factorize with its transverse depende
completely described by a coherent-state occupation of
lowest mode of the trap. So the Heisenberg picture bo
field operator has the form

Ĉ~x!5S mv r

p\ D 1/2

expS 2
mv r r

2

2\ D f̂~z,t !. ~1!

Adopting harmonic-oscillator units in the axial direction wi
a05A\/mvz, t5vzt, x5z/a0 , and ĉ(x,t)5Aa0f̂(z,t),
the one-dimensional second-quantized Hamiltonian is

Ĥ5E
2`

`

dxĉ†Kĉ1
G

2E2`

`

dxĉ†ĉ†ĉĉ, ~2!

whereK is the linear operator

K52
1

2

d

dx2
1

1

2
x22m, ~3!

m is the scaled chemical potential, andG52a/la0 is the
scaled nonlinear constant witha thes-wave scattering length
Our ultimate aim is to calculate~multitime! averages ofĉ
under the evolution induced by the Hamiltonian~2!. More
generally, the system may include damping in the form
couplings to atom reservoirs. In this case the system is
scribed by a density matrix satisfying a master equation

dr

dt
5Lr, ~4!

where the LiouvillianL is a superoperator that acts to th
right in the fashion

Lr52 i @Ĥ,r#1(
j

k j

2
~2ÔjrÔj

†2Ôj
†Ôjr2rÔj

†Ôj !

~5!

and theÔj are operators describing the bath couplings w
strengthsk j . While we do not include damping in th
present work, it is convenient to work in a density-mat
formalism. We now develop stochastic descriptions of
dynamics in both theP and Wigner representations, explai
ing the method for theP representation in detail.
a

a

a
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e
n
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e

C. One-mode problem

1. P representation

To illustrate the ideas underlying a phase-space appro
without the notational baggage of the full many-mode pro
lem, we begin by treating the single-mode limit of Eq.~2!.
The atomic field is assumed to be described by a sin
mode operatorâ(t) with an associated mode functionc GP
determined by the solution to the time-independent GP
The single-mode Hamiltonian is

Ĥ ~1!5v̄â†â1
x

2
â†â†ââ, ~6!

with v̄5*2`
` dxcGP* KcGP andx*2`

` dxucGPu4. The first step
in our attempt to obtain a stochastic description is to expr
the density matrix in a diagonal coherent state basis using
Glauber-SudarshanP function @14,15#

r5E d2aua&^auP~a!, ~7!

where ua& is a coherent state with thec-number complex
amplitudea. It is tempting to considerP(a) as a probability
distribution for the density matrix over the coherent stat
However, whileP(a) is real, for nonclassical states it ma
be highly singular and/or take on negative values@14,15#. It
is proved in Ref.@14# that there is a uniqueP function for
every density matrix. The quantum averages of interest
found as moments of theP distribution that correspond to
normally ordered expectation values

^â†mân&5Tr$â†mânr%5E d2aa* manP~a! ~8!

for integersm,n>0. Arbitrarily ordered averages can alway
be found by first rewriting them in terms of normally ordere
quantities.

We now need an equation for the time evolution of theP

function. Using ua&5exp(2uau2/2)exp(aâ†)exp(2a1â)u0&
and the definition of theP function, it is not hard to demon
strate the operator correspondences

âr↔aP~a!, â†r↔S a12
]

]a D P~a!,

~9!

râ↔S a2
]

]a1D P~a!, râ†↔a1P~a!.

We have introduced the unusual notationa1, which for the
moment is to be read as the ordinary complex conjugatea* .
Substituting these correspondences in the master equatiṙ

52 i @Ĥ (1),r#, we obtain a Fokker-Planck equation for th
time evolution ofP(a)
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]P

]t
5H 2

]

]a
@2 i ~v̄a1xa1a2!#2

]

]a1
@ i ~v̄a1

1xaa12!#1
1

2

]2

]a2
~2 ixa2!

1
1

2

]2

]a12
~ ixa12!J P~a,a1!. ~10!

Note that despite the appearance of this equation,a anda1

are not to be treated as independent variables as they
complex conjugates@14,15#.

