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We introduce the concept of different orders (micro- through to macro-) of local realism.
“Macroscopic local realism” states that events occurring at a location B cannot induce
(immediate) macroscopic changes to a system at a location A spatially separated from B. “Local
realism” in its entirety excludes all sizes of change. “Local realism” in its entirety is used by
Einstein, Podolsky, and Rosen to deduce that results of position measurements (for certain
correlated systems) are predetermined. The value for the predetermined position is specified
with an uncertainty which is microscopic. “Macroscopic local realism” allows one to deduce
only the existence of “elements of reality” with a macroscopic uncertainty. While Bell’s theorem
invalidates local realism in its entirety, little is known of the validity of “macroscopic local
realism.” We consider macroscopic experiments where the experimental error associated with
measurements is macroscopic. We formulate the Einstein—Podolsky—Rosen argument for such
a macroscopic situation. We propose that violations of Bell inequalities in such macroscopic
experimental situations would imply the failure of “macroscopic local realism.”  © 1998
Academic Press

1. INTRODUCTION

“Local realism” is a premise (or more accurately a combination of two premises)
introduced by FEinstein, Podolsky, and Rosen (EPR) [1] and Bell [2] and others
in the context of the now famous EPR argument and Bell’s theorem. It was shown
initially by Bell that certain quantum mechanical states are not compatible with
local realism. Experimental evidence [ 3] supports quantum mechanics indicating
that local realism is to be rejected.

The premises of local realism were first thought of as common-sense premises
that must hold. The premises are fundamental to classical physics. The rejection of
local realism is at the heart of the difference between classical and quantum inter-
pretations.

The physical system considered originally by Bell which revealed an incompatibility
of local realism with quantum mechanics was a microscopic one. All experiments to
date testing local realism against quantum mechanics have been microscopic. For
example, the experiment of Aspect et al. [3] involves measurements performed on
a single photon. Hence, the premises of local realism have been shown to be invalid
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only at this microscopic level. The validity of these premises at a more macroscopic
level is an open question.

The aim of this paper is to build a framework within which this question of the
validity of local realism at a more macroscopic level might one day be answered.
The first step is to give a sensible quantitative meaning to the distinction between
a microscopic and macroscopic experiment and to microscopic and macroscopic
measurements. In essence, we classify an experiment as macroscopic if all measurements
performed have associated uncertainties which are themselves macroscopic.
A microscopic experiment is one in which the associated uncertainties are micro-
scopic.

We wish to give a sensible definition of “macroscopic local realism” and to further
levels of local realism pertaining to experiments between the microscopic and macro-
scopic. To date local realism has been defined in a way so as to apply to all levels
of experiment from the most microscopic to the most macroscopic. Local realism
will be rejected if it fails in a microscopic experiment, although its validity in
macroscopic experiments, where much more limited information is gained, is not
known. Local realism states that events at a location B cannot induce (immediate)
changes to a second system at a location A spatially separated from B. Local
realism, as used to date in its entirety, excludes all sizes of change to the system
at A, from macroscopic right down to microscopic. We wish to define “macroscopic
local realism” so that it refers to the application of the local realism premises in
macroscopic experiments only. Logically then we must define “macroscopic local
realism” so as to exclude macroscopic changes only, as opposed to all sizes of
change, to the system at 4. Macroscopic local realism is therefore a weaker, less
restrictive assumption than local realism itself. Its rejection is therefore a stronger
statement than the rejection of local realism.

Our definition of “macroscopic local realism” differs from that which is suggestive
from some earlier works [4]. This previous work has shown a violation of Bell
inequalities for higher spin states, or many-particle states, indicating a failure of
local realism in some sense, for macroscopic systems. However, in these situations
measurements are always assumed to have maximum resolution, so that the spin
values (or photon numbers) are clearly distinguished. There is no evidence of “macro-
scopic local realism,” as we have defined it, failing here, since one is detecting
microscopic changes to results of measurements. In an experiment showing a failure
of “macroscopic local realism” it would only be necessary to perform intrinsically
macroscopic measurements, where the uncertainty of measurement is macroscopic.

The second purpose of this paper is to review a version [5,6] of the EPR
argument which applies to an experiment which is, by our criteria, intrinsically
macroscopic. In their original argument EPR use the premise of local realism right
down to the most microscopic level to conclude that quantum mechanics is incomplete.
As explained above this local realism has now been invalidated by Bell’s theorem
and associated experiments. The implication of the new version of the EPR
argument presented here is that the EPR argument may be carried through using
only the weaker premise of “macroscopic local realism.” Thus we either reject the
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validity of this weaker premise of “macroscopic local realism,” or conclude that
quantum mechanics is incomplete. This new version of the EPR argument gives us
strong motivation for examining the validity of “macroscopic local realism.”

The application of the premises of locality and realism has never been shown to
fail in experiments intrinsically macroscopic. “Macroscopic local realism,” as we
define it in this paper, has therefore never been shown to fail experimentally. Nor
indeed, to our knowledge, has the compatibility of this “macroscopic local realism”
with quantum mechanics ever been established clearly in any theoretical sense.
A common, but perhaps not majority, view would be that quantum mechanics must
be compatible with local realism in the true macroscopic limit.

Yet as pointed out by Schrodinger [7], quantum mechanics can predict the
existence of quantum superpositions of states macroscopically distinct (“Schrodinger-
cat” states). Quantum mechanics also predicts the existence of entangled superpositions
of states macroscopically distinct. Such states are the logical macroscopic extension
of the microscopic entangled quantum superposition states which are incompatible
with local realism at the microscopic level, as shown by Bell’s theorem. It would
seem to be a reasonable hypothesis then that such macroscopic entangled quantum
superpositions would give a contradiction with “macroscopic local realism.” The
third step taken in this paper is to outline a procedure for examining the compatibility
of “macroscopic local realism” with certain quadrature phase amplitude and photon
number measurements performed on a different types of quantum superpositions of
macroscopically distinct states.

2. MICROSCOPIC “ELEMENTS OF REALITY” AND THE
EINSTEIN-PODOLSKY-ROSEN ARGUMENT

We begin by outlining the meaning of the premise “local realism,” as introduced
by EPR [1]. First, “locality” (or “no action-at-a-distance”) implies that a measure-
ment performed in a spatial region B cannot immediately influence events occurring
in a second region A, spatially separated from B. A measurement performed at B
cannot be the cause of, or in any way influence, the result of a measurement simulta-
neously performed at 4. Second, the premise of “realism” is sufficient to imply the
following: If one can predict with certainty the result of a measurement made on
a system, without in any way disturbing that system, then the result of the measure-
ment is a predetermined property of the system. Finstein, Podolsky, and Rosen
called such predetermined properties “elements of reality.”

To formulate the EPR argument one considers two correlated, spatially separated
systems 4 and B. In the original formulation [1] given by Finstein, Podolsky, and
Rosen in 1935, the correlated system consists of two spatially separated particles
which are correlated both in position and in momentum. Such correlated systems
are predicted by quantum mechanics. One can infer the result of the measurement
of the position of the particle at 4 by performing a simultaneous measurement (of
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position) on the particle at B. Now the “locality” assumption tells us that the
measurement at B could not have disturbed the system at 4. Hence, EPR reason,
because one can predict precisely the result of the measurement of position of
particle 4 without disturbing the system, “realism” implies that the position of the
particle 4 is a predetermined “element of reality.” We will denote this “element of
reality” (for the particle A’s position) by x,. Now x, is a real number and gives
the value of the result of a measurement of position of particle 4. The x, is a
property of the system (the particle) at 4 and has an existence which is independent
of whether or not a measurement at 4 actually takes place.

We emphasize that the existence of x, as an intrinsic property (an “element of
reality”) of the system at A has been concluded only by use of the combined
premises of “locality” and “realism.” We refer to the two premises combined as
“local realism.” Because the momenta of the particles at 4 and B are also perfectly
correlated, one can apply similar reasoning to conclude that “local realism” implies
the existence of a predetermined momentum for particle 4. This “element of reality”
is again a real number which gives the result of a measurement of momentum, if
it is performed. We denote this “element of reality” by p ,.

The assumption of “local realism” has allowed us to conclude, for this correlated
system, the simultaneous existence of two “elements of reality,” the real numbers x ,
and p,. The numbers x, and p, give respectively the result of a measurement of
position or momentum of a single particle, if performed. This picture, of predeter-
mined values for position and momentum, is not contained in a quantum description
of the system. In quantum mechanics the ultimate specification of a system is given by
the wave function. No quantum formulation specifies the existence of two classical
numbers which simultaneously describe at a given time ¢, with absolute precision, the
results of a measurement of position or momentum, if performed. The specification of
the two “elements of reality” goes beyond a quantum description. The conclusion of
Einstein, Podolsky, and Rosen was that, based on the real existence of the correlated
system and the assumption of “local realism,” quantum mechanics is incomplete. To
date the quantum prediction of the existence of the appropriately correlated particles
has not been demonstrated experimentally. An essentially equivalent version [ 8 ] of the
EPR argument pertaining to two spatially separated fields has been experimentally
achieved however by Ou et al. [6].

