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Contradiction of quantum mechanics with local hidden variables for quadrature phase
measurements on pair-coherent states and squeezed macroscopic superpositions

of coherent states

A. Gilchrist
Physics Department, University of Waikato, Hamilton, New Zealand

P. Deuar and M. D. Reid
Physics Department, University of Queensland, Brisbane, Australia

~Received 22 September 1998!

We demonstrate a contradiction of quantum mechanics with local hidden variable theories for continuous
quadrature phase amplitude~‘‘position’’ and ‘‘momentum’’! measurements. A contradiction is shown possible
for two quantum states: a pair-coherent state, and a superpositions of two coherent states, where the superpo-
sition state has been squeezed by the action of a two-mode squeezing operator. In one case a contradiction is
still possible for states of increasing photon number, though the effect becomes smaller and more difficult to
observe. The high efficiency of the homodyne method of measurement of quadrature phase amplitudes may
open a way for a loophole-free test of local hidden variable theories, and the effect of detection loss on the
contradiction with local hidden variables is calculated.@S1050-2947~99!02208-8#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

Einstein, Podolsky, and Rosen~EPR! @1# in 1935 pre-
sented an argument for the incompleteness of quantum
chanics. The argument was based on the validity of two p
mises: no action at a distance~locality! and realism. The
original argument of EPR considered position and mom
tum measurements which could be performed on each of
particles at spatially separated locations. Bell@2# later
showed that the predictions of quantum mechanics are
compatible with the premises of local realism~or local hid-
den variable theories!. Experiments@3# based on Bell’s resul
indicate the failure of local hidden variable theories.

Bell’s original result, and subsequent theoretical~for ex-
ample, Refs.@2,4–6#! and experimental work which test lo
cal hidden variable theories against quantum mechan
considered measurements which have discrete outco
such as measurements of spin or photon number. By this
mean that the eigenvalues of the relevant system Herm
operator, which represents the measurement in quantum
chanics, are discrete. The more successful experimental
to date have involved photon counting measurements,
which the results of the measurement, a photon presen
not, are discrete and only microscopically different. Asso
ated with such experiments are relatively low detection e
ciencies, which currently make a test of Bell’s original i
equality not feasible. These experiments test wea
inequalities@7# for which one needs to make additional au
iliary assumptions, preventing local hidden variable theor
from being ruled out conclusively@8#.

In this paper we expand on our initial results publish
previously @9#. We show how the predictions of quantu
mechanics for certain entangled quantum superposition
coherent states are in disagreement with those of local
den variable theories for a situation involving continuo
quadrature phase amplitude~‘‘position’’ and ‘‘momentum’’!
PRA 601050-2947/99/60~6!/4259~13!/$15.00
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measurements. By this we mean that the quantum predict
for the probability of obtaining resultsx and p for position
and momentum~and various linear combinations of thes
coordinates! cannot be predicted by any local hidden va
able theory.

This result is of fundamental interest since the origin
argument@1# of Einstein, Podolsky, and Rosen was given
terms of position and momentum measurements. It w
pointed out by one of us@10# that quadrature phase ampl
tude measurements performed on the spatially separated
puts of the nondegenerate parametric amplifier could po
tially be an example of the EPR paradox. A criterion w
established to test for an EPR paradox even where corr
tions are not perfect, and ‘‘elements of reality’’ deduced u
ing the premises of ‘‘local realism’’~as defined originally by
EPR! have an indeterminacy@11# in their values. Such EPR
correlations, for continuous variables, were generated exp
mentally by Ouet al. @12# in a high efficiency experimen
using homodyne detection. The original state considered
Einstein, Podolsky, and Rosen, however, and that produ
experimentally in the realization by Ouet al., give probabil-
ity distributions forx andp completely compatible with loca
realism. This is so because, as discussed by Bell@2#, the
associated quantum Wigner distribution is positive in the
cases and can thus provide a local hidden variable theor

We also note that the homodyne method of measurem
@13# of the quadrature phase amplitude employs a sec
‘‘local-oscillator’’ field which combines with the origina
field to provide an amplification prior to photodetectio
Large field fluxes fall incident on highly efficient photodiod
detectors. This high intensity limit has not been indicated
previous works@14# which showed contradiction of quantum
mechanics with local hidden variables using homodyne
tection, since these analyses were restricted to a very
intensity of ‘‘local-oscillator’’ field. The possible macro
scopic nature of such experiments has been discussed p
4259 ©1999 The American Physical Society
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ously @11# in the context of the Ouet al. realization of the
Einstein-Podolsky-Rosen experiment. The high efficiency
detectors may also provide a way to test local hidden v
ables without the use of auxiliary assumptions which wea
the conclusions of the former photon counting measu
ments. We therefore calculate the effect of detection loss
the predicted contradiction with local hidden variables.