Equation~10! is exact and completely equivalent to th
master equation. Our motivation in obtaining it is based
the fact that any Fokker-Planck equation with a positiv
definite diffusion matrix may be exactly rewritten in the la
guage of stochastic differential or Langevin equations@41#.
To be precise, consider a Fokker-Planck equation of the f

]F

]t
52(

j

]

]xj
Aj~x,t !P

1
1

2(jk
]

]xj

]

]xk
@B~x,t !BT~x,t !# jkF, ~11!

in which the diffusion matrixD5BBT is clearly positive
definite. Then a third equivalent description is given by t
system of stochastic equations

dx

dt
5A~x,t !1B~x,t !E~ t !, ~12!

where the real noise sourcesEj (t) have zero mean and sa
isfy Ej (t)Ek(t8)5d jkd(t2t8). These equations~and all
other stochastic equations in this paper! are to be interpreted
in the Ito approach to stochastic calculus. A complete disc
sion of the techniques of stochastic calculus and the con
tion between the Fokker-Planck and Langevin description
provided by Gardiner@41#. By making such a transformatio
we would apparently have achieved our aim of a stocha
description of the quantum dynamics and could calculate
pectation values by taking ensemble averages of momen
the phase-space variablesxj .

2. Positive-P representation

Unfortunately, the diffusion matrix in Eq.~10! is clearly
not positive definite and the preceding equivalence does
apply. However, Drummond and Gardiner@42# have shown
that in such cases, the situation may be rescued by intro
ing the ‘‘positive-P’’ function, which represents the densit
matrix as an integral over two independent variables

r5E d2ad2b
ua&^b* u

^b* ua&
P~a,b!. ~13!

It can be shown that with this definition the positive-P func-
tion can be chosen positive for any density matrix@14,42#.
The crucial step comes here. Referring to Eq.~10!, we now
considera anda1 as independentquantities and by making
are

n
-

m

e

s-
c-
is

ic
x-
of

ot

c-

the identificationb5a1, we may read Eq.~10! as the
Fokker-Planck equation in the positive-P representation cor-
responding to the original master equation. Moreover,
writing P(a,b) as a function of four real variables rathe
than two complex variables, one may show that the resul
434 diffusion matrix is always positive definite@14,42#.
Thus, in the positive-P representation, it is always possib
to derive an equivalent Langevin equation description us
Eq. ~12!. In the present case, Eq.~10! leads to the stochasti
system

i
da

dt
5~v̄a1xa1a2!1Aixah1~ t !,

~14!

i
da1

dt
52~v̄a11xaa12!1A2 ixa1h2~ t !,

where h i(t) for i 51,2 ared-correlated in time with zero
mean. Note thata and a1 experience different noise
sources, so that even if they are conjugate att50 they do
not remain so.

We emphasize that Eqs.~14! are completely equivalent to
the master equation. Any expectation value that can be fo
from the density operator may equally be found by ensem
averaging over many trajectories using the stochastic eq
tions. Beingc-number variables,a anda1 do not satisfy the
commutation properties of the operatorsâ andâ†. Neverthe-
less, through the inclusion of the noise sourcesh i and the
insistence on normal ordering when taking averages, t
still account for the complete quantum dynamics. Th
equivalence of the stochastic and operator approaches
been demonstrated explicitly in the context of optical fib
solitons in a recent paper of Finiet al. @43#. It is important to
note that theh i do not correspond to any physical nois
sources, but are included only to recapture the commuta
relations of the operators. In this sense they are quite dist
from the operator valued noise sources that appear in ‘‘qu
tum Langevin equations’’@14,15#. In fact in the positive-P
representation, Plimaket al. @38# have pointed out that ther
is some freedom in the precise form of the noise term
which can be exploited to improve convergence proper
dramatically. We also mention a well-known difficulty wit
the positive-P representation. The independence of the no
sources drivinga and a1 can in some cases lead to wil
trajectories that prevent convergence of the ensemble a
ages@34,35,44#. This is indeed true in the present case a
we consider this problem in some detail in later sections.
the properties of the anharmonic oscillator are well know
we do not present simulations of the one-mode equati
~14!, but proceed directly to the multimode field problem.

D. Multimode problem

By analogy with the single-mode problem, in whic
single-mode operators were replaced by classical varia
driven by white-noise sources, we might expect that a co
plete quantum field can be replaced by classical fields
fering independent noise sources at every point in spa
There are a number of ways of proving this claim. A straig
forward ~if notationally cumbersome! method is to expand
the field in a complete set of modes and mode operators
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proceed by a direct generalization of the method in the p
ceding subsection@40#. However, a more concise derivatio
is obtained by introducing the functionalP distribution @39#

P~$c,c* %,t!5r~a!~$ĉ,ĉ†%,t!u
ĉ→c

ĉ†→c*

, ~15!