Now it is important not to misunderstand the conclusions of the EPR argument.
There is no claim that quantum mechanics is wrong in its statement of the uncer-
tainty relation or in any of its predictions. Quite the reverse. A series of measurements
performed over an ensemble of such systems will give a determination of Ax and
a determination of a Ap which will confirm the uncertainty principle. As we have
no scheme to physically measure simultaneously both the position and momentum
of a single particle to the required precision, one cannot test directly the existence
of the precisely defined x'? and p'?, where the superscript refers to an individual
member of the ensemble.

In the original EPR argument as outlined above the “elements of reality” x , and
p 4 represent hidden variables for the simultaneous position and momentum of a
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single particle. These variables are specified precisely. They represent the precise
value for the result of a perfectly accurate measurement. Now in any real measurement
there will be a limit to the accuracy to which the measurement can be performed,
and the measured correlation between the particles 4 and B may not be perfect for
this and other reasons. One may not be able to predict, based on results at B, the
results of position and momentum measurements at 4 with absolute certainty, but
only to precisions given by +A4x, and +4p,, respectively. Let us suppose for
simplicity of argument that the errors +A4x, and +4p, in the predictions are
uniform across all values of x, and p ,. In carrying the EPR argument through, one
can only deduce the existence of “elements of reality” for position and momentum
which have associated indeterminacies +Ax, and +4p ,, respectively. In order to
make the EPR claim (based on local realism) that quantum mechanics is incomplete
in its description of this particle, one requires the values for the two “elements of
reality” (describing the predetermined position and momentum of the single particle)
to be specified to x,+4x, and p,+ Ap,, where Ax, Ap , <h/2. Because of the
microscopic nature of the uncertainty limit, we make the claim that at least one of
the “elements of reality” x ,, p, needs to be specified microscopically, meaning that
at least one of the 4x, or 4p, is microscopic. This requirement puts a condition
on the accuracy needed for the measurements of position and momentum to have
the situation envisaged by EPR. In essence we are considering a situation where the
measurements are sufficiently accurate so as to enable the most microscopic deter-
mination of position (or momentum).

Bohm [9] presented a version of the EPR argument in which one considers two
spatially separated spin-half particles, at locations 4 and B, respectively. A correla-
tion between the particles means that one can instantly infer the result of the measure-
ment of the spin component S? of the particle at 4 by performing a measurement on
the particle at B. Alternatively, one can infer the result of a measurement of the spin
component S ;‘ of the particle at 4 by performing a different measurement on the
particle at B. In this case the result of the spin measurement will be either +1/2
or —1/2.

Following along the lines of EPR, the premise of “local realism” in this case
allows us to conclude that the two x and y spin components of particle 4 are
predetermined. Here each “element of reality,” s? and sfj say, takes on one of two
values, +1/2 or —1/2, representing the two possible states, spin “up” and spin
“down,” of the particle. One can follow along the lines of the original EPR
argument to deduce that, with the assumptions of local realism, quantum mechanics
gives an incomplete description. The distinction between spin “up” and spin “down”
for a single spin-half particle is a microscopic one. The “element of reality” s¢ must
be defined with sufficient precision, so that this distinction is made. Measurements
made must be correspondingly accurate to enable the required correlation between
the spin components at 4 and B to be established.

In the hidden variable picture, the “element of reality” s? say takes on either 1/2
or —1/2, this value corresponding to the result of the S measurement should it be
performed. The concept of a quantum superposition state, where the system must
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be thought of as being in both states +1/2 and —1/2 until the S? measurement is
performed, is ruled out.

3. “MICROSCOPIC LOCAL REALISM” FAILS:
BELL’S THEOREM

It is important to realise that the existence of the predetermined “elements of
reality” is implied by the assumption, made in 1935 by EPR, of “local realism.” The
original work in 1966 of Bell, and subsequent work by Bell and others [2], acts to
question this assumption, showing that “local realism” could not be (as EPR had
apparently supposed) compatible with quantum mechanics.

It is important to understand the difference between the EPR argument and Bell’s
theorem. The EPR argument assumes “local realism” and shows that, provided certain
correlated states exist, quantum mechanics is incomplete. Thus, if one can
experimentally demonstrate the existence of the correlations, we conclude either
that “local realism” is incorrect (in which case the EPR argument cannot be
followed through) or that quantum mechanics is incomplete.

Bell’s theorem, on the other hand, concludes that “local realism” cannot be com-
patible with the predictions of certain ideal quantum superposition states. If these
states can be experimentally realised then, one must conclude that “local realism”
is incorrect. Because it tests “local realism” outright, the conclusions of Bell’s
theorem are more powerful than those of EPR.

Bell’s theorem relates to the Bohm gedanken experiment which is microscopic. It
is our objective to demonstrate that this implies the rejection of local realism at a
microscopic level and that more macroscopic levels of local realism have not been
tested. To ensure clarity of our arguments, we revise Bell’s result as applied to the
bosonic state we will later use.

We consider the following entangled quantum superposition state

|w>=k<a1b1 +a'b') (0> 10>. (3.1)
Here a, and b, are boson operators for two pairs of photon fields; the @, and
b, fields are spatially separated. In this case we have one photon generated in the
a fields and one generated in the b fields. One can produce, using beamsplitters or
polarisers, transformed fields ¢ , and 4, at the locations 4 and B, respectively (see
Fig. 1), where

c,=a,cosl+a_sin0
c_=—a,sinf0+a_cosl

d,=b,cos¢+b_sing
d_=—b,sind+b_cosg.
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Fig. 1. Schematic diagram of the Bell experiment using photons. Measurements are performed on
two spatially separated fields at A and B, respectively. The 6 represents the measurement choice at 4,
while ¢ represents the measurement choice at B. Each measurement gives one of two outcomes, a photon
at the + position or at the — position.

d.

One can define the following Schwinger operators which make clear the correspondence
of this bosonic state to the spin-1/2 formulation:

S40)=(c" e, —ct e )2

. . (3.3)
S%¢)=(d",d, —d"d_))2.

These operators are measured by photon detectors at the locations 4 and B, placed

behind the beamsplitters/polarisers used to produce the transformation to the

outgoing fields ¢, and d,. The photodetectors determine the photon numbers

¢ ¢, and d, d, . The outcome for each of the photon numbers ¢, ¢, and d* d,

is 0 or 1. The result 1 implies S7(0) = 1/2, while the result 0 implies S#(0)= —1/2.

We note that each measurement at 4 corresponds to a certain choice of parameter 6.

Similarly a measurement at B corresponds to a certain choice of ¢. For example
if =0, one measures

SH0)=(ata,—a" a_)2 (3.4)

which corresponds to the z-spin component in the Schwinger formalism. We
introduce an abbreviation of notation, writing S7(0) as Sj, and S%(¢) as S;.

The state |y > predicts a correlation for the outcomes of the S#(#) and SZ(¢ =0)
measurements. The correlation for arbitrary 6 =¢ is most easily seen by rewriting
the state [ in terms of the transformed fields ¢ , and d, , where 0 = ¢. A correla-
tion between the results ¢”, ¢, and d¥ d_ is apparent, a result 0 (or 1) for ¢’ ¢,
will imply 0 (or 1) for d¥, d_ , respectively.

The correlation given by the state i) is that required for the EPR—Bohm situation.
A measurement of S%(60) (the choice of ¢ = ) allows prediction of the precise value
(1/2 or —1/2) for the result of measurement S#(6) performed simultaneously on the
second particle at 4. Following the EPR argument through, the assumption of
“local realism” implies that the spin components S7(6) for particle 4 are predetermined.
We will denote these predetermined quantities (the “elements of reality”) by the
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symbol s; . This s; always takes on one of the two values, +1/2 or —1/2. Similarly,
“local realism” implies the existence of “elements of reality” s{j for the spin components
of the particle at B. Since the particle 4 will always be in one of the two states s; = 1/2
or sj = —1/2, and the particle at B will always be in one of the two states sjf =12
or s; = —1/2, we can introduce a joint probability distribution p(s, s;) that the
system of two particles has “elements of reality” which take on the values s; and
s; simultaneously. In this case simultaneous measurements of S and Sy will give
the results s and sJ, respectively. The whole set of “elements of reality” s; and s
form a set of “hidden variables” which can be attributed to the two-particle system
at a given time. Common notation symbolises the complete set of hidden variables
by A, and the underlying joint probability distribution p(s;, sg), giving the proba-
bility for a certain hidden variable s, 57 state for the system, becomes p(1) = p(s , 53).

