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Stochastic diagrams for critical point spectra
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Abstract. A new technique for calculating the time-evolution, correlations and steady state spectra for
nonlinear stochastic differential equations is presented. To illustrate the method, we consider examples
involving cubic nonlinearities in an N-dimensional phase-space. These serve as a useful paradigm for
describing critical point phase transitions in numerous equilibrium and non-equilibrium systems, ranging
from chemistry, physics and biology, to engineering, sociology and economics. The technique consists in
developing the stochastic variable as a power series in time, and using this to compute the short time
expansion for the correlation functions. This is then extrapolated to large times, and Fourier transformed
to obtain the spectrum. Stochastic diagrams are developed to facilitate computation of the coefficients of
the relevant power series expansion. Two different types of long-time extrapolation technique, involving
either simple exponentials or logarithmic rational approximations, are evaluated for third-order diagrams.
The analytical results thus obtained are compared with numerical simulations, together with exact results
available in special cases. The agreement is found to be excellent up to and including the neighborhood
of the critical point. Exponential extrapolation works especially well even above the critical point at
large N values, where the dynamics is one of phase-diffusion in the presence of a spontaneously broken
symmetry. This method also enables the calculation of the steady state spectra of polynomial functions of
the stochastic variables. In these cases, the final correlations can be non-bistable even above threshold. Here
logarithmic rational extrapolation has the greater accuracy of the two extrapolation methods. Stochastic
diagrams are also applicable to more general problems involving spatial variation, in addition to temporal
variation.

PACS. 02.50.Ey Stochastic processes – 05.40.+j Fluctuation phenomena, random processes, and Brownian
motion – 42.50.p Quantum optics

1 Introduction

Stochastic differential equations are a natural way of de-
scribing the interaction of a system with a random reser-
voir. They were introduced by Langevin [1] to help ex-
plain Einstein’s theory [2] of small particles immersed in
a fluid, as observed by the biologist Robert Brown. More
rigorous mathematical treatments were later introduced
by Ito [3] and Stratonovich [4]. They have now diffused
into many different areas [5,6] of physics, chemistry and
biology. In recent times, similar models have been uti-
lized in ever more diverse fields, including engineering, eco-
nomics [7] , and even sociology. The essence of a stochastic
differential equation is that it isolates a system of interest
from the background of random events that may influence
the system. Implicit in this formulation is the idea that
the reservoir, or source of random fluctuations, evolves
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without reference to the system of interest. This simpli-
fies the study of otherwise complex coupled phenomena.

As an example, the calculation of correlation functions,
and hence the spectra, of physical systems near phase
transitions is of considerable theoretical interest. These
have dynamical properties that are often conveniently de-
scribed using stochastic differential equations. However,
commonly used analytic techniques like linearization, fre-
quently become invalid near phase-transition points. At
the same time, while numerical simulation is possible, this
is a time-consuming computational procedure without re-
sulting in a great deal of insight. Thus, there is a need
for techniques that give analytical results. Rather sur-
prisingly, there are few systematic procedures for treat-
ing nonlinear stochastic differential equations under con-
ditions where linearization is invalid.

In this paper we consider the technique of stochastic
diagrams in the time-domain, as illustrated by calculat-
ing the spectra of stochastic differential equations with
a cubic nonlinearity. Such differential equations have a
near universal applicability, especially near a critical point
phase transition, both for equilibrium and non-equilibrium
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phase transitions [5]. For instance, they arise in theoretical
treatments of single mode lasers [5], inhomogeneously and
homogeneously broadened two mode lasers [8], and opti-
cal parametric amplifiers near threshold [9]. A number of
useful theoretical techniques [10–13] are known for these
problems, some of which improve upon the the conven-
tional Zwanzig-Mori projection operator method [14,15].
However, these techniques are cumbersome for systems in
higher phase space dimensions.

Instead, we propose a simple, direct calculation which
is based on the stochastic differential equation. The re-
sulting integral expressions can be classified diagrammat-
ically, in a way that allows a straightforward calculation
of essential combinatoric factors. The results give a power
series in time which can be extrapolated to long times
with reasonable accuracy in many cases. We analyze two
possible extrapolation techniques, namely the exponential
of a rational function, and a series of simple exponential
terms. Either method gives excellent results at or below
the critical point.

Above the critical point, we find differences in accu-
racy, and this can be related to the dominant eigenvalue
distributions for different types of equation and observ-
able. Convergence is slowest when the spectrum has char-
acteristic time-scales which are an exponential function
of an equation parameter, as in the one-dimensional cu-
bic stochastic process above threshold, which involves dif-
fusion over a barrier. The exponential series method is
preferable for simple types of spectra with only one or
two dominant eigenvalues, which turns out to be the case
for the N -dimensional cubic stochastic process at largeN -
values. The rational function method is best for complex
spectra without much range in characteristic time-scales.
An example of this is the intensity (x2) correlation spec-
trum of the one-dimensional cubic process, which can be
represented with remarkable accuracy using low-order ra-
tional function extrapolation.

More generally, we expect that this method can be
applied to any stochastic differential equation where con-
ventional linearization methods are inapplicable due to
large nonlinear terms. Under these circumstances, it may
be useful to have a nonlinear solution of the type derived
here, as a starting point for a perturbative or asymptotic
analysis. For these reasons, it is useful to analyze the sim-
ple cubic nonlinear case in detail, both as a test case for the
stochastic diagram method, and as an elementary stochas-
tic process of intrinsic interest.

2 Stochastic equations

The method of stochastic diagrams to calculate solutions
to stochastic differential equations is normally applied in
the frequency domain, where it corresponds to a pertur-
bation theory expansion in a small coupling constant [16,
17]. In these applications, there is a close resemblance to
Feynman diagram techniques. In both cases, the start-
ing point of the iterative method is the approximate lin-
earized solution to the problem, which becomes the so-
lution to the entire correlation function in the limit as

the coupling constant approaches zero. Frequency domain
stochastic diagrams have many useful applications, includ-
ing the stochastic quantization approach to quantum field
theory. An essential difference between these methods and
Feynman diagrams, is the appearance of stochastic terms
that are averaged over at a later stage.

We choose here to apply stochastic diagrams to the
time domain correlation function. This has the advantage
that there are no singularities in the series expansion coef-
ficients, even at a critical point. A corresponding disadvan-
tage is that the long time correlation functions cannot be
directly calculated, and must be approximated by an ex-
trapolation procedure that is based on some known prop-
erty of the solution. In the examples given here, we use
either simple exponentials or logarithmic rational func-
tion extrapolation, which results in analytic expressions
for the approximate correlation function. A direct com-
parison with numerically calculated spectra will be used to
demonstrate the great accuracy of this procedure in calcu-
lating spectra near critical points. It is less accurate above
threshold in the bistable cases where stochastic ‘barrier
hopping’ or ‘tunneling’ can occur, resulting in widely dif-
fering eigenvalues. This results in a reduced precision for
the extrapolation. Methods based on multiple time scales
can be used in these cases.

Surprisingly, in the closely related higher-dimensional
phase-diffusion problem, stochastic diagrams give good re-
sults. An example of this is the laser above threshold. This
is because the long time-scale here is not exponentially
long, as it is in the tunneling cases. Good results are also
found for non-bistable variables like the intensity, even
when the underlying equations are themselves bistable.
This is because the extrapolation is carried out in terms
of the correlation function, which has a different behavior
to the underlying stochastic variable. In order to illustrate
these various cases, we start with a very general form of
stochastic differential equation.

The equations we wish to treat are of the form

ẋ = A(x) + B(x) · ξ(t), (1)

where the real noise sources ξi(t) have zero mean and are
delta-correlated in time so that

〈ξi(t)〉 = 0 ; 〈ξi(t)ξj(t
′)〉 = δijδ(t− t

′). (2)

Here x is a real vector of n-dimensions, A is an n-
dimensional real polynomial vector function of x and B
is an n ×m dimensional real polynomial matrix function
of x. The vector ξ(t) is an m-dimensional real Gaussian
stochastic process, interpreted in the Itô sense [6], for com-
putational simplicity.

2.1 Iterative solutions

The method of stochastic diagrams consists of performing
an iterative solution for x(p)(t) so that

x(p)(t) = x0 +

t∫
t0

dt′[A(x(p−1)(t′)) + B(x(p−1)(t′)) · ξ(t′)],

(3)
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where x(0)(t) ≡ x0 ≡ x(t0). In the context of ordinary
differential equations, this corresponds to the well-known
Picard [18] iteration method. A similar procedure [19] was
recently employed in the case of stochastic differential
equations, to obtain numerical path-integral procedures
for solving the stochastic tunnelling problem.