where r (a) denotes the density operatorr(t) antinormally
ordered with respect to the field operatorsĉ,ĉ† in the Schro¨-
dinger picture. Putting the master equation obtained from
Hamiltonian~2! into antinormal order and using the follow
ing functional analogs of the operator correspondences~9!:

ĉr↔cP~c!, ĉ†r↔S c12
d

dc D P~c!,

~16!

rĉ↔S c2
d

dc1D P~c!, rĉ†↔c1P~c!,

one finds the functional Fokker-Planck equation

]P

]t
5E

2`

`

dxH 2
d

dc~x!
$2 i @Kc~x!1Guc~x!u2c~x!#%

1
1

2

d2

dc2~x!
@2 iGc2~x!#J P1c.c. ~17!

As anticipated by the results for the single-mode problem
Sec. II C, the diffusion matrix of this equation is no
positive-definite and so there is no straightforward mapp
onto a single stochastic differential equation@14#. Just as for
the single-mode case, we move to a positive-P representa-
tion and double the phase space with the mapping

c~x,t !→c1~x,t !, c1~x,t !→c2~x,t !, ~18!

wherec1(x,t) andc2(x,t) are independent fields. As befor
we are guaranteed a positive-definite diffusion matrix a
finally obtain the pair of Ito stochastic equations

i ]tc1~x,t!5Kc1~x,t!1Gc2~x,t!c1
2~x,t!

1AiGc1~x,t!h1~x,t!, ~19a!

i ]tc2~x,t!52Kc2~x,t!2Gc1~x,t!c2
2~x,t!

1A2 iGc2~x,t!h2~x,t!, ~19b!

where the noise sourcesh1 andh2 are real, Gaussian, andd
correlated in time and space:h i(x,t)h j (x8,t8)5d i j d(x
2x8)d(t2t8). Note that the mean number of atoms

^N̂~t!&5K E
2`

`

dxĉ†~x,t!ĉ~x,t!L
5E

2`

`

dxc2~x,t!c1~x,t!

is conserved in the ensemble average but fluctuates duri
single trajectory due to the complex noise. We remark tha
practice, it is numerically more convenient to work with th
-

e

n

g

d

a
in

complex conjugate equation to Eq.~19b!. We have used the
form shown in order to make a clearer connection to E
~14!.

Although our derivation indicates that Eqs.~19! allow one
to calculatesingle-time normally orderedquantum field av-
erages, it was shown by Drummond@45# that they actually
allow for multitime time-normally ordered averagesto be
found. In general, an expression for an arbitrary tim
normally ordered average is obtained by replacingĉ(x,t) by
c1(x,t), ĉ†(x,t) by c2(x,t), and the quantum averaging b
the stochastic one

^T̄ĉ†~x,t !•••ĉ†~x8,t8!Tĉ~x9,t9!•••ĉ~x-,t-!&

5c2~x,t !•••c2~x8,t8!c1~x9,t9!•••c1~x-,t-!.

~20!

Here T and T̄ denote, respectively, direct and reverse tim
ordering of the field operators. The upper bar on the rig
hand side of this relation denotes an averaging over the
dom trajectories$c1 ,c2%, with the stochastic measure cha
acterized constructively by Eqs.~19!. In other words, this is
a path integralover trajectories$c1 ,c2%, with Eqs.~19! pro-
viding the measure over the paths. In quantum field theo
quantum averages of the form in Eq.~20! appear in the well-
known Keldysh diagram techniques@46#. They are a subse
of the full set of Keldysh averages~which in general also
contain ĉ ’s under theT̄ ordering andĉ†’s under theT or-
dering!. For this subset of quantum averages, Eqs.~19! are
fully equivalentnot just to the master equation, butto the
Heisenberg equations of motion for the quantum field, pro-
viding a constructive path-integral representations for th
averages.@Moreover, with external sources added to Eq
~19!, they account for the full set of Keldysh averages, th
becoming fully equivalent to the Heisenberg equations;
@38,47#.# In the context of field theory, it is perhaps wort
remarking on a helpful simplification that results from th
nonrelativistic nature of the problem. The density matrix a
time t5t0 may be mapped directly onto theP, Wigner or
positive-P distributions at the same time. These are th
used as distributions for initial conditions in simulations.
the general case, one must rather match the density matr
the distributions att52`, subject to the usual assumptio
of adiabatic turning on of the interaction@38#.