Now we have been able to conclude, assuming “local realism,” that the system
is always in one of the hidden variable states given by a choice of values for the A
which in this case correspond to the “elements of reality” s; and 5. For each such
state / there is a probability p< (0, 1) that the result of an S; measurement will be
“up.” Similarly for each state 4 there is a probability p” (¢, 1) that the result of an
S measurement will be “up.”

To establish Bell’s result, one considers joint measurements (Fig. 1), where the
spin component S; and the spin component Sf; are measured at the spatially
separated locations 4 and B, respectively. A joint measurement will give one of four
outcomes, 1/2 or —1/2 for each particle. By performing many such measurements
over an ensemble, one can experimentally determine the following: P4” (0, ¢) the
probability of obtaining + 1/2 for particle 4 and + 1,2 for particle B upon simultaneous
measurement of S and S7: P7 (6) the marginal probability for obtaining the result
+1/2 upon measurement of S ; and P%(¢) the marginal probability of obtaining
the result + 1/2 upon measurement of ij . In the “element of reality” picture based
on the premise of local realism, the value obtained for a measurement (S, say) is
directly given by the value of the “element of reality” (s ). Thus the probability of
obtaining “up” for S; is expressible as

PA(O)= [ p(2) p(6, 2) di. (35)
The probability of obtaining “up” for S7 is
PE(9) = p(2) 29, 2) d2. (3.6)

The joint probability for obtaining “up” for both of two simultaneous measurements
Sy and S} is

PA2.(0,¢)= [ p(2) p(0,2) (4, 2) di. (3.7)
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Here 0 and ¢ determine which component of spin is measured at the locations A4
and B, respectively. The “element of reality” s; , describing the spin component of
the particle at 4, and hence, the result of the S; measurement, has an existence and
value (1/2 or —1/2) which is independent of the value of ¢, the spin component the
experimenter at B chooses to measure. This independence of p% (¢, 1) on 6 and
(0, 2) on ¢ follows from the locality assumption. The measurement made at B
(S(’j) cannot instantaneously influence the system, or the “elements of reality,” at A.

It is well known that the Bell-Clauser—-Horne inequality [2] can be derived from
the results (3.5)—(3.7), which follow from the “element of reality” picture concluded
on the basis of “local realism.” We have the following which follows directly from
0<p™(6,4), p"(9. A)<1:

_PA(0.)— PA(0,¢) + PAE(0, )+ PA5(0, ¢)
PO+ PE ()

B <l (3.8)

The quantum prediction for the state |y ) is

PE (0, ¢) =3 cos*(0 — ¢)

+

PO =PT(d)=3.

The choice ¢' — ' =0 —p=¢ — 0 =7/8, ¢’ — 0 = 37/8 violates the inequality, indicating
that the predictions of the quantum superposition are not compatible with the
assumptions of “local realism” on which the inequality is based.

Experiments by Aspect et al. and others [ 3] have succeeded in demonstrating a
violation of the inequality, or rather one closely related to it, which accounts for a
reduced correlation due to poor detection inefficiencies. From this it is generally
concluded that local realism fails.

Now we come to the point of this paper. So far rejection of local realism is in a
microscopic sense only. This requires careful explanation.

The inequality (3.8) is derived using the assumption of “local realism.” “Locality”
states that the measurements made at B cannot instantaneously disturb the system
at A at all. In the Bohm—EPR case, one uses “local realism” to assign to the system
an “element of reality” which can be one of two values, representing states of the
system which are microscopically distinct. The locality assumption is being used at
a level sufficient to ensure that measurements made at a system B cannot cause to
a second system A, spatially separated from B, even a microscopic change sufficient
to change the result of measurement from 1/2 to —1/2. In the case where we have
perfect correlation, local realism is being used to imply “elements of reality” with
a spin 1/2 or spin —1/2 value, so that the system is in one state or the other, thus
ruling out the possibility of a quantum superposition of two such states, which here
are microscopically distinct. Our aim is to define a weaker level of local realism, a
“macroscopic local realism,” which is sufficiently strong to rule out quantum super-
positions of states macroscopically distinct, but not superpositions of states
microscopically distinct.
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4. MACROSCOPIC LOCAL REALISM: HOW TO DEFINE IT

We begin by introducing a definition for a “macroscopic experiment.” We define
a macroscopic experiment to be one in which all relevant measurements are made
with an uncertainty 4 which is itself macroscopic. Our claim would be that an
experiment in which position is measured to, say, an accuracy of 10 ~'% is a microscopic,
not a macroscopic, experiment. An experiment in which position is measured to
plus or minus a few centimetres would be classified as macroscopic. Such macro-
scopic experiments are normally viewed as behaving according to classical laws and
the premise of local realism we expect to appear to hold in these experiments.

Let us examine more closely the meaning of “local realism” in the context of such
macroscopic experiments. Local realism could be used in these macroscopic situa-
tions to assign “elements of reality” to the system. In this case, however, because of
the macroscopic uncertainty associated with measurements, the “elements of reality”
are also intrinsically macroscopic, in the sense that they have a macroscopic uncer-
tainty associated with them. They cannot be precisely, or microscopically, specified
because the macroscopic nature of the measurement process would not permit
sufficient correlation in an EPR-type situation. The “elements of reality” attributed
to the system in this macroscopic situation would, being themselves intrinsically
macroscopic, represent some “macroscopic property” of the system. In a classical-
like theory based on “local realism” the system is specified by these properties
which are predetermined, having an existence independent of a possible measure-
ment process. In this case because the measurement, and the properties which the
measurement aim to determine, are intrinsically macroscopic, it is a weaker form of
locality (a “macroscopic locality”) that is assumed to hold in describing this
system. Likewise it is only this weaker form of locality that could be tested
experimentally in such a situation. In assuming locality here one is really making
the following statement. “Macroscopic locality” states that measurements made at
a location B cannot immediately influence (macroscopic) measurements made of
macroscopic properties of a system at a location A, spatially separated from B. We
are ruling out macroscopic changes to a system as a result of a causally separated
event, but we are saying nothing about microscopic changes. Such microscopic
changes would not be measurable, falling well within our experimental uncertainty.
Now the general premise of “locality” is to rule out all changes, both macro-
scopic and microscopic, and hence, our “macroscopic locality” is a much weaker
assumption.

We may consider a situation where a correlation exists between two spatially
separated systems. Let us suppose the correlation is between the positions of two
particles, as in the original EPR experiment. If we consider a macroscopic experi-
ment, we will be determining the position only to an accuracy given by + A4, where
A itself is macroscopic, say a centimetre. The correlation then is only measurable
to this accuracy. The positions of the two particles are correlated in that position
x for one implies x for the other, but x is determined at best only to a precision
given by the order +4. If we apply the EPR reasoning to this situation then, what
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can we conclude about the “elements of reality” and is the premise “local realism”
needed in its entirety here? The logic of the EPR reasoning follows as in the original
case, where position was defined and measurable to unlimited accuracy. One can
predict the result of a measurement of the particle A’s position by performing a
measurement on particle B. The position of particle 4 is determined to within a
range of order plus or minus a centimetre. Locality implies that the measurement
performed at location B could not have influenced system A. Here we amend the
argument. We state that “macroscopic locality” implies that the measurement at B
could not have influenced in a macroscopic way the system at 4. We need only use
the premise of “macroscopic locality,” as opposed to “locality” in its entirety,
because we cannot measure microscopic changes to the results of measurements.
Any measurable change in the result of a measurement in this experiment must be
macroscopic. We now use the EPR premise of realism. Because the system A4 has
not been disturbed, we conclude the existence of a predetermined position for
particle A, but the “element of reality” is specified only to the precision of order + 4
to which it can be inferred by the measurement made at B. We denote this “element
of reality” with its associated uncertainty by x + 4. Here we have a view of a
physical system specified by predetermined properties (call them “elements of
reality” or “hidden variables”), but these elements of reality are specified only at a
macroscopic level. This is a realistic view at a macroscopic level, something we
would call “macroscopic realism.” The combined premises of locality and realism
used in this macroscopic example of the EPR situation we call “macroscopic local
realism.”