Next, correlation functions of the typical form

Gij(t, t0) = 〈xi(t)xj(t0)〉 − 〈xi(t)〉〈xj(t0)〉, (4)

are evaluated to pth order, resulting in an expansion of
Gij(t, t0) as a power series in τ = t − t0 for τ > 0. For
any given term p in the power series, iterations must be
carried out until all possible terms in τp are evaluated.
The result of the iterations consists of integrals over time
which will be represented as directed lines in the stochastic
diagrams. In addition, there are polynomials in variables
(represented as vertices), initial conditions in the variables
(represented as terminating arrows, and treated as delta
functions at the initial time) and stochastic terms (repre-
sented as crosses).

2.2 Cubic stochastic process

Thus, for example, the solution of the well-known cubic
stochastic process [6]

ẋ = −x3 + ξ(t), (5)

has a first iteration, starting from a known initial value
x(0) = v at t = 0, of

x(1)(t) = v + w(t)−

t∫
0

dt′v3 (6)

where w(t) =
t∫

0

dt′ξ(t′). More generally, the nth iteration

in this simple one-dimensional case is written

x(n)(t) = v + w(t)−

t∫
0

dt′(x(n−1)(t′))3. (7)

Next, we can develop the second iteration in detail, giving:

x(2)(t) = v + w(t)−

t∫
0

dt′[v + w(t′)− t′v3]3. (8)

On expanding the cubic term in the integrand, we obtain:

x(2)(t) = v + w(t)−

t∫
0

dt′
[
v3 + w(t′)

3
+ 3vw(t′)

2

+ 3v2w(t′)− 6t′v4w(t′)− 3t′v5 − 3t′v3w(t′)
2

+ 3(t′)2v7 − (t′)3v9 + 3(t′)2v6w(t′)
]
. (9)

We see that even this simple example leads to a large
number of distinct terms, which need to be classified in
a systematic way. In particular, while the leading term in
the integral is of order t4, there are other terms of lower
order present, including the stochastic terms and a term
of order t which comes from the initial condition.

2.3 Stochastic diagrams

The next term in the iteration involves a cubic integral
of x(2)(t), and clearly the combinatoric factors involved
are more complex to three and higher orders. In order
to simplify the counting of these factors, a diagrammatic
classification can be introduced at this stage. In this clas-
sification, the terms are given diagrammatically to first
order in Figure 1.

X    (t)   = (0)

X    (t)  = (1) ++

Fig. 1. Diagrammatic representation of the iterative solution
of the cubic stochastic equation to zeroth and first order.

To second order, all possible terms in x(1)(t) appear as
“legs” on the nonlinear vertex, to the next higher order,
as shown in Figure 2.

X    (t)  = (2) +

+ +

+

3

+ 6

+ 3 +  + 3

+ 3 + 3

+ 3

Fig. 2. Diagrammatic representation of the iterative solution
of the cubic stochastic equation to second order.

Not all terms will contribute to the same order in a
power series in τ , since the expectation value of a product
of two stochastic integrals is proportional to τ , while the
product of two deterministic integrals is proportional to
τ2. This means that a reordering of the sequence is needed,
to obtain a series of terms to a given order in τ . The
rules are simple: all vertices counts as one order in τ while
stochastic terms count as half an order in τ and initial
values as zero order. If the terms in the reordered series
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X    (t)   = (0)

X      (t)  = (1/2)

~

~

(a)

3

X    (t)   = (1)

X      (t)  = (3/2)

~

~

(b)

3

+ 9 + 6

+ 3X    (t)   = (2)

X      (t)  = (5/2)

~

~

(c)

3 + 9 + 18X    (t)   = (3)~

+ 3 + 9

(d)

Fig. 3. Diagrammatic representation of the iterative solution
of the cubic stochastic equation reordered by collecting to-
gether the diagrams which contribute to the same power of τ .
The power of τ that each diagram contributes, is equal to the
number of vertices plus half the number of crosses. (a)–(d) in-
dicate successively higher order diagrams, including fractional
stochastic orders.

are labeled as x̃(n)(t) we can represent them according to
Figure 3.

On expanding all the relevant terms in Figure 3, we
obtain:

x̃(0)(t) = v

x̃(1/2)(t) = w(t)

x̃(1)(t) = −v3t

x̃(3/2)(t) = −3v2w̃(t)

x̃(2)(t) = 3[−vw̃2(t) + v5t2/2]

x̃(5/2)(t) = −w̃3(t) + 9v4

t∫
0

w̃(t′)dt′ + 6v4

t∫
0

w(t′)t′dt′

x̃(3)(t) = 3v3

t∫
0

w2(t′)t′dt′ + 9v3

t∫
0

w̃2(t′)dt′

+ 18v3

t∫
0

w(t′)w̃(t′)dt′ − t3v7 −
3

2
t3v7. (10)

Here we have introduced the notation of:

w̃n(t) ≡

t∫
0

wn(t′)dt′. (11)

Further rules in stochastic calculus (of the Itô variety)
are that the expectation values of the products of initial
terms with stochastic terms decorrelate to all orders at
later times and all odd products of stochastic integrals
average to zero. This means that the only surviving terms
in the expectation value Gij must be the terms of integer
order in the series. For other types of expectation values
(involving polynomials in x(t)), these extra terms must be
retained.

If we take expectation values of the relevant stochastic
terms, they have the structure:

〈w2(t)〉 = t

〈w̃(t)w(t)〉 = 〈w̃2(t)〉 = t2/2. (12)

Hence, on decorrelating the gaussian noise terms, inte-
grating over time, and combining all the relevant terms
up to third order, we can obtain results for the average
and correlation function of x(t):

〈x(t)〉 = 〈v − tv3 +
3

2
t2(v5 − v) +

1

2
t3(11v3 − 5v7)〉

〈x(t)x(0)〉 = 〈v2 − tv4 +
3

2
t2(v6 − v2) +

1

2
t3(11v4 − 5v8)〉.

(13)

These results are valid for an arbitrary initial distribu-
tion function. If carried out to higher orders, it is clear
that they can describe either a transient process, or else a
steady-state correlation in the time-domain, to any order
in time.

3 N-dimensional cubic stochastic process

Having introduced the stochastic diagram method, we now
apply it to the N -dimensional cubic stochastic process

ẋi(t) = −ηixi − fijklxjxkxl + ξi(t); i, j, k, l = 1, . . . , N .
(14)

Here summation over repeated indices is implied. The
coefficient fijkl of the cubic terms can be taken to be
symmetric in the the last three indices without any loss
of generality. This stochastic equation, with appropriate
choice of parameters, accommodates the stochastic equa-
tions that have been considered in the context of single
and two mode lasers and optical parametric amplifiers [8,
9]. In more general terms, the equations describe a ran-
dom walk in N real dimensions (possibly with a driving
force η), as modified by a nonlinear interaction between
the N coordinates. For example, one could regard this
as a simple nonlinear generalization of the Black-Scholes
model [7], of (logarithmic) options prices in economics, in
which interactions between the commodity or stock prices
were included in the theory.
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The quantities of most interest to the physical scien-
tist, are usually the equilibrium correlation functions

G(n)
ij (τ ) = lim

t0→∞

[
〈xni (τ + t0)xnj (t0)〉 − 〈xni (τ + t0)〉〈xnj (t0)〉

]
.

(15)

This equation now has the added feature of a linear
loss/gain term η. When η > 0, there is additional damp-
ing, and the system is below threshold in the usual sense.
The deterministic critical point is at η = 0. When η < 0,
the system has linear gain (like a laser above the lasing
threshold), and the system is then above the critical point.
However, it is worth noting that as the dimensionality in-
creases, this type of classification which comes from a lin-
earized analysis is rather misleading. In fact, the enlarged
phase-space volume means that noise sources become in-
creasingly important at large dimensionality – to the point
that there is a reduced distinction between the above and
below threshold cases.

3.1 Steady-state behavior

Steady-state behavior is most readily analyzed if, for sim-
plicity, we confine ourselves to the following equation with
N -dimensional rotational symmetry:

ẋ(t) = −ηx− x(x · x)/N + ξ(t). (16)

This corresponds to defining the cubic coefficient as:
fijkl = [δijδkl + δikδjl + δilδjk]/(3N).