We stress that recent independent work by Yurke, Hille
and Stoler@15# has also shown an incompatibility of qua
tum mechanics with local realism for quadrature phase
plitude measurements performed on certain quantum
tems. There have also been further recent calculations
Munro and Milburn@16#.

II. GENERAL FORMALISM

The Bell inequality is a consequence of the assumpti
of locality and of realism. Consider an initial nondegener
two-mode stateuC&. Each mode of the state is directed
two physically separate locationsA andB as indicated in Fig.
1.

Measurements are made of the field quadrature phase
plitudes Xu

A at locationA, and Xf
B at locationB. Here we

define

Xu
A5â exp~2 iu!1â†exp~ iu!,

~1!

Xf
B5b̂ exp~2 if!1b̂†exp~ if!.

Where our system is a harmonic oscillator, we note that
angle choicesu ~or f) equal to zero andp/2 will correspond
to momentum and position measurements. The result for
amplitude measurementXu

A is a continuous variable which
we denote byx ~or sometimesxu). Similarly the result of the
measurementXf

B is a continuous variable denoted byy ~or
sometimesxf).

We formulate a Bell inequality test for the experime
depicted by making the simplest possible binary classifi
tion of the continuous resultsx andy of the measurements
We classify the result of the measurement to be11 if the
quadrature phase resultx ~or y) is greater than or equal t
zero, and21 otherwise. With many measurements we bu
up the following probability distributions:P1

A (u) for obtain-
ing a positive value ofx; P1

B (f) for obtaining a positivey;
and P11

AB (u,f) the joint probability of obtaining a positive
result in bothx andy. While this coarse-grain classificatio
may not give as sensitive a test as a possible alternative
inequality derived for the continuous variablesx and y di-
rectly, a violation found for the coarser treatment is still fir
confirmation of failure of local realism for measuremen

FIG. 1. Schematic representation of the proposed test of l
hidden variables. Balanced homodyne detection allows meas
ment of the quadrature phase amplitudesXu

A andXf
B , to give results

x andy, respectively.
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with continuous variable outcomes~corresponding to a con
tinuous eigenvalue spectrum in quantum mechanics!.

If we now postulate the existence of a local hidden va
able theory@2#, we can write the probabilitiesPu,f(x,y) for
getting a resultx andy, respectively, upon the simultaneou
measurementsXu

A andXf
B in terms of the hidden variablesl

as follows:

Pu,f~x,y!5E r~l!px
A~u,l!py

B~f,l!dl. ~2!

The r(l) is the probability distribution for the hidden var
able state denoted byl, while px

A(u,l) is the probability of
obtaining a resultx upon measurement atA of Xu

A , given the
hidden variable statel. Thepy

B(f,l) is defined similarly for
the results and measurement atB. The independence o
px

A(u,l) on f, andpy
B(f,l) on u, is a consequence of th

locality assumption that the measurement atA cannot be in-
fluenced by the experimenter’s choice of parameterf at the
locationB ~and vice versa!. It follows that the final measured
probabilitiesP11

AB (u,f), P1
A (u), andP1

B (f) can be written
in a similar form,

P1
A ~u!5E r~l!p1

A ~l,u!dl, ~3!

P1
B ~f!5E r~l!p1

B ~l,f!dl, ~4!

P11
AB ~u,f!5E r~l!p1

A ~l,u!p1
B ~l,f!dl, ~5!

where we have simply setp1
A (u,l)5*x>0px

A(u,l)dx, and
similarly for p1

B (f,l). It is well known that one can now
deduce@2# the following ‘‘strong’’ Clauser-Horne-Bell in-
equality ~no auxiliary assumptions@7# have been made!:

S5
P11

AB ~u,f!2P11
AB ~u,f8!1P11

AB ~u8,f!1P11
AB ~u8,f8!