The above discussion attempts to give a general meaning to the term “macro-
scopic local realism.” We also wish to construct a more specific meaning in terms
of one of its consequences. Consider the original EPR argument. The result of a
measurement of position of a particle at 4 can be inferred (to within an error of
+4 which might be of any order depending on the experiment), by performing a
measurement on a second particle at B spatially separated from A. Since any real
physical situation will always have an error associated with its measurements, we
have included in the statement the error + 4 in the inferred value for position. Let
us denote the inferred position by x + 4. “Local realism” allows us to conclude that
the position of particle A was predetermined. It is concluded, with “local realism,”
that the particle 4 did actually have this position x + 4, at the time of the measure-
ment at B. “Local realism” establishes that the particle 4 was in a state corresponding
to the inferred value x + 4 of position, immediately prior to the measurement at B
allowing the determination. Here we are meaning to use “local realism” in its
entirety, although with 4 macroscopic this may not ever be necessary. We now
claim that the following is certainly a true consequence, pertaining to the above
situation, of “macroscopic local realism.” “Macroscopic local realism” is sufficient
to establish that the particle 4 could not have been, immediately prior to the
measurement made at B, in a state macroscopically different to that implied by the
measurement at B. This consequence of “macroscopic local realism” has been used
recently [5] to point out the macroscopic implications of the recent experimental
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achievement [ 6] of the EPR correlations. Macroscopic local realism does not, as
local realism in its entirety does, rule out the possibility that the system 4 was in
a state microscopically close to that implied by the measurement at B. We see that
we are not ruling out the possibility that the measurement at B caused a microscopic
change to the description of position of particle A. Macroscopic changes however are
ruled out. This is in accordance with our earlier definition of “macroscopic locality.”
Macroscopic local realism assigns to the system A an “element of reality” given by
x+ 4., where 4 is 4+ and J can be microscopic or mesoscopic in size, but not
macroscopic. This is, in contrast to local realism in its entirety, which simply
assigns to A4 the “element of reality” x + 4.

We note that where 4, the error in our inferred value for the position of particle A4,
is zero and the correlation is perfect, local realism in its entirety puts the particle
A in a state of definite position in the most microscopic sense. Here “local realism”
rules out the possibility of the particle being in a “quantum superposition” (where
the particle must be considered to be in both states until the measurement is performed)
of position states, even states which are microscopically distinct. Macroscopic local
realism cannot do this. This weaker premise is only sufficient to determine, by
specifying “elements of reality,” the particle’s position to +4 ., where 4, can be any
microscopic or mesoscopic value, but it cannot be macroscopic. Macroscopic local
realism is sufficient, however, to rule out the possibility that the particle was in a
“quantum superposition” of position states macroscopically distinct.

Let us examine more closely situations of macroscopic experiments where A4, the
error in our inferred value for the result of the measurement at 4, must itself be
macroscopic. Local realism is used to establish that the particle 4 was in a state
corresponding to the inferred value x + A of position, immediately prior to the
measurement at B. “Local realism” in its entirety puts the particle in a state with
an “element of reality” x + 4 for position. If 4 is itself macroscopic, however, our
original claim was that “local realism” was not needed in its entirety to establish
that particle 4 had predetermined position x + 4. In this context where 4 is macro-
scopic, so that x+ 4 is an “element of reality” which is intrinsically macroscopic,
we would claim that a state or description or “clement of reality” is only truly
distinguishable in a practical sense in a macroscopic experiment if it is macroscopi-
cally different to the “element of reality x + 4.” In this way it suffices to replace
“local realism” with “macroscopic local realism” in the above statement of this
paragraph. To say the state is different to x + 4, where 4 is macroscopic, is to say
it is “macroscopically different.”

The concept of “macroscopic local realism,” and the distinction between “macro-
scopic local realism” and “local realism” in its entirety, is perhaps most easily
developed initially by considering experimental circumstances where the results of
measurements are discrete. In the Bell-inequality and Bohm—EPR experiments one
has two spatially separated spin-1/2 systems. Let us simplify by calling the spin 1/2
result +1, and the spin —1/2 result —1. Let us suppose there is a perfect correla-
tion (as, for example, is the case with state (3.1)) for 8 =¢. The premise of local
realism in this case of perfect correlation allows us to deduce the existence of two
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“elements of reality,” one for each subsystem 4 and B. We label these “elements of
reality” s and s, , where these variables always take on one of the two values +1
and —1, corresponding to the two possible results (+1 or —1) for the
measurements. In this “local realism” description, therefore, both particles exist in
a state corresponding either to the “element of reality” being + 1, or to the “element
of reality” being —1. The p7 (0, A) used in Section 3 (in the derivation of the Bell
inequality implied by this “local realism” description) is the probability that the
“element of reality” s; associated with measurement 0 is + 1, as opposed to —1.
One is distinguishing between the two possible states, +1 and —1, claiming that
the system must be in one or the other.

In the case where the states +1 and —1 are microscopically distinct, one needs
to use the premise of “local realism” in its entirety, right down to a microscopic
level, if we are to establish the claim that the system is in one or the other of the
+1 and —1 states at all times. The two values for the “elements of reality” implied
by the premise are microscopically distinguishable. The measurements made on the
system distinguish at this microscopic level. Locality in this case is being used to
exclude microscopic changes (e.g., +1 to —1).

Let us now consider a hypothetical situation where the states +1 and —1 are
macroscopically distinct. We assume that the correlation between the results of
measurements is still perfect, so that one can use local realism to assign “elements
of reality,” which have possible values +1 and —1, to each subsystem as before.
Here, though, the two possible values for the “elements of reality” represent states
of the system which are macroscopically distinct. The two possible results of the
measurement are able to be distinguished, and the correlation therefore is established,
in a suitable macroscopic experiment where the precision of measurement is itself
macroscopic. In this case, therefore, one does not need to use the premise of “local
realism” in its entirety to establish the existence of the “elements of reality.” It is
sufficient to use the weaker premise of “macroscopic local realism.” Macroscopic
local realism claims that, if a result at B implies a result of +1 at A4, the system at
A could not have been in a state macroscopically different to that implied. Since
here there are only two relevant states +1 and —1, which are macroscopically
distinct, the implication of “macroscopic local realism” is sufficient to establish that
the system was in state + 1. In this case it is implicit that the “elements of reality”
themselves need only be defined to a precision giving an uncertainty which is
macroscopic. In a macroscopic experiment, and with the usage of macroscopic local
realism, the existence of “elements of reality” microscopically defined cannot be
established. We note that the p7 (6, 1) used in the derivation of the Bell inequality
in Section 3 would now refer to the probability that the system is in +1, as
opposed to —1, but where +1 and —1 are states macroscopically distinct. The
premise of “macroscopic local realism” implies that the system must at all times be
in one or the other of these two states, +1 and —1, which are macroscopically
distinct. This is the premise which is therefore used to derive the Bell inequality in
such a circumstance and is the premise which would be invalidated in the event that
such a Bell inequality would be violated. The possibility of the system being in a
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quantum superposition of the two states (+1 and —1) which are macroscopically
distinct [ 7] (such a state is often called a “Schrodinger-cat” state) is ruled out by
the premise of macroscopic local realism. We see that the real failure of macroscopic
local realism would be an astonishing fact, as astonishing as the real existence of
a Schrodinger-cat superposition state.

In fact insight into the concept of “macroscopic local realism” is most readily
gained by consideration of the Schrodinger-cat example. Consider two systems, at
A and B, each of which can be found to be in one of two states, macroscopically
distinct. Here |4 ) , and |D) , refer to two macroscopically distinct (such as a “cat
alive” and a “cat dead”) states of a system at a location 4. Similarly |4) ; and
|D) 5 represent two macroscopically distinct states of a second system, spatially
separated from A, at a location B. We consider a measurement which will distinguish
the state |4) , from |D) ,. Suppose such measurements performed on 4 and B will
give correlated results, so that a result “4” or “D” at location 4 implies the same
result, “4” or “D,” at location B. Such macroscopically correlated systems are not
difficult to find. For example, in our Schrodinger-cat example, the dead or alive
state of the cat may be correlated with the number of bullets in the gun used to kill
the cat. Such macroscopically correlated systems however are (usually) described
quantum mechanically by a diagonal density operator

p=3{14> 4145 5 ;A5 {A|+|D) 4D 5 D] {DI}. (4.1)

This quantum description is equivalent to a simple classical probabilistic interpreta-
tion, where the system is always in, with equal probability, one of the two states
represented quantum mechanically by |4) , |4z and |D) , |D) 5. “Macroscopic
local realism” will hold for such classical-like situations. The EPR argument applied
to the system of cat-gun would be follows. We can determine the state of the cat
at A, whether it is dead or alive, by observing at B the number of bullets in the gun.
The act of determining the number of bullets cannot affect in a macroscopic way
the state of the cat. (This is the assumption of macroscopic local realism). Therefore
EPR conclude, using macroscopic local realism, that the cat is always in one of the
two states (alive or dead). If we can infer from the number of bullets that the cat
is dead, macroscopic local realism claims that the cat cannot be alive, since it
cannot be macroscopically different to the state inferred. In this context of a truly
macroscopic system, the failure of macroscopic local realism would seem ridiculous.
The idea that the correlation between the measurements made on the gun and the
cat is due to the measurement of the gun actually causing an observable (and
therefore in the context of this experiment, macroscopic) change to the state of the
cat seems absurd.