This stochastic equation has what is known as de-
tailed balance – and hence an exact solution in the steady-
state, found by examining the corresponding Fokker-
Planck equation:

∂

∂t
P (t,x) = LFPP (t,x)

=
∑
i

[(
∂

∂xi
[η + x · x/N ]xi

)
+

1

2

∂2

∂x2
i

]
P (t,x).

(17)

The equilibrium distribution is Pe(x) = N exp [−V (x)],
where V (x) is a potential function given by:

V (x) = ηx · x + (x · x)2/2N . (18)

The stochastic equation also has an exact relationship be-
tween the moments of different orders in the steady-state,
which can be easily derived from the variable-change rules
of Ito stochastic calculus. These are:

M(n+1) = (2n+N − 2)M(n−1)/(2N)− ηM(n). (19)

Here we have defined M(n) = 〈[x · x]n〉e/N , as a conve-
nient normalized form of the moment. Although these re-
cursion relations are useful, the mean-square fluctuations
have to be calculated from the potential solutions given

above. The quantity M(1) = 〈x · x〉e/N can therefore be
computed explicitly and is given by

M(1) =

√
N

4
U

(
N + 1

2
,
√
Nη

)
/U

(
N − 1

2
,
√
Nη

)
,

(20)

where U(a, x) denote the Whittaker functions [20]. For
η = 0, this expression simplifies to

M(1) =

√
2

N
Γ

(
N + 2

4

)
/Γ

(
N

4

)
. (21)

3.2 N = 1 case

An important property of this potential in the one-
dimensional case of N = 1, is that it possesses a potential
barrier at x = 0, if η < 0. This means that there is a pro-
gression from a stable ‘below-threshold’ region for η > 0,
(where x = 0 is the deterministic stable point), to a critical
region for η = 0 characterized by large fluctuations, and
then to a bistable region for η < 0. This is characterized
by local stability in the two potential wells at x = ±

√
|η|.

The N = 1 case has been well-studied in terms
of its eigenvalue spectrum. Any one-dimensional Fokker-
Planck equation can be transformed to an equivalent
Schroedinger equation problem with imaginary times [10],
by introducing a Schroedinger operator. In this case, it has
the form:

LS = exp [V (x)/2]LFP exp [−V (x)/2]

= [2V ′′(x)− (V ′(x))2]/8 +
1

2

∂2

∂x2

= −
1

2
[x3 + ηx]2 + [η + 3x2]/2 +

1

2

∂2

∂x2
· (22)

At large positive values of η, the corresponding Schroe-
dinger potential reduces to a harmonic oscillator problem,
with quadratic potential. Transforming back to real time,
the eigenvalues of the Fokker-Planck operator are of form:

LFPPn(x) = −λnPn(x), (23)

where λn = nη. Physically this is easy to understand.
The equation is dominated by the linear decay rate η,
and integer multiples of η will occur through the decay of
integer powers of the variable x.

At large negative values of η, the equation is bistable,
and there are two principle eigenvalues. A fast equilibra-
tion inside each potential well occurs, with an eigenvalue
of λf = 2|η| in the limit of large η. A slow decay also oc-
curs through diffusion over the barrier. Ignoring terms in
|η| of order (1) in the pre-factor, this gives a slow eigen-
value:

ln[λs] ' −∆V + ln[|η|] ' −η4/2 + ln[|η|]. (24)

It is significant for the stochastic diagram method, that
this eigenvalue is exponentially small in the limit of large
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η. Thus, we cannot expect an accurate estimate of the
eigenvalue with any technique involving a finite series of
terms in η, and any corresponding spectrum in which λs
is significant will not be able to be estimated with a finite
expansion in powers of η.

3.3 Large N case

For N > 1, a similar progression from below to above the
critical point holds deterministically, except that there is
no bistable region. Instead, for η << 0, there is a re-
gion characterized by neutral stability in the subset of
phase-space where |x| '

√
|η|N . Thus, there is a contin-

uum of possible deterministically stable behaviour. This
phenomenon is sometimes called spontaneous symmetry
breaking. To show this more clearly, consider the distri-
bution PR(R), in the variable R = |x|2/N . This has a
steady-state potential of VR(R) = N [ηR+R2/2− (1/2−
1/N) ln(R)]. As a result, for increasing N , the distribution
in R is peaked more and more strongly near the value
Rη = (

√
2 + η2 − η)/2. In fact, due to the increase in

phase-space volume as R increases, there is always an out-
ward ‘entropic’ force even when η > 0. This means that
the stochastic equation at large N is not described well
by the deterministic stability theory.

In this limit, the radius approaches a fixed value, due
to the balance between the outward entropic force due to
increasing phase-space volume, and the inward force due
to the nonlinearity. Thus, the momentsM(n) all factorise,
and are given by:

M(n) = ([
√

2 + η2 − η]/2)n. (25)

The recursion relation for moments now simplifies, and it
is straightforward to verify that the above solution does
satisfy the recursion relation.

Generally, in a stochastic equation, spontaneous sym-
metry breaking is accompanied by a type of phase-
diffusion, or tangential diffusion in a surface of dimension
N − 1. Hence, the lack of bistability for any N greater
than one results in a dynamical behaviour in which diffu-
sion still occurs, but with a reduced dimensionality. These
two types of above-threshold behaviour result in different
dynamical regimes for the resulting correlation functions
and spectra. In both cases, the above threshold dynamics
typically involves more than different time-scale. The ra-
dial relaxation to a stable point within a potential well in
the R-space equations generally occurs much faster above
threshold than the tangential diffusion.

There are corresponding changes in the large-N dy-
namics, and the physical explanation for this is interest-
ing. In the limit of N → ∞, the fast radial equilibration
takes place in an approximately quadratic potential well
at all values of η. It may be noted that the corresponding
(Itô) stochastic equation for radial equilibration involves
noise in a multiplicative way. In the general case, we find
that:

Ṙ = −2ηR− 2R2 + 1 + 2

√
R

N
ξ(t), (26)

where 〈ξ(t)ξ(t′)〉 = δ(t− t′). As well as having multiplica-
tive noise, this equation also shows why the stochastic
equation trajectories are confined to an increasingly small
region in R-space, as N increases. This occurs because
the relative size of the noise term in the radial equation
decreases as N increases. Thus, radial equilibration takes
place with a fast relaxation rate of

λf = 4Rη − 2η = 2
√

2 + η2. (27)

In the tangential direction, diffusion takes place on a
hyper-spherical surface of fixed radius defined by

|x| =
√
NRη. (28)

Suppose we define a coordinate system so the diffusion
starts with a radial coordinate of x1 =

√
NRη at time

t = 0. For small times, the other (tangential) coordinates
obey the diffusion equation, so that

〈x2
j 〉 = t, (29)

for j > 1. Since the radius is fixed by the radial equation,
it follows that this corresponds to angular diffusion. Pro-
jecting each angular variable in turn onto a radius vector
in a lower dimensional subspace reduces the length of the
resulting vector. Finally, in the subspace of one dimension
containing the original (starting) vector, we have:

〈x1(t)〉 '
√
NRη[1− t/NRη](N−1)

'
√
NRη exp [−(1− 1/N)t/2Rη]. (30)

This corresponds to a much slower tangential relaxation
rate of

λs = (1− 1/N)/(2Rη) (31)

in the large N limit. We note that this is not exponential
in η, unlike the one-dimensional case. Similar behaviour
would occur in the case of finite N and large, negative η,
which is also dominated by the tangential diffusion caused
by spontaneous symmetry breaking. However, for the case
of finite N values, the slow eigenvalue must reduce to λs =
η in the limit of large enough positive η.

4 N-dimensional stochastic diagrams

The N -dimensional equation clearly has the same
structure as the integral equation associated with the
simple cubic process considered in the previous section,
except for the linear terms which would complicate the
diagrams if retained. Instead, we can simply define yi(t) =
exp(ηi(t − t0))xi(t), which obeys a stochastic equation
without a linear term. This can then be iterated as previ-
ously. The iterative solution has the same diagrammatic
structure as before. Using an initial estimate for xi(t) of

x
(0)
i (t) = e−ηi(t−t0)vi, where the initial value is v = x(t0),

the basic iterative solution is given by:

x
(n+1)
i (t) = e−ηi(t−t0)xi(t0)

+

∫ t

t0

dt′e−ηi(t−t
′)[ξi(t

′)−fijklxj
(n)(t′)x

(n)
k (t′)xl

(n)(t′)].
(32)
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=       v  exp[-η(t-t ) ]         i  i  0

=       w (t)   i

 i

 0

 0

 0

t       t

i

 ijkl

t       t

t

i

=       -f       dt' exp[-η(t-t')] [ . . . ]
t

t

i j

kl ∫ 

Fig. 4. The rules for writing down the contribution of a given
diagram.