P1
A ~u8!1P1

B ~f!

<1. ~6!

III. VIOLATION OF THE CLAUSER-HORNE-BELL
INEQUALITY USING QUADRATURE PHASE

MEASUREMENTS FOR A PAIR-COHERENT STATE

We consider the following two-mode entangled quantu
superposition state, discussed originally by Agarwal a
Tara and Agarwal@17,18# and also Reid and Krippner@19#:

uC&m5NE
0

2p

e2 im§ur 0ei §&aur 0e2 i §&bd§. ~7!

Here N is a normalization coefficient. Hereu . . . &a and
u . . . &b are coherent states in modesâ and b̂, where theâ†

andâ, andb̂† andb̂ are the usual boson operators for the tw
spatially separated systems~for example, field modes! at lo-
cationsA andB, respectively. In many optical systems theâ

and b̂ are referred to as the signal and idler fields, resp
tively. This state, originally defined and considered by Ag

al
re-
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wal and termed a pair-coherent state, is an eigenstate o
photon number difference between signal and idler mod
with eigenvaluem:

~ â†â2b̂†b̂!uC&m5muC&m . ~8!

Also it is an eigenstate of the operatorâb̂,

âb̂uC&m5r 0
2uC&m . ~9!

For our purposes we shall concentrate on them50 case
in Eq. ~7! which when normalized is

uC&5B 1/2E
0

2p

ur 0ei §&aur 0e2 i §&bd§, ~10!

with

B 2154p2e22r 0
2
I 0~2r 0

2!, ~11!

and whereI 0 is a modified Bessel function. Expanding o
each of the coherent states into number statesun& for each
mode we can write the state as

uC&5@ I 0~2r 0
2!#21/2(

n50

`
~r 0

2!n

n!
un&aun&b , ~12!

as originally introduced by Agarwal.
The quantum state given by Eqs.~10! and ~12! is poten-

tially generated, from vacuum fields, by the interaction mo
eled by the following Hamiltonian, in which coupled signa
idler loss dominates over linear single-photon loss.

H5 i\E~ â†b̂†2âb̂!1âb̂Ĝ†1â†b̂†Ĝ. ~13!

This interaction is achievable in principle by nondegener
parametric oscillation@19# in a limit where uncorrelated
single-photon loss in each of the signal and idler fields
comes negligible. HereE represents a coherent driving par
metric term which generates signal-idler pairs, whileĜ rep-
resents reservoir systems which give rise to the coup
signal-idler loss. The Hamiltonian preserves the signal-id
photon number differenceâ†â2b̂†b̂, of which the quantum
state~10! is an eigenstate, with eigenvalue zero. We note
analogy here to the single-mode ‘‘even’’ and ‘‘odd’’@20#
coherent superposition states

N6
1/2~ ua&6u2a&) ~14!

„where a is real andN6
2152@16exp(22uau2)#… which are

generated@21,22# by the degenerate form~set â5b̂) of the
Hamiltonian equation~13! and which have been recently e
perimentally generated@23#. These states are of interest
that they resemble, for largea, ‘‘Schröd̈inger-cat’’states
@24#.

The calculation of the quantum prediction forS for the
quantum state~10! is straightforward in principle. We use
he
s,

-

e

-

d
r

e

a^xuua&a5S 1

2p D 1/4

3expH 2
1

4
xu

21ae2 iuxu2
1

2
a2e22iu2

1

2
uau2J ,

~15!

whereuxu&a is the eigenstate ofXu
A5âexp(2iu)1â†exp(iu),

and we use similar definitions for modeb̂. We have

a^xuub^xfuC&5B 1/2E
0

2p

d§aŠxuzb^xfur 0ei §&azr 0e2 i §
‹b

5S B
2p D 1/2

exp$2r 0
2%

3expH 2
1

2
~xu

21xf
2 !J E

0

2p

dq

3expH 2
r 0

2

2
~e2i (q2x)1e22iq!J , ~16!

where q5§1f, x5u1f. The probability distribution
Pu,f(xu ,xf) becomes

Pu,f~xu ,xf!5 zA^xuuB^xfuC& z2 ~17!