The failure of local realism in the macroscopic way we have described here is
more difficult to accept than the failure of local realism at the microscopic level.
Macroscopic local realism is a weaker premise. Whether there exist quantum states
which do predict a failure of macroscopic local realism is not known and does not
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appear to have been previously investigated. An example of an extreme quantum
superposition state (an “entangled Schrodinger-cat” state) is

|¢>=k{|A>A|A>B+|D>A|D>B}. (42)
This is a “Schrodinger-cat state” in that the two states |4) , |[4> g and |D) ,|D>
are macroscopically distinct. It is also a state which is correlated in the macroscopic
way discussed in the paragraph above. The assumption of macroscopic local
realism is able to be used here to deduce that the systems 4 and B are both always
in one of two states, which we might like to call “|4)” or “|D).” This corresponds
to the “element of reality” taking on one of two values, the “alive” value or the
“dead” one. But this interpretation, that the cat and the gun are always in one of
the “alive” and “dead” descriptions, would seem to contradict the quantum inter-
pretation of the superposition nature of the state (4.2). It would seem likely then
that this state is incompatible with the premise of macroscopic local realism. This
will be discussed further in Sections 6 and 7.

5. MACROSCOPIC LOCAL REALISM REJECTED OR
AN INCOMPLETE QUANTUM MECHANICS?

In this section we review an argument [5] which gives urgency to the question
of the validity of macroscopic local realism. The EPR argument and conclusions are
shown to apply to a situation where the “clements of reality” are macroscopic. In
the example we consider “macroscopic local realism” is sufficient to imply that
quantum mechanics is incomplete.

We being by defining two noncommuting operators which correspond to quan-
tities measured [ 10] in a homodyne defection scheme (Fig.2) commonly used in
experiments detecting subshot noise (“squeezed”) radiation. We define

St=a,ai+ala
,A 1%2 142 . (5‘1)
S9 =(a,al—ala,)/i.

Here a;, al are the usual boson operators describing the field i. We will refer to the
field a, as the signal field, while a, is a very intense coherent (“local oscillator”)
field. The quantities S and S are measured when the local oscillator field is
combined with the signal field a, using a beam splitter. A variable phase shift 0 is
introduced, so that the two outputs of the beam splitter are written

C+r :(az‘}'aleim)/\/i

5.2
c,z(az—ale”"’)/\/i. (5-2)
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Fig. 2. Schematic diagram of the experimental arrangement used to give the new version of the EPR
paradox. Here 6 is a phase shift which can be chosen to give either a measurement of S7 or S;’, while
¢ is chosen to give either S% or Sf. The a, and b, represent strong local oscillator fields. Here |y)
denotes a quantum state giving correlations of the type discussed in the text.

Direct detection, using two photodetectors, gives two photocurrents proportional
to the intensities ¢¥, ¢, and ¢' ¢_, respectively. Subtraction of the two photocurrents
gives a current directly proportional to I,=c" ¢, —c' ¢_. It is straightforward to
verify that in fact this final photon number difference is

Ip=clic,—c" c_=8,=dala,e " +ayale”. (5.3)

Choice of 6 =0 will give a measurement of S%, while the choice of 0 =r/2 will give
a measurement of S

The commutation relations [a;, a/] =1 imply the uncertainty relation for the
operators S and S;‘,

ASTASA =] <S4 >, (5.4)

where S?=ala,—ala,. This is recognised directly once we recognise that S and
S;‘ are spin operators in the Schwinger formulation.

In the limit corresponding to the homodyne detection measurement, the field a,
is very intense, much more intense than the signal field «,, and is called the “local
oscillator” field. In this case we may replace a, by the classical amplitude E (assumed
real) and write {ala,) = E* Then we may simplify

S?=E(a,+a})=EX?
) oo p (5.5)
ST =E(a,—a))/i=EX;

AS? AS4 > E?. (5.6)

In this case the measurements of S7 and S corresponds to measurements of the
amplified signal quadrature phase amplitudes X and X7, respectively. The effect
of the local oscillator E is to introduce the amplification factor E.
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Now it is possible (Fig. 2) to have a second pair of fields b,, b, (a second signal
and second local oscillator field) which are spatially separated from but correlated
with the first pair a,, a, [8, 11]. We define the Schwinger operators for the pair
b,, b, as

SB=b,bl+b1b,

» c (5.7)
Sy =(bby—bib,)/i.
These operators are measurable using a second balanced homodyne detection apparatus.
Importantly this corresponds to a second phase shift, which we call ¢, which deter-
mines which measurement, S7 or S7, is made at the location B.
The nondegenerate parametric amplifier is an example [8] of a system which
generates correlated signal fields a, and b,, such that S¢ is correlated with S, and
S+ is correlated with S¥. In fact an ideal parametric amplifier, with Hamiltonian

H=ihy(—a,b, +alb?) (5.8)

is predicted by quantum mechanics to give a maximum correlation, so that
measurement of S will enable precise determination of the result of a measurement
of S¢. Similarly, measurement of S7 will enable precise determination of the result
of a measurement of S;. More likely in a real experimental situation, the correlation
will not be quite perfect. This means that we cannot determine, from the measurement
of S%, the result of a measurement of S precisely. We have some error in our
determination. We denote the magnitude of this error by 4,. It may be measured
by performing a sequence of simultaneous measurements of S¢ and S? and by
evaluating for each member of the sequence the difference J between the inferred
value for S¢ (based on the result of S?) and the real value for the result of SZ. By
performing many measurements, a probability distribution P(J) for the J is built
up. We assume that the inference value is chosen so that the mean of J is zero
({0> =0). The distribution will have a finite standard deviation, however, which we
call 4,. Similarly, we denote the magnitude of the error in the inference of S+,
given a measurement of Sf , by 4,. An experiment by Ou ef al. [6], using a non-
degenerate parametric oscillator which gives correlations similar to those described
here, achieved 4,4, ~0.7E.

We are able to infer the value of either of two noncommuting observables of a
system A by performing measurements on a second spatially separated system at B.
We can infer the result for S? by measuring S”, at B. Alternatively we could infer
the result for ;' by measuring S¥ at B. This is precisely the situation of the EPR
argument discussed in Section 2. Assuming locality, one concludes that the value for
the result of the measurement S is predetermined. We denote this predetermined
“element of reality” by s7. Similarly, the value for S;‘ is also predetermined. Let us
denote it by s;‘. In the case where the inference for the measurements at A is not
perfect, our “elements of reality” are not precise values, but are variables defined



MACROSCOPIC LOCAL REALISM 69

with a probability distribution P(d). We can determine the probability that the
result for a measurement of S, say, is in a certain range, without disturbing the
system A. Thus, the value for S7 is still predetermined, but the “element of reality”
has an uncertainty associated with it. We may write such an “element of reality” for
S as s{ +4,. Similarly, the “element of reality” for S7' is s + 4,.

The assumption of “local realism” has implied for system A the simultaneous
existence of two “elements of reality,” 57 + 4, and s7' + 4,, which give the result of
an S?or § ;‘ measurement respectively, if performed. The result of the S¢ measure-
ment is specified to an accuracy corresponding to a standard deviation 4,, while
that of S7' is given to 4,. If

Ay < E? (5.9)

we have a description of system A4 which cannot be given by any quantum wavefunc-
tion, which can never specify these values to an accuracy exceeding 4S¢ 457 > E*.
In this way the assumption of “local realism” leads one to conclude that quantum
mechanics gives an incomplete description of this system.

As with the original EPR paradox and Bohm’s spin version of the paradox, we
might choose to disregard the possibility of drawing the conclusion that quantum
mechanics is incomplete, since the assumption of “local realism” is not valid. Bell’s
theorem and associated experiments have shown “local realism” to be wrong. Without
the validity of “local realism,” the EPR arguments concluding the simultaneous
existence of two “elements of reality” do not go through. However, there is an
important difference between all previous examples of the EPR paradox and the
version of the paradox given here. In this version, one can carry through the EPR
argument and conclusions, using only macroscopic measurements and defining
“elements of reality” which are intrinsically macroscopic. This means that the
weaker premise of “macroscopic local realism” (as opposed to local realism in its
entirety) is sufficient to imply that quantum mechanics is incomplete for this example.
Now the validity or otherwise of “macroscopic local realism” has not been established
or questioned. Certainly the rejection of macroscopic local realism is a much stronger
statement than the rejection of local realism at the microscopic level. Yet we will
show that according to this new version of the EPR argument, one draws the
conclusion that quantum mechanics is incomplete based only on the validity of
macroscopic local realism.