The positive-P representation is guaranteed to give ex
results for as long as the ensemble averages converge. H
ever, we see below in Sec. IV that the trajectories are pr
to large excursions from the mean that quickly cause
simulation to blow up. Such problems with the positive-P
representation are well known@34,35,44# and occur espe-
cially in systems with strong nonlinearity and weak~or van-
ishing! damping, which is precisely the situation in th
present case of a trapped interacting Bose condensate
believe that this is the first case, however, for which div
gent trajectories appear for realistic physical values. As s
it is indication of the likelihood of strongly nonclassical b
havior outside the description of the GPE. It is important
realize that the failure of the positive-P representation in
such cases is not indicative of a genuine ‘‘divergence’’ in t
sense of quantum electrodynamics but merely represen
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rapid ~presumably exponential! growth in the width of the
distribution. So while in theory the distribution remain
physically correct, in practice it becomes impossible to
curately sample the whole distribution numerically. In fa
this problem is strongly dependent on the parameter ra
chosen. Drummond and Corney have successfully used
positive-P representation to simulate evaporative cooling
the condensate@48#. The cooling problem is a case in whic
the positive-P representation can be expected to be m
robust than in zero-temperature calculations for two reas
The atomic density is much lower, at least initially, and the
is a considerable damping in the form of the rf field used
remove the hotter atoms.

E. Truncated Wigner representation

In the absence of exact stable methods, we are force
consider approximate simulation techniques. One appro
that has proved successful in optical problems is the ‘‘tr
cated Wigner’’ method@44#. In a similar fashion to that of
Sec. II D, the master equation can be mapped onto a Fok
Planck–like equation for the Wigner distribution@14,15#,
which returns symmetrized expectation values as oppose
the normally ordered averages of theP representations. Tha
is to say, we define the Wigner distribution by analogy w
Eq. ~15! as

W~$c,c* %,t!5r~sym!~$ĉ,ĉ†%,t!u
ĉ→c

ĉ†→c*

, ~21!

where r (sym) denotes the density operatorr(t) symmetri-
cally ordered with respect to the field operatorsĉ,ĉ† ~see
Ref. @14# for the connection of this definition to more fami
iar expressions for the Wigner function!. Using the func-
tional differentiation notation, the operator corresponden
take the form@14#

ĉr↔S c1
1

2

d

dc*
D W, ĉ†r↔S c* 2

1

2

d

dc DW,

~22!

rĉ↔S c2
1

2

d

dc*
D W, rĉ†↔S c* 1

1

2

d

dc DW.

Using these relations in the master equation, we find
Wigner function evolution equation

]W~c,c* !

]t
5E

2`

`

dxiH d

dc
@Kc1G~ ucu221!c#

2
1

4

d3

d2cdc*
cJ W~c,c* !1c.c. ~23!

In this case, there is no second derivative term~the diffusion
matrix vanishes identically! and the quantum noise acts v
third-order derivatives as ‘‘cubic noise.’’ Unfortunatel
there is no simple mapping from cubic noise to a stocha
representation@14# and as we have discussed earlier, a dir
integration of Eq.~23! is impractical. The simplest approx
mation is to truncate Eq.~23! at second order so that we a
-
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left with a single deterministic equation for the classical fie
cW , which is just the standard time-dependent GPE

i ]tcW~x,t!5KcW~x,t!1GucW~x,t!u2cW~x,t!. ~24!

Although this equation is completely deterministic, it is n
the case that we have discarded all effects of quantum no
Noise is still included explicitly in the initial state, which i
now represented as a distribution of functionscW(x,0). ~In
fact, even in the positive-P representation we would requir
a random distribution of starting functions unless the init
state was a coherent state.! We discuss the choice and repr
sentation of initial states in detail in Sec. III.

In optical problems, it has been found that the Wign
approach gives accurate results in the large photon num
limit, when it might be expected that the influence of t
third-order quantum noise is small. In Sec. IV we test t
Wigner predictions against the positive-P results for as long
as the latter are stable. Using the Wigner distribution ent
one further limitation. Typically, the physically most inte
esting quantities are time-ordered, normally ordered av
ages, as provided directly by theP representations@14,15#.
As the Wigner distribution returns symmetrized mome
and we do not know the unequal time commutators for
field operators, we cannot usually find multitime averag
with the Wigner method. An exception is the two-time no
mally ordered correlation function for coherent initial stat

^ĉ†~x,t!ĉ~x8,t8!&

5^c GP~x,t!uĉ†~x,t!ĉ~x8,t8!uc GP~x,t!&

5c GP~x,t!* ^c GP~x,t!uĉ~x8,t8!uc GP~x,t!&

5c GP~x,t!* cW~x,t8!, ~25!

which is thus reduced to a single-time expectation value w
no ordering problems. Note that even for coherent init
states, higher-order correlations such

^:ĉ†(t1)ĉ(t1)ĉ†(t2)ĉ(t2):& are unavailable.