It is easily checked that replacing the approximations x(n),
x(n−1) by x, leads to an exact integral equation for x(t).

We can now identify successive iterations with terms in
the stochastic diagrams for vector quantities xi(t), where
each vertex includes a term −fijkl, and each directed ar-
row corresponds to

∫
exp(−ηi(t−t′))... Thus, in evaluating

the diagrams, each vector initial condition is replaced by
vj exp(−ηj(t − t0)), and the noise term w(t) is replaced
by:

wi(t) =

t∫
t0

dt1e
−ηi(t−t1)ξi(t1). (33)

To order τ3, this can be calculated using the diagrams
in Figures 3a to 3d, by making the associations given in
Figure 4. Using the diagrams in Figure 3, one can easily
derive an expansion for xi(t) up to order τ3. The details of
the resulting stochastic integrals are straightforward, but
rather lengthy.

These results are given in the Appendix for the rota-
tionally symmetric case. In the symmetric case, it is also

clear that G
(1)
ij (τ) = 0 if i 6= j and that

G(1)(τ) ≡ G(1)
ii (τ)

= lim
t0→∞

[〈x(τ + t0) · x(t0)〉 − 〈x(τ + t0)〉

× 〈x(t0 + τ)〉]/N . (34)

4.1 N-dimensional two-time correlation function

Averaging the expression for xi(t) thus obtained over
ξ(t)’s, expanding the exponential factors and keeping all
terms up to order τ3, one obtains the result for the steady-
state or equilibrium two-time correlation function. In this
expression the two-time correlation is given in terms of
the initial one-time moments of the stochastic process. We
note that it is not essential, at this stage, to use equilib-
rium moments. The same general result occurs regardless
of the initial condition, even for the case of transient cor-
relations calculated without taking the steady-state limit.

We will focus on the symmetric case here, and simplify
the following expression (derived in the Appendix), by us-
ing the definition ofM(n) = 〈Rn〉e = 〈[x · x/N ]n〉e, where

the subscript e denotes an equilibrium average:

G(1)(τ ) =M(1) − τ
[
ηM(1) +M(2)

]
+ τ2

[(
η2

2
−
N + 2

2N

)
M(1) + 2ηM(2) +

3

2
M(3)

]
− τ3

[(
η3

6
− η

(
5N + 10

6N

))
M(1)

+

(
13η2

6
−

7N + 26

6N

)
M(2) +

9η

2
M(3) +

5

2
M(4)

]
+O(τ4). (35)

Next, we can substitute the known equilibrium moments
to obtain a final expression for the correlation function in
terms of the mean square fluctuation M(1) = 〈x · x/N〉e,
although still in a power series in τ . Using the previous
relationsM(n+1) = (2n+N − 2)M(n−1)/(2N)− ηM(n),
and defining

a = 1/(2M(1)), (36)

one obtains the following power series:

G(1)(τ) =M(1)

[
1− aτ + τ2

(
N + 2

4N
+

1

2
ηa

)
− τ3

(
N + 8

12N
a+

1

6
η2a−

(
4−N

12N

)
η

)
+O(τ4)

]
. (37)

It is convenient to re-express this as:

G(1)(τ) =M(1)
[
1−

3∑
n=1

anτ
n
]

(38)

where:

a1 = a

a2 = − (N + 2 + 2Nηa) /(4N)

a3 =
(
(N + 8)a+ 2Nη2a− (4−N)η

)
/(12N). (39)

Although the result is still expressed in terms of the cor-
relation function through a, this quantity can be calcu-
lated exactly, either by integrating the distribution func-
tion numerically, or by using the Whittaker function rep-
resentation. In the case of η = 0, this reduces to a =√
N/8Γ (N/4)/Γ ((N + 2)/4).

4.2 Correlations of polynomials

The diagrammatic expression for xi(t) in powers of τ and
W (τ) can also be used to calculate the equilibrium corre-
lations for any polynomial functions of xi(t). Thus, in the
case N = 1, for the equilibrium correlations for R = x2:

G(2)e(τ) = lim
t0→∞

〈R(τ + t0)R(t0)〉 − 〈R(τ + t0)〉〈R(t0)〉,

(40)
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we obtain

G(2)e(τ) = [M(2) − (M(1))2]− τ [2M(1)] + τ2[2− 2ηM(1)]

− τ3[8M(1) +
4

3
η2M(1)] +O(τ4). (41)

Here we notice thatM(2) = 1/2−ηM(1), so the pre-factor
in the above expression reduces to:[
M(2) − (M(1))2

]
= G(2)(0) =

2a2 − 2ηa− 1

4a2
· (42)

Just as in the case above, we can write the two-time cor-
relation function down in terms of the individual power
series terms, as:

a
(2)
1 = 4a/[2a2 − 2ηa− 1]

a
(2)
2 = −[8a2 − 4ηa]/[2a2 − 2ηa− 1]

a
(2)
3 = 4a(4 + 2η2/3)/[2a2 − 2ηa− 1]. (43)

5 Spectral calculations

The correlation function in the time domain must be ex-
trapolated to long times in order to compute the spectrum,
which involves a Fourier transform over all times. The gen-
eral spectrum for any steady-state correlation function is:

S(n)(ω) = 2<

∞∫
0

dτG(n)(τ)eiωτ . (44)

In order to perform the Fourier transform, some extrap-
olation of the power series is required. In general, for an
arbitrary initial condition, this is a difficult operation to
perform. However, in the steady state, the un-subtracted
correlation function must factorise at long times to the
product of the mean values at initial and final times. This
means that the correlation function defined here gives rise
to exponential decay at long times.

In fact, for the type of stochastic differential equations
considered here, we expect a discrete spectrum with an
exponential decay at long times. However, a simple trun-
cation of the power series at a finite order will not lead
to an exponential decay, so we cannot just truncate the
power series in time to obtain the spectrum. We will con-
sider two different approaches to extrapolation. The first
is to simply represent the correlation function with a fi-
nite series of exponentially decaying terms, the second is
to approximate the logarithm of the correlation function
as a rational function.

We assume that our starting point is an arbitrary cor-
relation function G, expressed as power series up to pth
order in the stochastic diagrams, of form:

G(τ) = G(0)

[
1−

p∑
n=1

anτ
n

]
. (45)

5.1 Simple exponential extrapolation

This technique represents the correlation function as a
finite series of decaying exponential terms. The coefficients
can then be matched to the known power series in time
on a term-by term basis. This method is especially useful
when only a small number of eigenvalues dominates the
spectrum.

For a power series calculation to order τ3, two distinct
exponential terms are required. More generally, any corre-
lation function expanded to order p = 2p′−1 is represented
using p′ effective eigenvalues as:

G(τ) = G(0)

p′∑
n=1

gn exp(−λnτ). (46)

Here, for simplicity, we impose the restriction that∑p′

n=1 gn = 1. It is also obviously necessary that all the ef-
fective decay rates are positive. In the third order stochas-
tic diagram case, on matching powers of τ , one obtains:

g1 =
1

2
−
a3

1 + 3a1a2 + 3a3

2∆

g2 =
1

2
+
a3

1 + 3a1a2 + 3a3

∆

λ1 =
−∆− 3a3 − a2a1

2a2 + a2
1

λ2 =
∆− 3a3 − a2a1

2a2 + a2
1

(47)

where the denominator term ∆ is defined by:

∆ =
√

6a3
1a3 − 3a2

1a
2
2 + 18a1a2a3 − 8a3

2 + 9a2
3. (48)

5.1.1 Amplitude correlations - N = 1 case

For the case of G(1) at N = 1, the dependence of λ1 and λ2

on η is displayed in Figure 5a by the two solid lines, where
the upper line corresponds to λ1 and the lower line to λ2.
There is a marked transition in this N = 1 case, between
the non-bistable behaviour for η � 0, where the two time-
scales are identical, and the bistable behaviour for η � 0,
where one time-scale becomes very long, corresponding to
stochastic “barrier-hopping” over the potential barrier in
the distribution function at x = 0. In this region, the ex-
trapolation technique used here is obviously less reliable,
since the relevant eigenvalue is an exponential function of
η. One cannot accurately estimate these long-time tails on
the correlation function, purely from the short-time infor-
mation provided by the stochastic diagrams. In fact, there
are other techniques based on multiple time-scales, which
are more suitable in this above-threshold region.