Why do we only need to assume “macroscopic local realism,” as opposed to
“local realism” in its entirety, in order to carry through the EPR argument for this
example? A crucial point is that the quantum limit of the uncertainty relation (5.4)
(or (5.6)) is macroscopic. Here E? is the photon number of the local oscillator field,
which in this case is macroscopic. This means that we are able to define “elements
of reality” for S¢ and S;‘ which have a macroscopic uncertainty 4, and 4,, respec-
tively, and still obtain the EPR criterion that 4,4, < E2 One does not require to
make microscopic measurements of S¢ and S, and S¥ and S7. Recalling that
the ¢, S2, S;‘ , Sf measurements are really photon number measurements, a
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microscopic measurement would be one in which the photon number is determined
precisely, down to plus or minus a very small number of photons. In the experimental
situation envisaged, E is very large and acts as an amplification factor, so that the actual
photon number ¢, ¢, —¢' ¢_, corresponding to the value of S¢ etc., is macroscopic.
The measurements made of S¢ etc. are macroscopic, in that they determine the
photon number S¢ to a macroscopic error only, although this error may be much
smaller than the actual value obtained for S¢. Because the measurements made are
intrinsically of a macroscopic nature, we are only able to infer the result of a S
measurement, by measuring S7, to an error 4, which is itself macroscopic.
Similarly, the error 4, involved in the prediction of the result of an S ;‘ measurement
will also be macroscopic. The “elements of reality” giving the predetermined values
for S¢ and S;‘ are defined only with macroscopic errors 4, and 4,. But as long
as 4,4, < E* we still arrive at the conclusion that quantum mechanics is incom-
plete.

In order to reach the conclusion that the “element of reality” exists defined to a
precision 4,, where 4, is macroscopic, it is sufficient to assume only macroscopic
local realism. The 4, is the precision to which we can predict a result for a measure-
ment on system A, given a result for a measurement at B. In supposing the “element
of reality” we need to assume that the measurement at B did not (instantaneously)
cause any change to 4. But because the “element of reality” is intrinsically macro-
scopic, we do not need to concern ourselves with microscopic changes. We simply
need to rule out macroscopic changes, and therefore we only need to assume
macroscopic local realism. According to our definition of macroscopic local realism,
ruling out macroscopic changes only due to measurement at B, the result of a measure-
ment at 4 cannot be macroscopically different from that implied by a measurement
at B. The system A4 could not have been, immediately prior to the measurements
at A and B, in a description macroscopically different to that implied by the
measurement at B.

In this situation, the “element of reality” and a result for a measurement will be
defined only macroscopically, in that the quantity S;, for example, will correspond
to a “bin” where the range of detected photon number [/, is a large number of
photons. This will be so because experimentally one could not resolve the photon
number sufficiently at the very high photon number levels impinging on the detector.
In this way the measurement of S, a discrete photon number measurement,
becomes a continuous measurement. One can only say that “elements of reality” (or
results of a measurement) are distinct in this context if they are macroscopically
distinct. Therefore, one can only apply the use of macroscopic local realism. In fact
because in order to get condition (5.9) to allow the EPR argument to go through,
we need only obtain 4, less than E? a macroscopic value, we have a situation
where “macroscopic local realism” need be applied only its loosest form. We can
allow system A to be in a state macroscopically different to that implied by measure-
ment at B, and thus increase the 4,, and still obtain the condition 4,4, < E2. This
is because E can be made arbitrarily large, and there exists a whole range of macro-
scopically different 4, ranging from 4, through to E.
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6. IS “MACROSCOPIC LOCAL REALISM” COMPATIBLE WITH
QUADRATURE PHASE MEASUREMENTS MADE ON A SUPERPOSITION
OF TWO MACROSCOPICALLY DISTINCT COHERENT STATES?

Compatibility of macroscopic local realism with the quantum superposition state
(4.2) would seem to be an open question. Here we consider the compatibility of
macroscopic local realism with quantum mechanics for measurements made on the
following macroscopic superposition state

V> = N{exp(il) o> 4 |B> s+ =) 4 | =B 5}, (6.1)

where N=2{[1+exp(—2 |x|*—2|B]*)]}"* and 0 is a phase factor. Here |a) , | 5
are coherent states for two spatially separated modes of the field. The modes are
assumed to be at locations 4 and B and are described by the usual boson operators
a,a’ and b, b7, respectively. We take o = f to be real. For a, f8 very large, the two states
|y 4 and | —a) , become orthogonal and macroscopically distinct. In this way we see
that the state (6.1) is a quantum superposition of two states macroscopically distinct.

We need a measurement which will act to signature the two states |o)> and | —a).
One can perform quadrature phase measurements by the homodyne detection
methods described above [ 10, 12]. These quadrature phase amplitudes (analogous
to position and momentum measurements) are given by

Xi{=a+d', XP=b+b",

Xg:a—.ai szb—bJr

l 1

(6.2)

The probability, let us denote it by P(X{ =x), of getting a result x upon a
“position” measurement X+ is given by [{x|y)>|% where |x) is a “position”
eigenstate. If the system is in the coherent state o) , | 5 the probability of getting
a result x upon measurement of X7 is a gaussian centred at ﬂ . If the system is
in the state [y)> this probability distribution, for large «, becomes two well-
separated gaussian peaks, centred at ﬁ o and —./2 a, respectively (Fig. 3). The
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Fig. 3. Plot of P(X{=x) versus x. Here a=f=2.
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distribution, let us call it P(X% = x), for a result x upon measurement of X% on | >
is identical. A measurement of position on systems 4 and B gives, with equal probabil-
ity, one of two possible sets of outcomes, corresponding to one of the gaussians. We will
label the result of each measurement to be —1 if x is negative, and + 1 if x is positive.

The results of these two measurements, let us call them S and S¥, determining
the sign of the position for each system 4 and B, respectively, are, for very large
o, perfectly correlated. A negative result for x at 4 always implies a negative result
for x at B. Similarly, a positive result at 4 implies a positive result at B. This
correlation is clear from the calculation of the joint probability distribution
P(X{=x, X?=y) for getting results x and y upon joint measurement of X' and
X%, This distribution depicts two gaussian clusters (Fig.4) centred at x=./2«,
y=/2aand x= —ﬁ o y= —ﬂ «, implying a conditional probability given by
P(St=+1/S{=+1)=1.

With this correlation the EPR reasoning, with the assumption of “local realism,”
will imply that the results of the S and S¥ measurements are predetermined. The
predetermined quantities (the “element of reality”) we call s{' and s¥, where each
of s{ and s% takes on one of the two values +1 and —1.

We note that in this situation one need only assume “macroscopic local realism”
to deduce the existence of the “elements of reality.” In order to distinguish between
the two outcomes (positive or negative) one does not need to use a “microscopic
measurement” in which the quadrature phase amplitude is determined to a precision
which is microscopic. For very large «, the amplitude x can be measured to within
A, (where 4, is macroscopic) of its true value, and one can still make the correct
assignment of sign to the outcome x. The two outcomes for x (positive or negative)
represent macroscopically distinct states. The correlation between the spatially
separated measurements still holds perfectly to enable the EPR reasoning to be
carried through.

The assumption then of “macroscopic local realism” allows us to deduce the
existence of two macroscopically distinct “elements of reality” (si'= +1 or —1, and
s¥=+1 or —1) for each subsystem 4 and B. In this picture, each subsystem is

Fig. 4. Schematic drawing, depicting the two well-separated gaussian clusters, of the joint distribution
P(X{=x, XT=y).
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always in the state +1 or the state —1. The correlation between measurements
S+ and S% implies that the system is actually in one of two correlated states
s?=s8= +1and s{= s%= —1 at all times. Since the probability of both outcomes
is equal, “macroscopic local realism” has enabled us to deduce that the ensemble
of such systems represented by (6.1) are in a 50:50 classical mixture of the two
correlated states.

At first glance the classical mixture description implied by macroscopic local
realism would appear incompatible with the quantum superposition state (6.1). It
may be possible to find sets of quadrature phase measurements which distinguish
between the two. It is known [12] that the superposition (6.1) is distinguishable
from the classical mixture

p=3{la> BBl Cal +[—a) [ =)< —pl { —al}, (6.3)

not by measurement of X, (both states give two gaussian peaks), but by measurements
of X,. The joint probability distribution P(X5 =x, X% = y), for getting a result x
for measurement of X% and y for a simultaneous measurement of X7, differs for the
superposition (6.1) and the mixture (6.3). The superposition state (6.1) will give a
distribution which exhibits interference fringes with a gaussian envelope [ 127, while
the mixture (6.3) gives a joint probability distribution of gaussian shape with no
fringes. Thus, we might expect to get some contradiction between macroscopic local
realism and the quantum prediction for (6.1) for quadrature phase measurements.

