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Concurrence in arbitrary dimensions.
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We argue that a complete characterisation of quantum correlations in bipartite systems of many
dimensions may require a quantity which, even for pure states, does not reduce to a single number.
Subsequently, we introduce multi-dimensional generalizations of concurrence and find evidence that
they may provide useful tools for the analysis of quantum correlations in mixed bipartite states. We
also introudce biconcurrence that leads to a necessary and sufficient condition for separability.

I. INTRODUCTION.

Entanglement plays central role in quantum information theory [1]. Pure state entanglement of bipartite systems
is well understood in the sense that the relevant parameters for its optimal manipulation by local operations and
classical communication (LOCC) have been identified and analyzed [2], [3]. Many efforts have also been devoted to
the study of mixed-state entanglement. There, several possible entanglement measures have been proposed. Among
these, entanglement of formation (EF ) [4], [5] attracts much of attention, as it is closely connected with (or, perhaps,
equal to) the rate of production of mixed bipartite states out of pure ones by LOCC operations. It is, however,
extremely difficult to evaluate EF , but for the analytical formula for a single copy of an arbitrary state of two qubits
obtained by Wootters [6]. Despite efforts, not much progress has been recorded regarding generalization of Wootters’
result to the states in more than 2× 2 dimensions [7].

Wootters’ success in quantifying EF for two qubits can be attributed to associating EF with concurrence which is
easier to calculate than EF . Concurrence, as introduced by Hill and Wootters [8], was defined via operation of spin
flip. More recently, Rungta et al. [9] made an attempt to generalize the notion of concurrence to pure bipartite states
in arbitrary dimensions by introducing operation of universal state inversion [10]. Their universal inverter generalizes
spin flip to a transformation which brings pure state |ψ〉 into the maximally mixed state in the subspace orthogonal
to |ψ〉. In the same way that the spin flip generates concurrence for a pair of qubits, the universal inverter generates
a number which generalizes concurrence for joint pure states of pairs of quantum systems of arbitrary dimensions.
Generalized in this way, concurrence measures entanglement of pure bipartite states in terms of the purity of their
marginal density operators.

As one knows [3], a complete characterization of quantum correlations in bipartite systems of many dimensions may
require a quantity which, even for pure states, does not reduce to a single number [11]. Take, e.g., two pure states
represented by vectors ψ = (|11〉+ |22〉) /2 and φ = aψ + b|33〉, with a =

√
x and b =

√
1− x, where x ≈ 0.2271

is a root of xx [2 (1− x)]
1−x

= 1. The two states have the same entanglement EF of 1 ebit, nevertheless they have
different Schmidt numbers and, consequently, it is impossible to locally convert one into the other.

In this contribution, we argue than that a suitable generalization of spin flip to more dimensions should produce a
multi-dimensional analogue of concurrence rather than a single number. Such a concurrence would then describe not
only the amount of entanglement but also its structure, e.g., the size (the number of dimensions) of the entangled
spaces on each side. The concurrence for pure states is thus a matrix acting on the antisymmetric subspace of the
total Hilbert space of two systems. Having that, one can follow Wootters and generalize the concept to mixed states
by introducing a matrix of preconcurrence. The elements of this matrix are matrices in their own right and at the end,
the matrix is often difficult to analyze. At least partially, the difficulties can be associated with the matrix dependence
on the choice of the local bases. Therefore, we also generalize the concept of concurrence in a somewhat different
direction. We abandon the requirement for preconcurrence to be a second order object in the state’s ensemble. For
this price we can define a fourth order object, biconcurrence matrix. It is independent of the local unitaries and allows
us to reformulate separability problem in terms of the main diagonal of the matrix. Biconcurrence is a very simple
function of ensemble of density matrix and has many symmetries. Therefore, the obtained necessary and sufficient
separability condition seems to be the most promising one from algebraic point of view.