Nevertheless, the technique does generate the fast
eigenvalue (λf = 2|η|) correctly for large negative η. For
large positive η, the harmonic oscillator predictions are
regained. It is interesting to note that the fast eigenvalue
in this case is λf = 3|η|; this occurs because the symme-
try of the problem means that even order eigenvalues are
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(a) (b) (c)

Fig. 5. The dependence of the apparent relaxation rates on the loss rate η as given by the exponential series (solid line)
and rational function (dotted line) extrapolations. Note that the two types of extrapolation implicitly define different types
of relaxation rate. In each graph, the lower of the two lines corresponds to the slower relaxation rate, the upper to the faster
relaxation rate. Cases treated are for (a) G(1), N = 1; (b) G(1), N = 4; (c) G(2), N = 1.

not significant in the dynamics of G(1)(t) at large damp-
ing. The slow eigenvalue is not accurately reproduced at
large negative η, since this becomes exponentially slow
(i.e., should be a straight-line graph). We will show later,
by comparisons to numerical simulations, that the critical
dynamics are reproduced accurately.

5.1.2 Amplitude correlations - N = 4 case

In Figure 5b, the behaviour of the eigenvalues for G(1)

at N = 4 is shown in the solid lines. Here we expect
the slow eigenvalue to approach λs = 0.375/(Rη), where

Rη = [
√

2 + η2 − η]/2, while the fast eigenvalue should

be λf = 2
√

2 + η2. Since these are strictly large-N limits,
we cannot expect these to be found exactly. These ap-
proximate results are actually reproduced with surprising
precision, especially in the phase-diffusion limit of large
negative η. Thus, we find λs = 0.076 and λf = 10.4
at η = −5. The approximate predicted values would be
λs = 0.074, and λf = 10.6, with even better agreement at
larger values of |η|. At large positive η, the slow eigenvalue
approaches η, and the fast eigenvalue approaches 3η due
to the x3 term in the stochastic equation. This is a result
due (as in the N = 1 case) to symmetry properties; the
intra-well eigenvalue with λ = 2η does not contribute to
this correlation function.

5.1.3 Intensity correlations - N = 1 case

Finally, we consider a quadratic correlation function,
which we term the intensity correlation. This is the case
of G(2) at N = 1. These results for the relaxation rates
are given in the solid lines of Figure 5c. Here we see no
trace of the exponentially slow eigenvalue. This describes a
sign-reversal process which has little or no effect on inten-
sity correlations. Hence, all the observed relaxation rates
are caused by the higher-order eigenvalues for intra-well
relaxation. Far below threshold, and above threshold, the
eigenvalues approach 2|η| and 4|η|, which are characteris-
tic of intra-well relaxation. Near the critical point of η = 0,

there is strong critical slowing down, with longest time-
scales (smallest eigenvalue) being found at η ' −1.5. Al-
though this region is bistable, it gives the slowest relax-
ation rate of λs = 2.35; going further into the bistable
region speeds up the intra-well relaxation.

5.2 Rational logarithmic extrapolation

An alternative ‘generic’ technique, is to approximate the
logarithm of the correlation function as a rational func-
tion, with a numerator of one order larger than the de-
nominator. This is guaranteed to have an exponential
behaviour at large τ . We call this procedure rational loga-
rithmic extrapolation. It can be applied to a power series
of any order, as long as it is known that the series gives
rise to exponential decay at long times. It is especially use-
ful for complex spectra that may have several eigenvalues
— as long as the values are not too different from each
other.

For a power series calculation to order τ3, a quadratic
rational function is required, so that we can approximate
the correlation function to the given order as

G(τ) = G(0)

[
exp−

(
ατ + βτ2

1 + γτ

)]
· (49)

On matching powers of τ with the previous power-series
expression, one obtains the following general results:

α = a1

γ = −
2(a3 + a1a2 + a3

1/3)

a2
1 + 2a2

β = a1γ + a2
1/2 + a3. (50)

These can be used to obtain an extrapolated correlation
function in any of the cases treated here. However, it is
clearly important to ensure that the asymptotic coeffi-
cient, β/γ, is positive – otherwise no decay will occur.
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5.2.1 Amplitude correlations - N = 1 case

In the expression for G(1), the logarithmic expansion gives:

γ =
4Na3 − 6Nηa2 + 2Nη2a− 2(N − 1)a− (4−N)η

3N + 6 + 6Nηa − 6Na2
,

β

γ
= a

−

(
3N + 6 + 6N(ηa − a2)

)2
12N(4Na3 − 6Nηa2 + 2Nη2a− 2(N − 1)a− (4−N)η)

·

(51)

The approximate expressions for the equilibrium correla-
tions of x(t) given above are characterized by two time
scales – λs = α = a and λl = β/γ which govern the
short and long time behaviors respectively. For the case
of G(1) at N = 1, the dependence of λs and λl on η is
displayed in Figure 5a by the two dashed lines. As pre-
viously, there is a marked transition in this N = 1 case,
between the non-bistable behaviour for η � 0 and the
bistable behaviour for η � 0. Since the two time-scales
here correspond to overall rates at long and short times,
and not effective eigenvalues, the distribution of rates is
different below threshold – eigenvalues with a low weight-
ing do not contribute very much to the final rate. For this
reason, we see no direct evidence for the fast time-scale
below threshold, which corresponds to the relaxation of
higher order eigenstates.

In the region of long time-scale “barrier-hopping”, the
extrapolation technique used here is less reliable. One can-
not accurately estimate these long-time tails on the corre-
lation function, purely from short-time information. This
can be seen most clearly in the way that the slower of
the two time-scales goes off the bottom of the logarithmic
graph. At this stage, the longest time-scale is negative,
indicating that the rational function approximation has
broken down, and would predict an infinite or diverging
spectrum. Obviously, the extrapolation is severely inac-
curate at this point, and cannot be used this far above
threshold.

5.2.2 Amplitude correlations - N = 4 case

One might expect that the rational approximations used
here should improve above threshold as N increases, as
the equations are not bistable for large N . This hypothe-
sis proves to be valid, as we show by the use of numerical
stochastic techniques in the following sections. However,
the improvement can already be seen in Figure 5b. In Fig-
ure 5b, which gives G(1) at N = 4, the slowest relaxation
times above threshold are slightly too small compared to
the exponential method, which indicates that the ratio of
relaxation times is still too large for this method to give
correct extrapolations, although the situation is much bet-
ter than in the bistable case with N = 1.

5.2.3 Intensity correlations - N = 1 case

For intrinsically non-bistable quantities like G(2)(τ) the
problems above do not occur at all, as shown in Figure 5c,

which graphs G(2) at N = 1. Here the results of both ex-
trapolation methods give similar behaviour. This is not
immediately evident from the graphs, as the rates de-
fined here do not have identical interpretations. In fact,
the generic method of rational function extrapolation is
actually better than the exponential method in this case.
In order to demonstrate this in detail, we must turn to the
full spectral calculation, which include both the relaxation
rates and the relative weights.

Before turning to the spectral results, we note that
the two-time correlation function for the quadratic corre-
lations in the rational approximation have quite a simple
form. Extrapolating to large τ using the rational function
approximation as above, we obtain

G(2)(τ) '
[
M(2) −

[
M(1)

]2] [
exp−

(
a′τ + b′τ2

1 + c′τ

)]
,

(52)

where, using the result M(2) = 1/2− ηM(1),

a′ = 4M(1)/(1− 2ηM(1) − 2[M(1)]2),

c′ =

(
a′2

3 + 4 + 2
3η

2 − 1−ηM(1)

M(1) a′
)

(
1−ηM(1)

M(1) − a′

2

) ,

b′

c′
= a′ − a′

(
1−ηM(1)

M(1) − a′

2

)2(
a′2

3 + 4 + 2
3η

2 − 1−ηM(1)

M(1) a′
) · (53)

It is interesting to note from Figure 5c, that even for N =
1, the x2 variable is clearly not bistable, and shows no sign
of the characteristic long time-scales of bistable variables.
Instead, there is a critical slowing-down near η = 0, with
shorter time-scales at all other η values. This also agrees
with the exponential extrapolation results.