One can deduce quite generally, however, that such a contradiction for quadrature
phase amplitude measurements is not possible for situations where “macroscopically
distinct” is taken to mean, as it is in the above discussion, a large separation in the
quadrature phase amplitude phase space. First, we can consider situations which
give results always macroscopically distinct in this sense. Results of such an experiment
will be unchanged if one adds a microscopic vacuum noise term, corresponding to
a variance 4°x =1, to the quadrature phase amplitude measurement result x. Such
a noise is added at the final stages of the measurement process, and its size is
measured in terms of the error in the quadrature phase amplitude value inferred
from the measurement. It has been shown that the quantum predictions for such an
experiment is given by a Wigner function which is the original Wigner function
W(x*, p*, x® p®) of the quantum state (6.1), convoluted with the gaussian term
(1/47%) exp(—[x**+ p** + x® + p#]/2). Since it is well known that this new
Wigner function is always positive [13] and realising that the properties of the
Wigner function allow the moments of the quadrature phase amplitude measurements
to be expressed directly as integrals of phase space variables over this positive distribu-
tion, we see that the Wigner distribution can act as a local hidden variable theory
which gives all quantum predictions for these quadrature phase measurements.
Second, we can consider a macroscopic experiment, with continuous outcomes, by
our definitions so that there is noise of macroscopic size added to the quadrature
phase amplitude measurements. By the same reasoning, the incompatibility of local
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realism (macroscopic local realism) with quantum mechanics in such a macroscopic
experiment is not possible.

While we have excluded the possibility of an incompatibility of quantum mechanics
with macroscopic local realism for this situation where macroscopic is measured
with respect to the separation in quadrature phase amplitude phase space, we may
apply the reasoning of Section 5 to consider the homodyne measurement of quadrature
phase amplitudes as a photon number measurement involving the second local
oscillator field. In this case microscopic separations in phase space may correspond to
macroscopic separations in photon number, giving the potential for a contradiction
with macroscopic local realism even with results only microscopically separated in
phase space.

7. TESTS OF MACROSCOPIC LOCAL REALISM FOR
HIGHER SPIN QUANTUM STATES USING IMPRECISE
PHOTON NUMBER MEASUREMENTS

Our question is this: Is “macroscopic local realism” valid? If it is, the argument
outlined in Section 5 shows that we must accept a situation for which there is a
physical reality not described by a quantum wavefunction. That is, the validity of
macroscopic local realism would question our standard interpretation of quantum
mechanics. It is more likely, many would argue, that macroscopic local realism is
not correct. When then does it fail?

Here we give a proposal for Bell-inequality-type tests for different strengths, from
microscopic to macroscopic, of local realism. Our initial idea is to examine the
possibility of contradiction with these levels of local realism by looking at quantum
states [ 4] which are the most obvious macroscopic generalisation of the spin states
already shown to violate local realism at the microscopic level.

The higher spin state we consider is

1 N
|¢>=7N!(N+1)1/2(albl+a*_b*_) 10> 0. (7.1)

Here the a, , b, are boson operators for two pairs of fields, the a’s being spatially
separated from the b’s, as depicted in Fig. 5. One can transform the fields to
produce ¢, and d, fields as defined in Eq. (3.2). In the commonest physical exam-
ple of such a transformation, the @, and «_ represent orthogonally polarised
modes (along y and x axes) and the transformation to get outgoing fields ¢, c_
corresponds to the use of a polariser, the ¢ , ¢_ being orthogonal polarised modes
along axes )’ and x’ rotated an angle 6 to the original polariser axes. Such transfor-
mations can also be achieved with beam-splitters and phase-shifts using as inputs
a, ,a_ fields of different k-vectors [ 14]. Photodetectors can be used to determine
the photon numbers ¢', ¢,,c¢" ¢_,d", d,, and d7 d_. The possible outcomes for
each photon number measurement are 0, 1, ..., N in integer steps.
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Fig. 5. Diagram of the higher spin experiment with photons. Here we have N particles incident at
locations A and B, respectively. The 0 determines the measurement choice at A, while ¢ determines the
choice at B. The possible outcomes at each location are n=0, 1, ..., N. Each outcome is classified as + 1
or —1 as indicated in the text.

The state (7.1) predicts perfect correlation between the results for photon
numbers ¢’ ¢, and d¥ d, , if we choose 6 = ¢. This is readily seen if one rewrites
the wavefunction (7.1) in terms of the transformed operators ¢, c_,d_ ,d_. Thus,
for 0=¢, a result n for measurement of ¢’ ¢ will always correspond to a result
n for measurement of d', d | .

We denote the result of the photon number measurement as either +1 if n > N/2,
or —1 if n < N/2. Because of the correlation in photon number, the results (+1 or
—1) at A and B will also be correlated for 8 =¢. Hence, because 4 and B are
spatially separated, we are able to apply the EPR reasoning and, assuming local
realism, we deduce the existence of “elements of reality” for each subsystem A and
B. Let us denote the “element of reality” describing the result of the measurement
at 4 as x; and the “element of reality” describing the result of the measurement at
B as xg . The “elements of reality” always take on one of the two possible values,
+1or —1.

We now follow the approach of Bell and Clauser et al. as outlined in Section 3,
to investigate the predictions based on the existence of such “elements of reality.”
One defines the measurable probabilities: P7(0) is the marginal probability that the
outcome is +1 upon measurement of S; at 4; P%(¢) is the marginal probability
that the outcome is + 1 upon measurement of S at B; and the joint probability is
P4% (0, ¢) for obtaining + 1 for both outcomes of two simultaneous measurements
S¢ and S% at A4 and B, respectively. These are directly linked to the probabilities
that the system is in a state with the appropriate “element of reality” as given by
the relations (3.5) to (3.7). From these expressions one may derive the Bell-Clauser—
Horne inequality of the form (3.8).

Violation by quantum mechanics of this inequality implies incompatibility of
quantum mechanics with the premise of local realism on which the inequality is
based. In the case where the two states + 1 and — 1 are only microscopically distinct,
local realism right down to a microscopic level is being assumed in order to make
the claim that the system is actually in one state or the other at a given time. If the
states +1 and —1, however, are macroscopically distinct, then one needs only
assume macroscopic local realism to make the claim that the system is always in
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one state or the other. Violation of the Bell inequality in this case would be a much
stronger result than violation in the case where + 1 and — 1 are microscopically distinct.

The averages given in the expression (3.8) may be calculated for the state (7.1)
and the quantity B computed. Violations of the Bell inequality would imply an
incompatibility of quantum mechanics with local realism. To determine the degree
of “separateness” of the two states represented by +1 and —1, we would need to
examine the probability distributions for obtaining a photon number result upon
measurement of S for angles 0 which give a violation of the Bell inequality. In
general for states of the type (7.1) there will be a nonzero probability for obtaining
a photon number result which registers as state —1, but which is also micro-
scopically close to state —1. We conclude that the states are only microscopically
separated. Therefore at this point it seems that we would only be able to deduce
that the violation of the Bell inequality indicates incompatibility of quantum
mechanics with local realism at the one-photon, or most microscopic level.

However, it is clear that certain pairs of results for photon number giving +1
and —1 results respectively are separated by of order N photons, a separation
which can become macroscopic as N becomes larger. The quantum state (7.1)
contains both entangled superpositions of states which are microscopically distinct
and entangled superpositions of states which are macroscopically distinct for
large N. It would seem possible that at least some of the contradiction with local
realism is due to the macroscopic superpositions. We require a method to eliminate
the effect of the microscopic superpositions from any violation shown. This is in fact
automatically achieved by our requirement that a true violation of macroscopic
local realism is obtained only if it can be evidenced in a macroscopic experiment
which involves measurements where the errors are macroscopic.

To investigate further we require to model theoretically the process of what we
have defined to be a “macroscopic measurement” of photon number. This means
adding noise to the photon number results in a appropriate way. If violation of the
Bell inequality still shows, with an appropriate level of noise present, we would
conclude that the violation is due to incompatibility of quantum mechanics with
macroscopic (rather than microscopic) local realism. We assume our readout photon
number (let us call it m ) at 4 to be of the form m , =n, + noise(A), where n , is the
result of the measurement ¢’ ¢, of photon number as predicted by quantum
mechanics in the absence of noise, and noise(A4) is a random noise term of suitable
properties. Similarly the final readout photon number (let us call it my) at B is of the
form nz+ noise(B), where the noise(4) and noise(B) terms at the spatially separated
locations are independent.