III. INITIAL STATES

The question of suitable initial states for simulation
somewhat involved. Here we wish to use states that can
thought of as a good representation of the ‘‘ground state
the condensate’’ in as much as this is possible in a symm
broken picture. We consider only zero-temperature sta
here. ForT50, the simplest option is to choose an initi
coherent state, that is, precisely that state assumed a
times in a conventional calculation with the GPE. Our sim
lations then indicate how the actual state evolves away fr
the coherent state. To do so, we set the mean field^ĉ(x,0)&
equal to the solution of the time-independent GPEc GP(x)
~the ‘‘ground-state wave function’’! and assume vacuum
noise in all modes. For the normally ordered positive-P rep-
resentation, vacuum noise is obtained simply by the cho
c1(x,0)5c2(x,0)5c GP(x). In the symmetrically ordered
Wigner representation, the noise must be explicitly includ
in each mode of a suitable basis. Each trajectory begins w
a different field of the form
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cW~x,0!5c GP~x!1(
j 50

N
1

2
h jf j~x! ~26!

whereh j is a complex random variable of zero mean w
h jh k̄50 andh j* h k̄5d jk . The sum is taken overN modes of
a complete basis$f j (x)% and N is taken sufficiently large
that the results are independent ofN. Natural choices for the
$fk(x)% are the discrete position basisf j (x)5d(x
2 j Dx)/ADx or the harmonic-oscillator basis. The latter h
the advantage that ifN is not too large, the modes do no
extend to the boundary of the simulation window and ther
no risk of noise artificially ‘‘wrapping around’’ the simula
tion. In practice, we have seen no difference in results w
using either of these bases.

However, if one wishes to find a good approximation
the ground state of the many-body system, the coherent
is certainly not an optimal choice. Of course, as we are us
a symmetry-breaking approach, no state can be truly stat
ary: there must always be a degree of phase diffusion a
ciated with the number superposition implied by the assum
tion of a nonzero mean field. Nevertheless, there are st
we might favor over the coherent state. Standard applicat
of Bogoliubov theory at zero temperature@49,50# approxi-
mate the second-quantized Hamiltonian by the diagonal
pression

Ĥ5K1(
j .0

Ejb̂j
†b̂ j , ~27!

whereK is a constant,b̂ j is the annihilation operator for th
quasiparticle excitation of energyEj , and the mean field
satisfies the GPE. Further, the field operator may be wri
as

ĉ~x!5(
j .0

@uj~x!b̂ j2v j* ~x!b̂ j
†#, ~28!

where the mode functionsuj and v j are solutions to the
Bogoliubov–de Gennes eigenvalue equations@49,50#. Our
second choice for the ground state is thus the vacuum in
Bogoliubov representation

cW~x,0!5c GP~x!1(
j 51

N
1

2
@h juj~x!2h j* v j~x!#. ~29!

However, Lewenstein and You@51# have pointed out that in
a symmetry-breaking Bogoliubov method, the existence o
zero-energy Goldstone mode requires the inclusion of an
tra term in the Hamiltonian involving the condensate ‘‘m
mentum’’ P that accounts for the phase diffusion of the me
field. In this case we have

Ĥ5K1
a

2
P21(

j
Ej b̂ j

†b̂ j , ~30!

with a5N]m/]N, P5*2`
` dxc GP(x)(dĉ1dĉ†), and dĉ

5ĉ2^ĉ&. This Hamiltonian implies an infinite amplitud
squeezing of the condensate that is clearly unphysical. It
been shown elsewhere for one- and two-mode mod
@52,53# that retaining cubic and quartic terms in the Ham
is
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tonian that are neglected in the Bogoliubov method lead
a finite squeezing. Here we do not perform a full treatmen
the effect of the higher-order terms for the multimode s
tem, but take for our third ‘‘ground state,’’ the lowest-ener
variational state in which each mode in the Bogoliubov ba
is independently in a minimum uncertainty Gaussian stat