5.3 Spectral results

Having computed a long-time extrapolation to the two-
time correlation function, it is now possible to calculate
the spectrum. A simple Lorentzian spectrum is generated
by the first order stochastic diagrams. This approximation
we shall see is surprisingly close to the correct spectrum
even for finite N values, especially at high frequencies.
The reason for this is that the middle to high frequency
spectral behaviour is mostly due to the change in slope in
the two time correlation function near τ = 0, due to the
fact that the steady state correlation function must be a
function of |τ |. The low frequency spectral behaviour near
ω = 0 has additional contributions due to the τ → ∞
behaviour of the correlation function, which is not al-
ways given accurately using a first order expansion in τ .
The lowest order spectral contribution is therefore

S(1)(ω) = 2G(1)(0)<

∞∫
0

dτe−a|τ |+iωτ =
1

a2 + ω2
, (54)
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(a) (b) (c)

Fig. 6. The approximate equilibrium spectrum for range of values of η, using the exponential series method. Cases treated are
for (a) S(1)(ω), N = 1; (b) S(1)(ω), N = 4; (c) S(2)(ω), N = 1.

where a = 1/[2〈R〉] is defined as in the previous sections.
Thus, in the large N limit we expect to find that:

lim
N→∞

S(1)(ω) =
4R2

η

(1 + (2Rηω)2
· (55)

To higher order, it is necessary to choose which extrapo-
lation method to use. The procedure of extrapolating the
correlation function to large τ by expanding it as a se-
ries of exponentially decaying terms, is simple to Fourier
transform, since this clearly results in:

S(ω) = G(0)

p′∑
n=1

2gnλn
λ2
n + ω2

· (56)

This results in a Fourier transform as a sum of Lorentzian
components. For the three previous cases treated of N =
1, N = 4, and the intensity spectrum for N = 1, the
spectrum thus obtained is plotted in Figures 6a to 6c for
various values of η. The clear progression from bistable
behaviour, to spontaneous symmetry-breaking, to non-
bistable behaviour, is shown in these three graphs; as the
peak spectral intensity is greatly reduced for the spectra
with shorter characteristic time-scales.

While this procedure has advantages as far as calcu-
lating the Fourier transform is concerned, it is not always
the best extrapolation. Accordingly, we also consider a
straightforward numerical Fourier transform, which can
be used to calculate the spectrum from the rational func-
tion approximation to the correlation functions.

5.4 Direct numerical simulation

As there are no exactly known analytic expressions for
these spectra, we have to resort to stochastic numerical
techniques to check the accuracy of the spectrum using the
truncated diagram method. Thus, in order to determine
the accuracy of the correlation function, a direct simula-
tion of the relevant stochastic differential equations was
used. These simulations employed a strongly convergent
semi-implicit numerical algorithm [21], with similarities
to an earlier explicit technique of Milshtein [22]. An ad-
vantage of a strongly convergent method is that it allows

simultaneous checks on both the numerical sampling er-
ror and the truncation error due to finite step-size. The
actual algorithm used employed four iterations of the non-
linear implicit equations at each step. After starting the
trajectories in a Gaussian distribution with variance equal
to the known steady state variance, each trajectory was
integrated for a total elapsed time much longer than the
correlation time.

Typically, t = 100–400 was the maximum time used,
with longer times being employed for calculations above
threshold, where the correlation time is longer. In the sim-
ulations, the total number of trajectories employed was
106, in order to reduce the sampling error to typically
about 0.1–0.2% at low frequencies – although this typ-
ically rose to about 0.5% above threshold, presumably
because of the highly non-Gaussian individual trajectory
statistics in these cases. Sampling errors were checked by
subdividing the results into 1000 sub-ensembles, which
were numerically Fourier transformed and averaged in-
dividually. The spectral results were then averaged over
the sub-ensembles, and the error-bar in the overall mean
was estimated using standard Gaussian distribution error
estimates – on the basis that sub-ensemble means should
have a Gaussian distribution according to the central limit
theorem.

By reducing the time step to a small value (typically
∆t = 0.01–0.05), the errors due to the finite step-size were
typically kept to below 0.5%. This was estimated by cal-
culating all spectra at two different step-sizes, but with
the same underlying stochastic noise terms, and compar-
ing the results. The two error-bars were added to give the
final numerical error-estimates. No significant error from
finite spectral windowing was found, although this would
be expected to give problems in the extreme bistable
regions.

By comparing with exact zero-frequency results, this
technique of error-estimation proved a reliable method, in
the sense that the discrepancies were of the expected size.

Thus, for example, the numerical spectrum for the case
of N = 1 at threshold (η = 0) has the calculated value of
S(0) = 0.966± 0.007, using 106 trajectories, a window of
tMAX = 200, and a step-size of ∆t = 0.025. The error due
to the finite step-size contributes±0.005 to the total error.
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The corresponding exact result, as explained in the next
section, is S(0) = 0.975 - giving a slightly greater actual
numerical error than the estimated one standard-deviation
error-bar. By comparison, the extrapolated exponential
series analytic result is S(0) = 0.970, which is very close
to the exact result.

For the case of N = 1 above threshold (η = −1.5) the
calculated numerical simulation value is S(0) = 10.01 ±
0.10, using 106 trajectories, a window of tMAX = 400,
and a step-size of ∆t = 0.05. Because the step-size is rel-
atively large (in order to maximize the time-window), the
error-bar in this case is mostly due to the finite step-size,
which contributes an error of ±0.08 to the total error.
The corresponding exact result is S(0) = 10.11 — within
the estimated error-bars. By comparison, the extrapolated
analytic result is S(0) = 9.06, which gives an increased ex-
trapolation error, as expected.

The resulting numerical estimate of S(n)(ω) was:

S(n)
num(ω) = lim

T→∞
< |∆x̃ni (ω)|2 > /T , (57)

where the Fourier transform ∆x̃ni (ω) is defined as

∆x̃ni (ω) =

T∫
0

dteiωt[xni (t)− 〈xni (t)〉]. (58)

5.5 Comparison of results

The results of the two procedures, i.e. stochastic diagrams
and numerical simulations, are compared in Figures 7, 8
and 9 for N = 1, N = 4 and the intensity spectrum with
N = 1 respectively. In each figure there are four lines,
which are the Lorentzian approximation (dotted line), the
rational approximation (dashed-dotted line), the second
order exponential series extrapolation (dashed line) and
the direct numerical simulations (solid line).

In each figure there are sub-figures which correspond
to different values of the driving field η, which are taken
through a range of values from far below threshold to
above threshold. We notice that agreement is generally
excellent (close to the simulation error-bars) for all meth-
ods below threshold. Errors are always worst at low fre-
quencies, where the results are the most sensitive to the
extrapolation error at long times. They are also worst for
the single exponential extrapolation than the higher-order
extrapolation methods, as expected, and usually best for
the exponential series method.

5.5.1 Amplitude correlations — N = 1 case

Below threshold, Figure 7a shows the four different spec-
tral results near zero-frequency, thus giving a magnified
view of the results. Errors are much smaller at higher
frequencies, where all the techniques agree to within the
simulation error-bars. It can be seen that the exponential
series method (dashed line) gives the best low-frequency

agreement to the simulation (solid line). The residual dif-
ference is about equal to the intrinsic numerical discretiza-
tion and sampling errors, while the other two methods give
small, but marginally significant discrepancies.

In Figure 7b, at the critical point of η = 0, the expo-
nential series gives a prediction at N = 1 of S(0) = 0.9702.
This is in quite remarkable agreement with the simulated
value of S(0) = 0.966± 0.007. By comparison, the other
two methods are again either significantly higher (rational
logarithmic), or lower (Lorentzian approximation).

Above threshold, however, in Figure 7c, we see that
the agreement is outside the error-bars even for the expo-
nential series method, thus indicating a reduced accuracy
in the long-time extrapolation. This is expected, in view
of the fact that the long-time eigenvalue is an exponential
function of η – rather than a finite algebraic expression,
as would be generated from the stochastic diagrams. Here
the errors increase to about 15% for η = −1.5, at zero fre-
quency, in the rational approximation, with much worse
errors in the single exponential approximation. However,
in this case the exponential series still gives the best result,
with an error of less than 10% .