The generalization of pre-concurrence which satisfies our criterion is presented in section II. Then, in section
III we give an example to show how our multi-dimensional pre-concurrence can be used for analysis of separability
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in arbitrary dimensions. There, we also discuss possible limitation of such analysis. Subsequently, in Sec. IV we
introduce biconcurrence and formulate the necessary and sufficient condition for separability in terms of its elements.
Finally, in section V we present a brief discussion of the results.

II. SPIN FLIP AND CONCURRENCE.

A. Pure states.

For pure states of two qubits, a spin flip transforms vector v in a 2-dimensional vector space into vector ṽ equally
long and orthogonal to v. In a bipartite system, a spin flip means that Alice performs a spin flip on her qubit and
Bob on his. This gives a particularly simple expression for concurrence:

C (ψ) = 〈ψ̃|ψ〉 (1)

The spin flip operation and the concurrence which follows are well defined since, in a 2-dim space, there is only one
direction which is orthogonal to a given one. One may further notice that concurrence defined in (1) together with
the state’s normalization allow to determine the eigenvalues of the associated reduced density matrix and, via these,
the pure state’s entanglement. The eigenvalues are the squares of the moduli of the singular values λ1 and λ2 of a
2× 2 matrix [ψ] of the coefficients defining the state in the standard basis:

|ψ〉 =
∑

i,j

ψi,j |i〉A ⊗ |j〉B (2)

The singular values are then related to the concurrence via

C = 2λ1 λ2 = 2 det ([ψ])

In general, in a d-dimensional space there are d − 1 dimensions orthogonal to a given direction. These can be
represented by a d − 1 antisymmetric form. From this point of view, performing a spin flip on a bipartite state
means constructing a double d− 1 form (one side for Alice and one side for Bob) locally dual to the double one-form
representing the state vector |ψ〉. Concurrence can then be associated with the contraction of the form representing

|ψ〉 with the form representing
〈
ψ̃
∣∣∣. The contraction gives a double (d− 2)-form which is equivalent to a double

2-form and can be represented by a
(
d
2

)
×
(
d
2

)
matrix with the following elements:

Ci1∧j1;i2∧j2 = 2 (ψi1,i2 ψj1,j2 − ψi1,j2 ψj1,i2) (3)

These elements are easily identified as twice the two-dimensional minors of matrix [ψ]. They describe the two-state
contributions to the bipartite entanglement.

Regarding their structure, matrices C form a vector space with a natural trace norm:

|C|2 = Tr
(
C C†

)
=

∑

i∧j,k∧l
|Ci∧j;k∧l|2 (4)

Having constructed the concurrence matrix, one may proceed in the same spirit and construct higher dimensional
minors of [ψ] (up to the Schmidt number). They will represent those contributions to the bipartite entanglement
which embrace local subspaces of higher dimensions. We believe that, in principle, these concurrences of order higher
than two may be important for the quantification of entanglement even if the separability of a pure state is determined
by the lowest order (i.e. 2) concurrence. Clearly, a pure state (2) in arbitrary dimensions is separable iff [C] = 0.

B. Mixed states.

In order to further generalize the concept of concurrence to multidimensional mixed states, we follow Wootters and
introduce (pre)concurrence as follows. Given a decomposition of state % into pure, unnormalized states,

% =
∑

µ

|ψµ〉 〈ψµ| (5)
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we define pre-concurrences

Cµνi1∧j1;i2∧j2 = ψµi1,i2 ψ
ν
j1,j2 − ψ

µ
i1,j2

ψνj1,i2

+ ψνi1,i2 ψ
µ
j1,j2
− ψνi1,j2 ψ

µ
j1,i2

(6)

The pre-concurrences can be regarded as a set of
(
d
2

)
×
(
d
2

)
matrices in µ and ν or, equivalently, as one matrix in µ

and ν with vector-like elements living in a
(
d
2

)
×
(
d
2

)
dimensional space.

To systematize this picture, it may also be convenient to view C as an operator in the tensor product of two spaces.