We also briefly remark that the choice of initial state
closely tied to the manner of state preparation. In many
stances, the appropriate state need not be the ground sta
a recent experiment at JILA@18#, a single condensate is sub
jected to a shortp/2 pulse creating a second condensate i
different internal state. As the pulse length is shorter than
time required for significant nonlinear dynamical effects
occur, the combined two condensate system might be
pected to exhibit binomial statistics. If the trapping potent
were arranged so that the two clouds did not subseque
overlap, we could then model the evolution of one of the t
condensates assuming a number variance (DN)2'N/2. In
fact, it may be checked using results in Ref.@51# that the
state in which all the Bogoliubov modes are in the vacu
has number statistics for the condensate mode very clos
(DN)2'N/2. For a slower transfer of population, nonline
effects would play a role and a more complex initial sta
would be appropriate@54#. As an example of a completel
different initial condition, the first-principles simulation o
evaporative cooling using the positive-P representation tha
was mentioned earlier@48# begins essentially with a therma
state for the atom field.

IV. RESULTS

A. Numerical methods

The parameters for our simulations are chosen to re
sent the following system. We consider a condensate oN
51000 sodium atoms in a cylindrical trap withl5vz /v r
50.025 so that the one-dimensional approximation is r
sonable. The radial frequency is set at eitherv r /2p5800 Hz
~the ‘‘strong trap’’! or v r /2p5200 Hz~‘‘weak trap’’!. Tak-
ing the scattering length asa54.9 nm, we obtain for the
nonlinear constantG5Gstrong50.084 or G5Gweak50.042.
The initial-state mean-field solutions were obtained
imaginary-time propagation of the GPE and quasiparticle
ergies and mode functions found by standard meth
@49,51#. The predictions of our simulations were checked
ensuring that the results did not change when the time
was decreased or the size of the spatial grid increased. S
lations in the truncated Wigner representation were p
formed with a standard second-order split step method@44#.
Due to the large nonlinearity of the system and conseque
strong noise in the positive-P simulations, the standard Eule
split-step algorithm was not able to give results independ
of time step even at a step size ofdt50.0005. Hence we
used a strongly convergent semi-implicit method@44#, which
gave reliable results with 256 spatial points and a time s
dt50.001.

B. Quantities of interest

We present our results in terms of three general quantit
To demonstrate the ability to determine two-time correlat
functions we would like to calculate the quantity
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g~1!~t,0!5

K E
2`

`

dxĉ†~x,0!ĉ~x,t!L
N

. ~31!

This is straightforward in the positive-P representation.
However, as discussed in Sec. II E, in the Wigner repres
tation we may calculate only unequal-time normally orde
correlations for coherent initial states, when from Eq.~25!
we have

g~1!~t,0!5

E
2`

`

dxc GP* ~x!cW~x,t!

N
. ~32!

For other initial states, we can define a nominal ‘‘condens
mode’’ operator associated with the normalized solution
the GPE,

âGP~ t !5E
2`

`

dxc̄GP~x!ĉ~x,t !, ~33!

where c̄GP(x)5c GP(x)/A*2`
` dxuc GP(x)u2. Its mean value

^âGP(t)& still monitors the collapse of the wave function, b
is strictly a one-time average and can be calculated in ei
representation. We may also calculate the occupation of
condensate modên̂ GP&5^âGP

† âGP&.
Finally, spatial correlations may be analyzed in terms o

spatial squeezing spectrum. We define the localized am
tude quadrature operator

X̂u~x,t!5c̄GP~x!ĉ†~x,t!eiu1c̄GP~x!ĉ~x,t!e2 iu.
~34!

Defining the Fourier transformed operator

X̂u~k,t!5
1

A2p
E

2`

`

dxeikxX̂u~x,t!, ~35!

the squeezing spectrum is defined as the normally ord
expression@15,28,29,55#

Su~k,t!52p^:X̂u~2k!X̂u~k!:&, ~36!

which in the Wigner representation becomes

Su~k,t!52112pX̂u~2k!X̂u~k!. ~37!

The angleu for optimum squeezing is in general a functio
of k. Hence a useful quantity is the spectrum of ‘‘be
squeezing’’Smax(k,t) that gives the largest possible squee
ing at each wave-number componentk.