5.5.2 Amplitude correlations — N = 4 case

Figure 8 shows the spectrum of x(t) as a function of η
at N = 4. In Figure 8a, with η = 1 (below threshold) the
difference between the various approximations and the nu-
merical simulation is about equal to the sampling error-
bars obtained with 106 trajectories. Thus, it is not pos-
sible to distinguish between any of the extrapolations in
this case. At threshold, in Figure 8b, the differences in-
crease, and the exponential series method is clearly better
than a single exponential extrapolation. Above threshold,
in Figure 8c, the accuracy of both the single exponen-
tial and the rational extrapolation diminishes, relative to
the exponential series method – due to the two dominant
eigenvalues in this case. For N = 4, the above threshold
error with the rational extrapolation reduced to 7%, as
the multiple time-scale problem is less significant in this
case. The error in the exponential series method is less
than 1%, i.e., of the same order as the intrinsic sampling
errors.

5.5.3 Intensity spectrum — N = 1 case

Figure 9 shows the spectrum of x2(t) as a function of
η as given by the different approximations. We see that
there are obvious differences between this and the pre-
vious cases. As x2(t) is not bistable, the spectrum does
not have a large ‘spike’ as η → −∞. This means that,
unlike the previous examples, the agreement between the
rational function extrapolation and simulation methods
remains of the order of the numerical sampling error-
bars even above threshold. Since it would presumably
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(a) (b) (c)

Fig. 7. Comparison of the equilibrium spectrum S(1)(ω) of x(t) for N = 1 as given by stochastic numerical simulations
(solid line), exponential series extrapolation (dashed line), rational function extrapolation (dashed-dotted line), Lorentzian
approximation (dotted line) for (a) η = 1, (b) η = 0, (c) η = −1.5. Error-bars for discretization and sampling errors at zero
frequency are: (a) ∆S = 0.002 , (b) ∆S = 0.007 , (c) ∆S = 0.1.

(a) (b) (c)

Fig. 8. Comparison of the equilibrium spectrum S(1)(ω) of x(t) for N = 4 as given by stochastic numerical simulations
(solid line), exponential series extrapolation (dashed line), rational function extrapolation (dashed-dotted line), Lorentzian
approximation (dotted line) for (a) η = 1, (b) η = 0, (c) η = −1.5. Sampling error-bars at zero frequency are: (a) ∆S = 0.002,
(b) ∆S = 0.01, (c) ∆S = 0.1.

(a) (b) (c)

Fig. 9. Comparison of the equilibrium spectrum S(2)(ω) of x2(t) for N = 1 as given by exact numerical simulations (solid line),
exponential series extrapolation (dashed line), rational function extrapolation (dashed-dotted line), Lorentzian approximation
(dotted line) for (a) η = 1, (b) η = 0, (c) η = −1.5. Sampling error-bars at zero frequency are: (a) ∆S(2) = 0.0003, (b) ∆S(2) =
0.001, (c) ∆S(2) = 0.004.

require more than 106 trajectories to resolve the differ-
ences in these spectral results, we have not attempted
to accurately estimate the extrapolation errors here. For
this problem, it is clear that the analytical theory is
rather competitive with numerical simulations, which are

always subject to numerical sampling error. The nearly
perfect agreement for rational function extrapolation is
a surprising result, given that it is obtained from only
a small number of stochastic diagrams. In this case, the
exponential series method gives slightly worse results,
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presumably because there are several competing eigenval-
ues rather than just two.

5.6 Exact results

Although the agreement between the analytic results and
the numerical simulations is generally excellent (except
for bistable variables) there are some features worth a
closer examination. Firstly, we emphasize again that dis-
crepancies are only evident at low frequencies. This is sim-
ply because the correlation function tails, although only
contributing a small part of the spectrum, cannot always
be accurately extrapolated from the short time power se-
ries expansion. This discrepancy at or below the critical
point is always small (of order of 1–2% at the critical
point η = 0). The error is naturally larger in the simpler
Lorentzian approximation, but in no case does it exceed
5% with η = 0. Secondly, the low frequency extrapolation
error is larger above threshold as η → −∞, especially in
the bistable case of x(t) spectrum with N = 1. This result
is expected, since calculation of the slow eigenvalue in this
case requires an infinite series in η.

In the particular case of N = 1, the zero frequency
spectrum is known exactly [7] and is given by

S(n)(0) = 4

∞∫
−∞

dx
[f (n)(x)]2

Peq(x)
, (59)

where

f (n)(x) = −

x∫
−∞

dx1[xn1 − 〈x
n〉]Peq(x1). (60)

Here Peq(x) denotes the normalized equilibrium distribu-
tion. The discrepancy between this exact result at N = 1,
and the approximate spectra, is given in Figure 10.

In the bistable case of S(1), it is clear that the error in-
creases very rapidly as η → −∞, especially for the single
exponential and rational approximations. The reason for
this is due to the well-known bifurcation of the determin-
istic steady state in this case, when η � 0. The system
can only switch from one solution near x = η to the other
near x = −η, on exponentially long time scales. This can
be seen on comparing Figure 11, which is computed at the
deterministic threshold of η = 0, with an above thresh-
old numerical simulation in Figure 12. In this region and
above, a multiple time scale technique would give the best
results, with other methods being used to estimate the
slow eigenvalue. As we are interested here in the critical
region around η = 0, we simply note this problem here,
rather than pursuing it in further detail. Techniques for
dealing with multiple time-scales of these barrier-hopping
equations were first developed by Kramers [23], and are
quite well understood.

This type of problem is greatly reduced for N > 1,
where there is a tangential diffusion above threshold,
rather than barrier-hopping. This results in an increas-
ing accuracy of the present technique for large N , as the

(a)

(b)

Fig. 10. Comparison of the equilibrium spectrum for N = 1
at zero frequency as given by the exact analytic expression
(solid line), exponential series extrapolation (dashed line), ra-
tional function extrapolation (dashed-dotted line), Lorentzian
approximation (dotted line) for a range of values of η. Cases
treated are: (a) S(1)(0); (b) S(2)(0).

Fig. 11. A sample numerical run showing critical fluctuations
of x(t) at threshold, for the case η = 0, N = 1.

system dynamics reduces to just two time-scales, both of
which have finite expression in terms of η. In this limit,
the behaviour is closely analogous to the well-known prob-
lem of diffusion in a curved space. While there are no ex-
amples of physical systems with such large-dimensional
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Fig. 12. A sample numerical run showing bistability of x(t)
above threshold, for the case η = −1.5, N = 1.

order-parameters, many physical systems (like the laser
above threshold, or Bose-Einstein condensates) display
this type of spontaneous symmetry breaking accompanied
by tangential diffusion in phase-space. The case chosen
(N = 4) is typified by a two mode laser with inhomoge-
neous broadening, so there is no strong mode-competition.
As we have seen, the stochastic diagram method gives
very accurate results when compared with numerical
simulations. However, we have no exact result in this
case.

Multiple time-scale problems do not occur in the case
of non-bistable quantities like x2(t) whose spectrum is
given in Figure 10b. The exponential series method gives
good agreement, as expected. Agreement with the rational
function extrapolation in this case is excellent even above
threshold. It is so good that the exact spectral result at
ω = 0 cannot be told apart from the approximate value,
so we have not included the rational approximation in this
graph.

6 Summary

The stochastic diagram technique is a method of classi-
fying iterative terms in a stochastic power series expan-
sion in time, so that terms of the same order in time are
grouped together. This involves analyzing the determin-
istic and stochastic order, since they give rise to different
types of contributions.

In this paper we have used this technique to analyze
critical amplitude and intensity spectra, by considering ei-
ther exponential series or logarithmic rational function ex-
trapolation. The results are inherently non-perturbative,
and are very accurate except in bistable regions. Thus,
the results are valid even at the critical point, where the
usual linearized spectra diverge. Good results are also ob-
tained above threshold using exponential series extrap-
olation, when there is spontaneous symmetry-breaking.
The technique works especially well for intrinsically non-
bistable quantities like the intensity or radial spectrum. In
these cases, we find that rational function extrapolation
is of greater accuracy.

The general feature of these results for the case of
the cubic stochastic process, is that we see the expected
critical slowing down at the threshold or critical point at
η = 0. Below threshold, there is rather stable behaviour,
except at high dimensionality where the outward entropic
effects of the phase-space volume are increasingly impor-
tant. Above threshold, there is a bistable region for N = 1,
where our methods do not converge quickly, due to the
exponentially long time-scales involved. For this region,
asymptotic methods involving multiple time-scales would
be more suitable. For N > 1, our method gives much
better results than for N = 1 above threshold, since the
dynamics in this region are then dominated by a type
of phase-diffusion at fixed radius, rather than by barrier-
hopping.