The first, H∞ is the antisymmetric subspace of the space Cd ⊗ Cd the state acts on. Thus H∞ = Cd∈−d/∈. The
space H∈ is the space of ”lists” of vectors for decomposition of the state. In principle we should allow this space to
be infinite-dimensional, as one can consider infinite decompositions. However, it is likely that dimension d4 is enough
(for example, a separable state can be certainly decomposed into no more than d4 product states [15]; similarly, there
always exists an optimal decomposition for entanglement of formation containing no more than d4 components [12]).

Matrix C viewed as operator acting on H1⊗H2 has simple transformation rules under (i) change of decomposition
(ii) local unitary transformations of the state. Operations of type (i) transform the preconcurrence matrix according
to:

Cµ
′ν′ =

∑

µ ν

Uµ
′µ Cµν Uν

′ν (7)

with U being a unitary matrix changing the decomposition of the state into pure states [20]. This transformation can
be represented as:

C → C ′ = I ⊗ UCI ⊗ UT (8)

where subscript T stands for transposition. Similarly, a unitary transformation of the local bases

|ei1 ⊗ fi2 〉 =
∑

k1 k2

∣∣∣êk1 ⊗ f̂k2

〉
Vk1i1 Wk2i2 (9)

(matrices V and W unitary) changes the components of the elements of Cµν according to

Ĉµν
i1∧j1;i2∧j2

=
∑

k1l1k2l2

Vi1k1Vj1l1Wi2k2Wj2l2 Cµν
k1∧l1;k2∧l2

=
∑

k1<l1;k2<l2

(Vi1k1Vj1 l1 − Vi1l1Vj1k1) (Wi2k2Wj2l2 −Wi2l2Wj2k2) Cµν
k1∧l1;k2∧l2

(10)

which can be represented as

C → Ĉ = (V ⊗W )⊗ I C (V T ⊗W T ) ⊗ I (11)

III. CONCURRENCE AND SEPARABILITY.

The preconcurrence matrix defined in the previous section sheds some interesting light on the separability of mixed
states. Obviously, a given bipartite state ρ is separable iff there is a decomposition for which all the diagonal elements
Cµµ are zero vectors. The non-separable states can then be divided into two classes:

a) the states which allow for such a pair of local bases that for at least one κ0 = i01 ∧ j0
1 ; i02 ∧ j0

2 , no transformation
(7) can zero the diagonal of Cµνκ0

.

b) the states where for every single component κ = i1 ∧ j1; i2 ∧ j2, there exist a decomposition with all the
diagonal elements Cµµκ to zero (different decompositions for different multi-indexes κ). This property must hold
irrespective of the choice of the local bases.
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The states in class (a) contain 2-qubit entanglement and as such are distillable [13]. Class (b), on the other hand
contains all the bound entangled (BE) states [14,15]. Indeed, two qubit entangled states are distillable hence a BE
state cannot contain two-qubit entanglement. A known open question in this context is if class (b) is equivalent to
the BE states or if it is strictly larger. In Ref. [14] it was shown that a state % is distillable iff for some number k the
state %⊗k has two-qubit entanglement. Call such state k-copy pseudo distillable (according to notation of Ref. [16]).
The question if the set of BE states is equal to class (b) can be then rephrased as: does k-copy pseudo distillability
imply 1-copy pseudo distillability. In principle it might happen that the property of having two-qubit entanglement
is not additive: 1 copy would not contain it, but two or more copies would. For some Werner states there is strong
evidence that this is the case [16,17]. In Ref. [18] a possible equivalence of the considered sets was connected with
some “binarization” of conditional information in cryptography based on mixed quantum states.

In this context, our preconcurrence matrix allows for a simple argument which shows that rank 2 states are either
separable or 1-copy pseudo distillable (for the original proof of non-existence of bound entangled states of rank 2 see
[19]).