C. Comparison of methods

We first give some examples of calculations with t
same parameters using both the positive-P and Wigner simu-
lations. Figure 1 shows the two-time correlation functi
g(1)(t,0) for 1000 atoms in the strong trap configuration f
a coherent initial state. Single-mode models@27,51# predict a
Gaussian decay
n-
d

te
o

er
he

a
li-

ed

t
-

r

g~1!~t,0!5exp@2a2t2~DN!2/2N2#, ~38!

wherea5Ndm/dN and (DN)25N is the variance in atom
number of the initial state. This model is indicated by t
dash-dotted curve. The Wigner prediction~dotted! roughly
follows the Gaussian decay, but shows slow oscillatio
about the single-mode curve and in particular exhibits a
ear decay at short times. The Wigner method gives a st
result for arbitrary times. In the inset we show the short-tim
behavior, with the inclusion of the positive-P prediction in
the solid line. This line stops at justt50.3 at which point
unstable trajectories appeared. Also just visible are error b
on the positive-P line denoting one standard deviatio
~OSD! uncertainties. The dashed curves indicate the O
errors for the Wigner calculation. The two methods clea
agree up to the point at which the unstable trajectories ar
Note that the positive-P error bars are very small right u
until that point, indicating the sudden rapidity with which th
distribution diverges. In Fig. 2 we show the occupation
the Gross-Pitaevskii~GP! mode^n̂ GP& as a function of time
with the Wigner result shown as the dotted line and
positive-P result shown as the solid line. We see oscillatio
in the number with an amplitude of around 5% of the start
population. Once more while the Wigner result is stable,
positive-P simulations fail in a very short time. Note als
that the enlargement occurs very rapidly: There is very go
agreement until just before the fatal moment with OSD
rors for both methods being smaller than the thickness of
lines.

Thus, for the trap parameters considered so far,
positive-P representation is effectively useless. While ins
bilities of the positive-P representation are well known, thi
is perhaps the first occasion in which they arise in exp
mentally accessible parameter ranges. Given that
positive-P fails well before the completion of a single osci
lation in Fig. 2, we might wonder how closely the truncat
Wigner results approximate the true dynamics. One appro
is to perform simulations at artificially low scattering lengt

FIG. 1. Two-time correlation functiong(1)(t) for the coherent
initial state in the strong trap. The lines denote the positiveP
~solid!, Wigner~dotted!, single-mode~dash-dotted! models. The in-
set shows early times with one standard deviation errors for
Wigner method shown in by the dashed line.
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for which the nonlinearity is less severe and the positiveP
simulations more robust. In fact, the observation of Feshb
resonances in an optically trapped Na23 condensate@56#
demonstrates that reduced scattering lengths are now a
able in the presence of a sufficiently strong magnetic fie
Figure 3 shows the GP mode occupation as a function
time for 1000 atoms in a coherent initial state, with the
duced interactionG5Gstrong/10. The lines have the sam
meaning as in Fig. 2. The positive-P trajectories are now
stable for much longer and it is seen that both methods
duce oscillations that are in agreement within the error l
its. Note that the error limits grow in time for the positive-P
representation but remain approximately constant for
Wigner, corresponding to the fact that no new noise is ad
after the initial condition for the Wigner method. We ca
thus now have some confidence that the Wigner calculat
give results that are reasonably accurate for relatively la
condensates.

D. Comparison of initial states

We now examine the behavior exhibited by different in
tial states. As explained in Sec. III, we compare the stand

FIG. 2. Occupation number̂n̂ GP& as a function of time for a
strong trap. The lines denote the positive-P ~solid! and Wigner
~dotted! models.

FIG. 3. Occupation number̂ n̂ GP&. The lines denote the
positive-P ~solid! and Wigner~dotted! models.
h
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choice of coherent initial state with the vacuum state in
Bogoliubov representation and the Gaussian state with in
pendent squeezing in each Bogoliubov mode. Figure 4 sh
the mean amplitude in the GP mode^âGP(t)& with Wigner
results shown by the solid lines and the single-mode e
mates based on the initial number variance shown by
dash-dotted lines. The mean amplitude is apparently
scribed relatively well by the single-mode model. The diffe
ences between the curves is largely accounted for by
difference in number variance in the three cases, which
the values (DN)2/N5 1, 0.5, and 0.12 in the coherent stat
Bogoliubov vacuum and squeezed Bogoliubov vacu
cases, respectively. Figures 5–7 give the spectra of
squeezing for the three initial states plotted as the func
ln@11Smax(k,t)#. For the coherent state in Fig. 5, there is
course initially no squeezing. For a short time, there is s
nificant squeezing at low wave numbers. However, at la
times the phase diffusion causes the long-wavelength fl
tuations to grow without limit@51# and the squeezing is de
stroyed. The other two initial states shown in Figs. 6 and
show similar trends at larget, but are clearly different at
early times when the statistics of the initial state have

FIG. 4. Mean valuê n̂GP&. The Wigner results are shown a
solid lines and the one-mode models the dash-dotted lines.