We need to re-examine the derivation of the Bell inequality for this situation of
noisy number measurements. With noise added, there may be a reduction in the
correlation between results for S; and S§ measurements made at 4 and B, respec-
tively. With a reduction in the degree of correlation the “clements of reality” are no
longer precise numbers x; and xg, where these numbers are either +1 or —1. We
can only infer the value for the result of the measurement of photon number at 4
(by the measurement made at B) to within a certain precision. The “element of
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reality” is a predetermined quantity which has an associated uncertainty. It is a
probability distribution for certain results, rather than a well-defined number. This
“element of reality” still has a predetermined existence from which we deduce the
probability of obtaining a result + 1 upon measurement. The reduction in correla-
tion may mean that one can no longer say that the system at A4 is definitely in state
+1 or state —1. Thus in this case we can no longer rule out the possibility that
the system is in the quantum superposition of these two states. (If the “element
of reality has a “fuzziness” of maximum range 4 we can however rule out the
possibility of quantum superpositions of states which are distinct by an amount
greater than A4). We can, however, still say that there is a probability of getting a
result +1 at 4 given this predetermined description of the system, and that this
probability is independent of an angle ¢ chosen simultaneously at B. One can
follow convention and label the predetermined specification of the system by
“hidden variable” symbols 4, and define the probability P4 (0, 1) of getting a result
+1 at 4 given the particular A. Similarly one defines a P% (¢, 1) for a +1 result
at B, given A. The probability distribution for the system being specified by this
hidden variable set is denoted by p(4). The measurable probabilities, assuming
locality, are given by the form (3.5)—(3.7) which is sufficient to ensure the Clauser—
Horne inequality (3.8) as before.

The noise added means that there is an inaccurate determination of photon
number of the original field incident on the detector. We cannot distinguish
between results one photon apart. Because of this we cannot hope to determine
whether the measurement at B will influence the results of a measurement at 4 by
an amount of one photon or not. Local realism at this one photon level cannot be
tested here. Any violation of the Bell inequalities with the noise term present must
be due to failure of local realism at a more “macroscopic” level.

VIII. CONCLUSION

We have introduced the concept of “macroscopic local realism.” We claim that
the sensible definition of “macroscopic local realism” is to exclude the possibility
that events occurring at a system B can make immediate macroscopic changes to
a second system at A, spatially separated from the first. The premise of “macro-
scopic local realism” is then weaker than the premise of “local realism” used pre-
viously in its entirety, which excludes the possibility of all changes to system A,
from macro-, meso-, right down to micro-.

The premise of “macroscopic local realism” is only ever sufficient to deduce, for
appropriately correlated systems, the existence in the EPR sense, of “elements of
reality” which are intrinsically macroscopic. By this we mean that the value to
which the “element of reality” corresponds has a macroscopic uncertainty associated
with it. In this case, noting that the “element of reality” is a predetermined property
attributed to the system, we note that “macroscopic local realism” can be sufficient
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to exclude superpositions of macroscopically distinct states, but can never exclude
microscopic (or mesoscopic) superpositions.

With this definition of “macroscopic local realism,” we have made two points.
First, we have pointed out that the Einstein—Podolsky—Rosen argument of 1935,
which uses the premise of “local realism” to show that quantum mechanics is
incomplete, can be formulated so that the measurements need not be accurate to a
microscopic level. In this case we need only use the weaker premise of “macroscopic
local realism” to arrive at the conclusion that quantum mechanics is incomplete.
As discussed previously, this conclusion is quite startling, since “macroscopic local
realism,” unlike local realism at the microscopic level which has been invalidated by
the Bell inequality experiments, has not yet been questioned.

Our second major point is to provide a formulation of Bell inequality tests for
situations where the measurements performed involve macroscopic uncertainties.
We consider situations, such as higher spin states, where the range of possible results
is macroscopic. We propose that a violation of the Bell inequality in this case would
show a failure of macroscopic local realism.

>

REFERENCES

1. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47 (1935), 777.

. J. S. Bell, “Speakable and Unspeakable in Quantum Mechanics,” Cambridge Univ. Press,
Cambridge, 1988; J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41 (1978), 1881, and references
therein.

3. A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49 (1982), 91; A. Aspect, J. Dalibard, and
G. Roger, Phys. Rev. Lett. 49 (1982), 1804; Y. H. Shih and C. O. Alley, Phys. Rev. Lett. 61 (1988),
2921; Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 61 (1988), 50; J. G. Rarity and P. R. Tapster, Phys.
Rev. Lett. 64 (1990), 2495; J. Brendel, E. Mohler, and W. Martienssen, Europhys. Lett. 20 (1992),
575; P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, Phys. Rev. A 47 (1993), 2472; T. E. Kiess,
Y. H. Shih, A. V. Sergienko, and C. O. Alley, Phys. Rev. Lett. 71 (1993), 3893; P. G. Kwiat,
K. Mattle, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 75 (1995), 4337; D. V. Strekalov, T. B.
Pittman, A. V. Sergienko, Y. H. Shih, and P. G. Kwiat, Phys. Rev. A 54 (1996), 1.

4. N. D. Mermin, Phys. Rev. D 22 (1980), 356; A. Garg and N. D. Mermin, Phys. Rev. Lett. 49 (1982),
901; Phys. Rev. D 27 (1983), 339; P. D. Drummond, Phys. Rev. Lett. 50 (1983), 1407; N. D. Mermin,
Phys. Rev. Lett. 65 (1990), 1838; S. M. Roy and V. Singh, Phys. Rev. Lett. 67 (1991), 2761; A. Peres,
Phys. Rev. A 46 (1992), 4413; M. D. Reid and W. J. Munro, Phys. Rev. Lett. 69 (1992), 997;
B. C. Sanders, Phys. Rev. A 45 (1992), 6811; G. S. Agarwal, Phys. Rev. A 47 (1993), 4608; W. J.
Munro and M. D. Reid, Phys. Rev. A 47 (1993), 4412; D. Home and A. S. Majumdar, Phys. Rev.
A 52 (1995), 4959; C. Gerry, Phys. Rev. A 54 (1996), 2529.

5. M. D. Reid, Europhys. Lett. 36 (1996), 1; Quantum Semiclass. Opt. 9 (1997), 489.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys. Rev. Lett. 68 (1992), 3663.

7. E. Schrodinger, Naturwissenschaften 23 (1935), 812; A. J. Leggett and A. Garg, Phys. Rev. Lett.
54 (1985), 587; A. J. Leggett, in “Directions in Condensed Matter Physics” (G. Grinstein and
G. Mazenko, Eds.), World Scientific, Singapore, 1986; W. H. Zurek, Phys. Today 44 (1991), 36;
C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science 272 (1996), 1131; M. W. Noel
and C. R. Stroud, Phys. Rev. Lett. 77 (1996), 1913; M. Brune, E. Hagley, J. Dreyer, X. Maitre,
A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 77 (1996), 4887.

8. M. D. Reid, Phys. Rev. A 40 (1989), 913.

9. D. Bohm, “Quantum Theory,” Prentice-Hall, Englewood Cliffs, NJ, 1951.

o

S



10

12.

13.
14.

MACROSCOPIC LOCAL REALISM 79

. H. P. Yuen and V. W. S. Chan, Opt. Lett. 8 (1983), 177.

. M. D. Levenson, R. M. Shelby, M. D. Reid, and D. F. Walls, Phys. Rev. Lett. 57 (1986), 2473;
A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, Phys. Rev. Lett.
59 (1987), 2555; M. Vallet, M. Pinard, and G. Grynberg, Euro. Phys. Lett. 11 (1990), 739; D. T.
Smithey, M. Beck, M. Belsley, and M. G. Raymer, Phys. Rev. Lett. 69 (1992), 2650.

B. Yurke and D. Stoler, Phys. Rev. Lett. 57 (1986), 13; A. O. Caldeira and A. J. Leggett, Phys. Rev.
A 31 (1985), 1059; D. F. Walls and G. J. Milburn, Phys. Rev. A. 31 (1985), 2403; V. Buzek and
P. L. Knight, Prog. Optics 34 (1995), 1; and references therein.

A. Peres, “Quantum Theory: Concepts and Methods,” Kluwer Academic, Dordrecht, 1993.

M. D. Reid and D. F. Walls, Phys. Rev. A 34 (1985), 1260; M. A. Horne, A. Shimony, and A. Zeilinger,
Phys. Rev. Lett. 62 (1989), 2209; J. G. Rarity and P. R. Tapster, Phys. Rev. Lett. A 64 (1990), 2495;
D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Am. J. Phys. 58 (1990), 1131.