A. Rank-2 states are either separable or 1-copy pseudo distillable.

Rank-2 states have 2× 2 preconcurrence matrices. A state which has a decomposition where all the matrices are
of the form

C1 =

[
0 x
x 0

]
(12)

is separable. A candidate for a non-separable and not 1-copy pseudo-distillable state must have at least two essentially
different preconcurrence matrices. In a decomposition where one of the matrices is of the form (12), there must be
another one

C̃2 = eiϕ
[
a eiα b
b −a e−iα

]
(13)

with all the parameters real and a 6= 0. This form is necessary since otherwise it would be impossible for transformation
(7) to make the diagonal of C̃2 zero. Moreover, a simple phase adjustment in the decomposition of the state can bring

α and ϕ to zero, without changing C̃1’s diagonal. With such an adjustment the second matrix becomes

C2 =

[
a b
b −a

]
(14)

with both a and b real. Now, a change of the local bases which (up to a normalizing factor) produces

C ′2 = C2 + i

[
0 |x|
|x| 0

]

shows that the state contains 2-qubit entanglement, i.e., it is distillable. Indeed, C ′2 is of form (13) with real non-zero
a and complex b. Such a matrix has two singular values of different moduli. Consequently, no transformation (7) can
reduce its trace to zero. This implies 2-qubit entanglement.

As a corollary to the above argument, one may notice that a rank-2 state is separable iff there exists a 2-state
decomposition of the state which simultaneously diagonalizes all the Cκ matrices so that all the matrices are of the
essentially the same form

Cκ =

[
xκ 0
0 −xκ

]
(15)

Indeed, if separability requires existence of a decomposition where, irrespectively of the choice of the local bases,
all the Cκ’s are of form (12), then transformation (7) with

U = Uq =
1√
2

[
1 1
−1 1

]
(16)

transforms them into (15).
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Analysis of separability of states of rank higher than two appears to be more difficult. In particular, an attempt to
follow Wootters’ minimization procedure for the expectation value of the concurrence’s norm is not simple since there
is no guarantee that transformation (8) can diagonalize matrix C (notice that the elements of C are vectors while the
elements of U are numbers. One can, nevertheless, diagonalize D = TrH∞CC

†. This leads to some simplifications
in special cases, like when diagonal D implies diagonal C. Nevertheless, at the moment, we do not have any general
results for states of rank higher than 2.

IV. BICONCURRENCE.

Bearing in mind the difficulties, one may try to look at the generalized concurrence from a somewhat different
perspective. For two qubits, preconcurrence can be viewed as a bilinear form C(ψ, φ) which distinguishes between
product vectors and entangled vectors. It satisfies the following crucial condition:

Condition 1. C(ψ, ψ) = 0 if and only if ψ is a product vector.
In passing, one may note that a form which satisfies condition 1 cannot be linear in one argument and anti-linear

in the other, since a linear-antilinear form can be written as

C(ψ, φ) = 〈ψ|Aφ〉, (17)

where A is a linear operator acting on space H. However, form (17) which vanishes on all the product vectors, vanishes
everywhere, thus violating condition 1. Consequently, the form must be bi-linear (or bi-antilinear, it does not matter
which). In this context, Wootters’ concurrence defines a good form for H = C∈ ⊗ C∈. It reads

C(ψ, φ) = 〈ψ̃|φ〉 (18)

Wootters’ preconcurrence matrix is then simply

Cµν(%) = C(ψµ, ψν) (19)

Unfortunately, as it follows from Ref. [9], in higher dimensions there does not exist a bi-linear form satisfying
Condition 1. A possible way to generalize Wootters concurrence can then be to look for a 4-argument formB(ψ, φ, κ, θ)
which would satisfy

Condition 1′. B(ψ) ≡ B(ψ, ψ, ψ, ψ) = 0 iff ψ is a product vector. A possible form satisfying Condition 1′,
linear in two arguments and antilinear in the two other is closely related to Rungta et al. concurrence [9] and to our
preconcurrence matrix. For instance, one can take a slightly simplified version of concurrence in [9] as a departure
point, and define