The problems treated here were of a relatively simple
type, to allow comparisons with exactly known results.
We emphasize that the stochastic diagram approach itself
is rather more general. It is not restricted to equilibrium
correlations, although extrapolation is not always possible
in transient calculations. Nor is it restricted to problems
just involving temporal variation: partial stochastic differ-
ential equations can also be treated in this way.

The technique developed here consists in exact com-
putation of the short time behaviour followed by extrap-
olation to large times. For the problems treated in this
work, exponential series or logarithmic rational function
extrapolation turn out to be quite adequate. Yukalov and
coworkers [24] have developed powerful self-similar ap-
proximation methods precisely for handling such situa-
tions. These methods, together with our technique, might
turn out to be extremely useful in carrying out the re-
quired extrapolation to large times in stochastic differen-
tial equations involving multiplicative noise, such as those
considered by Kesten [25] and by Sornette and Cont [26].

In summary, time domain stochastic diagram tech-
niques provide a remarkably accurate, and relatively
simple technique for obtaining analytic results for expecta-
tion values involving nonlinear stochastic differential equa-
tions. The diagram techniques can also be used to obtain
correlation spectra. These problems have no known exact
solutions in general. The corresponding direct numerical
simulations are always possible. However, large amounts
of computer time are required to obtain values of compa-
rable accuracy to diagrammatic analytic approximations.
These methods therefore appear to have many possible ap-
plications for calculations involving stochastic differential
equations.

One of us (SC) is grateful to the University of Queensland for
the University of Queensland Travel Award for International
Collaborative Research which made this work possible.

Appendix

In this Appendix we briefly outline the details of the cal-
culations leading to the result given in (34), using the rules
given in Figure 4.
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The contributions to the diagrams in Figure 3a can
easily be written down as follows

x̃i
(0)(t) = e−ηtvi

x̃i
(1/2)(t) = wi(t). (A.1)

Next, evaluating the diagrams with one vertex in Fig-
ure 3b, gives:

x̃i
(1)(t) = −fijkl

t∫
0

dt1e
−η(t+2t1)vjvkvl

x̃i
(3/2)(t) = −3fijkl

t∫
0

dt1e
−η(t+t1)wj(t1)vkvl. (A.2)

The next order terms in Figure 3(c) include both one-
vertex terms with additional noise factors, and two-vertex
nested integral terms:

x̃i
(2)(t) = 3fijkl

[
−

t∫
0

dt1e
−ηtwj(t1)wk(t1)vl

+ flmnp

t∫
0

dt1e
−η(t+2t1)vjvk

t1∫
0

dt2e
−2ηt2vmvnvp

]

x̃i
(5/2)(t) = 3fijkl

[
−

t∫
0

dt1e
−η(t−t1)wj(t1)wk(t1)wl(t1)

+ 3flmnp

t∫
0

dt1e
−η(t+2t1)vjvk

t1∫
0

dt2wm(t2)e−ηt2vnvp

+ 2flmnp

t∫
0

dt1e
−η(t+t1)vjwk(t1)

t1∫
0

dt3e
−2ηt3vmvnvp

]
.

(A.3)

Finally, the relevant third order terms are:

x̃i
(3)(t)=3fijkle

−ηt

[
flmnp

t∫
0

dt1wj(t1)wk(t1)

t1∫
0

dt2e
−2ηt2vmvnvp

+ 3flmnp

t∫
0

dt1e
−2ηt1vjvk

t1∫
0

dt2wm(t2)wn(t2)vp

+ 6flmnp

t∫
0

dt1e
−ηt1vjwk(t1)

t1∫
0

dt2e
−ηt2wm(t2)vnvp

− fkmnpflqrs

t∫
0

dt1e
−2ηt1vj

t1∫
0

dt2e
−2ηt2vmvnvp

×

t1∫
0

dt3e
−2ηt3vqvrvs − 3flmnpfpqrs

t∫
0

dt1vjvk

×

t1∫
0

dt2vmvn

t2∫
0

dt3e
−2η(t1+t2+t3)vqvrvs

]
. (A.4)

In the above equations summation over repeated indices
is implied.

The next step consists in:

(a) Multiplying the above expressions by vi = xi(0) and
summing over i,

(b) Averaging the resulting expressions over the noise
sources and the initial values and adding up all the
contributions.

This leads to

〈x(t) · x(0)〉

N
= +e−ηt

1

N
〈v · v〉

−
1

N
fijkl〈vivjvkvl〉

t∫
0

dt1e
−η(t+2t1)

+
3e−ηtfijkl

N

[
−δjk〈vivl〉

t∫
0

dt1

t1∫
0

dt2e
−2η(t1−t2)

+ flmnp〈vivjvkvmvnvp〉

t∫
0

dt1

t1∫
0

dt2e
−2η(t1+t2)

+ flmnpδjk〈vivmvnvp〉

t∫
0

dt1

t1∫
0

dt2

t1∫
0

dt3e
−2η(t1−t2+t3)

+ 3flmnpδmn〈vivjvk.5vp〉

t∫
0

dt1

t1∫
0

dt2

t2∫
0

dt3e
−2η(t1+t2−t3)

+ 6flmnpδkm〈vivjvnvp〉

t∫
0

dt1

t1∫
0

dt3

t3∫
0

dt2e
−η(t1−t2)

− fkmnpflqrs〈vivjvmvnvpvqvrvs〉

t∫
0

dt1
( t1∫
0

dt2e
−η(t1+2t2)

)
2

− 3flmnpfpqrs〈vivjvkvmvnvqvrvs〉

×

t∫
0

dt1

t1∫
0

dt2

t2∫
0

dt3e
−2η(t1+t2+t3)

]
. (A.5)

For the symmetric case with fijkl given by
fijkl = [δijδkl + δikδjl + δilδjk]/(3N), the above results
can be simplified. This is not essential to the method,
and neither is the use of a steady-state initial condition
at this stage. On explicitly carrying out the summations,
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we obtain

〈x(t) · x(0)〉

N
= +

e−ηt

N

[
〈v · v〉 −

1

N
〈(v · v)2〉

t∫
0

dt1e
−2ηt1

−
(N + 2)

N
〈v · v〉

t∫
0

dt1

t1∫
0

dt2e
−2η(t1−t2)

+
3

N2
〈(v · v)3〉

t∫
0

dt1

t1∫
0

dt2e
−2η(t1+t2)

+
(N + 2)

N2
〈(v · v)2〉

t∫
0

dt1

t1∫
0

dt2

t1∫
0

dt3e
−2η(t1−t2+t3)

+
3(N + 2)

N2
〈(v · v)2〉

t∫
0

dt1

t1∫
0

dt2

t2∫
0

dt3e
−2η(t1+t2−t3)

+
2(N + 8)

N2
〈(v · v)2〉

t∫
0

dt1

t1∫
0

dt3

t3∫
0

dt2e
−η(t1−t2)

−
3

N3
〈(v · v)4〉

t∫
0

dt1

 t1∫
0

dt2e
−η(t1+2t2)

2

−
9

N3
〈(v · v)4〉

t∫
0

dt1

t1∫
0

dt2

t2∫
0

dt3e
−2η(t1+t2+t3)

]
. (A.6)

Finally, replacing the initial averages by equilibrium aver-
ages and expanding the time integrals in powers of t we
obtain

〈x(t) · x(0)〉

N
= +M(1)

[
1− ηt+

1

2
η2t2 −

1

6
η3t3 + · · ·

]

−M(2)

[
t− 2ηt2 +

13

6
η2t3 + · · ·

]

−
(N + 2)

N
M(1)

[
1

2
t2 −

5

6
ηt3 + · · ·

]

+ 3M(3)

[
1

2
t2 −

3

2
ηt3 + · · ·

]
+

(N + 2)

N
M(2)

[
5

6
t3 + · · ·

]

+
2(N + 8)

N
M(2)

[
1

6
t3 + · · ·

]

−M(4)

[
5

2
t3 + · · ·

]
. (A.7)

On collecting coefficients of like powers of t we are led to
the expression (34) for the short time expansion of the
two-time correlation function in the N-dimensional case
with rotational symmetry. This also agrees with the earlier
result of equation (12), for the simpler case of N = 1 and
η = 0 – as expected.
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