FIG. 5. Maximum squeezing spectrum plotted as ln@11Smax# for
weak trap parameters with a coherent initial state.
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been swamped by the phase diffusion. This suggests tha
squeezing spectrum may be a useful way of characteri
different quantum states of the condensate. Note tha
single-mode model could not predict different rates
change for the squeezing at different wave numbers.

E. Negative scattering lengths

Finally, we briefly examine the dynamics for a single ca
with a negative scattering length. In this case, the attrac
between the atoms leads to a high density at the center o
trap and consequently the nonlinear terms play a stron
role than in the positive scattering length case. To avoid
need of extremely fine spatial and temporal grids, we the
fore use the parameters of the weak trap, with the scatte
length set ataneg52aNa/10, giving G520.0042. The two-
time correlation functiong(1)(t,0) and occupation̂ n̂ GP&
display similar behavior to that seen earlier for the posit
scattering length. Here we concentrate on the squee
spectrum that is shown in Fig. 8. This figure shows a str
ture that is quite different from the earlier squeezing spe

FIG. 6. Maximum squeezing spectrum plotted as ln@11Smax# for
weak trap parameters with a Bogoliubov vacuum initial state.

FIG. 7. Maximum squeezing spectrum plotted as ln@11Smax# for
weak trap parameters with a squeezed Bogoliubov vacuum in
state.
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with strong antisqueezing for wave numbers neark'3, cor-
responding to a length scale of the condensate or ‘‘solito
width. In fact, this spectrum is very similar to the spectru
of best squeezing for a fiber soliton with a Kerr law nonli
earity @28,29#. This is not surprising. With a strong negativ
nonlinearity in a one-dimensional trap, the condensate
comes strongly localized at the bottom of the trap. The n
linearity dominates over the trapping potential and t
ground-state wave function is well approximated by the fib
soliton expressionc(x)5ANsech(ANGx), with a slight ad-
ditional confinement due to the potential. Then as the pro
gation equations for the two systems differ only by the
clusion of the potential for the condensate, we can exp
virtually identical spectra.

V. CONCLUSION

In this paper we have applied phase-space technique
the propagation of a complete quantum field to the probl
of a one-dimensional trapped Bose-Einstein condensate
such systems are highly nonlinear and weakly damped,
exact approach using the positive-P representation is usefu
only for short times compared to the trap period and we
forced to use the approximate truncated Wigner method.
parameter ranges in which both methods work, we fi
agreement between the two. The Wigner method is sta
and allows the calculation of one-time averages and cer
conditional multitime averages over long periods. Dynam
may be calculated for virtually any initial state with a re
sonably well-localized Wigner function.

It is interesting to compare our approach here with a
other set of tools for discussing quantum statistical proper
of condensates: the rapidly growing field of quantum kine
theory ~QKT!, which has been developed in particular b
Gardiner and Zoller and their co-workers@57,58#. In QKT,
the system is divided into two distinct parts: the ‘‘condens
region,’’ consisting of the condensate itself and a consid
able number of the low-lying excitations, and the ‘‘therm
region,’’ which is essentially everything else and acts a
reservoir for the condensate region. One may then ob
master equations for the condensate region of varying c

al

FIG. 8. Maximum squeezing spectrumSmax for a system with
attractive interactions with scattering lengthaneg520.049 nm and
N51000 atoms.
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plexity based on assumptions about the exchange of at
between the condensate and reservoir. In our own appro
there is no distinction at all into condensate and therm
atoms and thus no approximations required in order to im
ment such a distinction. The condensate itself plays no pr
leged role within the model and we work simply with on
complete quantum field. The special properties normally
sociated with condensates are manifested just as diffe
correlations of the quantum field. The stochastic method
scribed here thus may also serve to provide comparis
with the predictions of QKT from a rather different vanta
point. Indeed, Drummond and Corney’s simulations
evaporative cooling using the positive-P representation have
produced@48# similar results to kinetic models of evapor
tive cooling @58#. Moreover, one might envisage a hybr
model in which the low-lying condensate modes are trea
using a stochastic approach, while the upper modes are
duced to a thermal reservoir using the techniques of QK
et
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Finally, we point out some of the systems to which th
theory could be easily applied. As mentioned earlier,
coherence properties of the output beams of atom lasers
certain to be of central importance in the near future. Cal
lation of two-time correlations and squeezing spectra
various laser designs is a natural application. The phase
fusion between coupled condensates is also beginning to
tract interest and has currently only being studied theor
cally within the context of Bogoliubov theory@26,59#.
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