B(ψ) = −〈ψ|I ⊗ Λ(|ψ〉〈ψ|)|ψ〉. (20)

where Λ is the positive map used in the reduction criterion of separability [21]: Λ(A) = Tr(A)I −A
One finds that B(ψ) = 1−Tr%2, where % is a reduction of ψ. It is then clear that B satisfies the condition 1′. The

corresponding bi-concurrence matrix is then

Bµνmn = B(ψµ, ψν, ψm, ψn) = −〈ψµ|I ⊗ Λ(|ψν〉〈ψm|)|ψn〉. (21)

After some algebra this can be rewritten as

Bµνmn = 〈ψµ|ψν〉〈ψm|ψn〉 − Tr
[
[ψµ]†[ψν][ψm]†[ψn]

]
(22)

which is nothing else than a partial contraction of a product of preconcurrence matrix with its complex conjugation.

Bµν mn =
1

4

∑

i∧j,k∧l
Cnνi∧j;k∧l ·

(
Cmµi∧j;k∧l

)∗
(23)

Bi-concurrence is invariant under local unitary rotations of the state. Changes in the state’s decomposition, on the
other hand, transform bi-concurrence as follows

B̃µνmn =
∑

α,β,a,b

(Uµα)∗(Uma)∗BαβabUνβUnb. (24)
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If we treat the matrix B as an operator acting on tensor product of Hilbert spaces with Greek (Latin) indices for first
(second) space, we obtain

B̃ = U∗ ⊗ U∗B(U∗)† ⊗ (U∗)† (25)

One can see that the matrix B contains the whole information about possible separability of state %. Moreover,
irrespective of the decomposition, the elements on the main diagonal of B are real and non-negative. Therefore, in
terms of biconcurrence, separability is equivalent to the existence of such a unitary U that in eq. (25)

tr(B̃) = 0 (26)

The lower-case tr is here understood as the sum of the elements on the main diagonal:

trB̃ =
∑

µ

B̃µµµµ . (27)

Note that the elements B̃µµµµ are always nonnegative. Therefore it suffices to minimize (26)over unitaries U and
check whether the minimum vanishes.

Within the picture of B acting on product Hilbert space one can express the condition as follows

min
U

Tr(U ⊗ UPU † ⊗ U †B) = 0, (28)

where P =
∑

i |ii〉〈ii| with |ij〉 being standard product basis.
The condition (26) seems to be quite simple, and we hope that it will lead to a more operational condition for

separability.

V. CONCLUSIONS.

In conclusion, we argue that the multidimensional generalizations of concurrence which we have introduced in
this contribution put the question of determination of separability of bipartite quantum states in a somewhat new
perspective.

First, we introduced a concept of preconcurrence matrix. The matrix was designed to distinguish between the
contributions to the entanglement which embrace pairs of different two dimensional subspaces of the bipartite system.
In this way, our preconcurrence matrix contained all the information necessary to identify separability of a given state.
Nevertheless, its dependence on the particular choice of the local basis made it rather difficult to analyze in detail,
but in a rather restricted class of cases.

Therefore, we also generalized the concept of concurrence in another direction and abandoned the requirement for it
to be a second order object in the state’s ensemble. We arrived at the concept of biconcurrence matrix. This matrix is
of the fourth order in the state’s ensemble, however, for this price it is invariant under local unitaries. Biconcurrence
can be easily derived from a given bipartite state directly. It can also be constructed by a suitable contraction out of
our preconcurrence matrix. The resulting separability condition is probably the easiest possible one from the algebraic
point of view.

Regarding a complete characterization of entanglement, on the other hand, our generalizations of concurrence
matrix may not be enough. The main reason for this is that in order to specify the singular values of [ψ], in addition
to the length of the preconcurrence defined in eq. (4), one needs the lengths of all its tri-, ..., d-linear analogues. We
hope to return to this point in the nearest future.
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