5
B

2p
expH 2

1

2
~xu

21xf
2 !J E

0

2p

dqE
0

2p

dq8

3exp$2A2@A~r 0!xu1B~r 0!xf#1C~r 0!%,

~18!

with the factors

A~r 0!52
r 0

A2
~ei (q2x)1e2 i (q82x)!,

B~r 0!52
r 0

A2
~e2 iq1eiq8!,

C~r 0!52
r 0

2

2
~41e2i (q2x)1e22i (q82x)1e22iq1e2iq8!.

It is evident from this expression thatPu,f(xu ,xf) is a func-
tion only of the angle sumx5u1f so we can abbreviate
P11

AB (u,f)5P11
AB (x). Also we see that on making the var

able changeh52q andh852q8 in the integrations~18!,
we obtain the same form for the expressionPu,f(xu ,xf) but
replacing x with 2x. That is, we have P11

AB (x)
5P11

AB (2x).
We note that the probabilitiesPu,f(x,y) for the pair-

coherent state could also be evaluated using the expres
~12!. Here one uses the result

^xuun&5
1

A2nn!
S 1

2p D 1/4

e2xu
2/4e2niuHnS 1

A2
xuD . ~19!



o

l
he

is
e
re

f

ical

ted

ly
-
t

-

all

n
ed

of

nds
ave
he
ly a
nt

ent

-
e-

n

ar

e

4262 PRA 60A. GILCHRIST, P. DEUAR, AND M. D. REID
This approach was used by Tara and Agarwal@18#, who
calculatedPu,f(x,y) in a paper to establish the existence
correlations between the quadrature phase amplitudesXu

A and
Xf

B at the locationsA andB, respectively. Tara and Agarwa
@18# showed the correlation to be sufficient to satisfy t
criterion developed by one of us~Reid @10#! for a demon-
stration of the Einstein-Podolsky-Rosen paradox. As d
cussed in the Introduction and explained elsewhere, the
istence of such correlations does not in itself imply a failu
of local realism.

Figure 2 shows the distributionPu,f(x,y) for selected
choices ofr 0 andu1f. The strong correlation foru52f is
evident.

We proceed to calculate the event probabilities needed
the Clauser-Horne-~CH! Bell inequality ~6!. We have

P11
AB ~u,f!5E

0

`

dxfE
0

`

dxuPu,f~xu ,xf!,

P1
A ~u!5E

2`

`

dxfE
0

`

dxuPu,f~xu ,xf!, ~20!

FIG. 2. Representation of the probabilityPu,f(x,y) for getting a
result x and y, respectively, upon the simultaneous measureme
Xu

A and Xf
B , whereu52f. ~a! r 051.1; ~b! r 052.5 showing the

increasing separation of peaks and the interference fringes ch
teristic of quantum superposition states.
f

-
x-

or

P1
B ~f!5E

2`

`

dxuE
0

`

dxfPu,f~xu ,xf!.

These integrations could be evaluated by direct numer
integration@use Eqs.~16! and ~17! directly#. An analysis al-
lowing for a much quicker numerical evaluation is presen
in Appendix A.

We note certain properties of the distributionP11
AB (u,f):

P11
AB (u,f)5P11

AB (x); P11
AB (x)5P11

AB (x12p); P11
AB (x)

5P11
AB (2x); and the marginals satisfy, as proved rigorous

in Appendix A, P1
A (u)5P1

B (f)50.5. It then becomes ap
parent that the value forS involves only three independen
angles@which we specify byd15u2u8, d25f82f, s5
2(u1f8)#.

Results forS are shown in Fig. 3, for the choice of mea
surement angles givingd15d25d5p/2 ands523p/4 ~or
the negative valuesd52p/2 and s53p/4). This choice
corresponds to u1f5u81f852(u81f)5p/4, u1f8
53p/4 ~for example setu50, f52p/4, u85p/2, andf8
523p/4) so that the simplification S53P11

AB (p/4)
2P11

AB (3p/4) can be made. We have shown that for sm
r 0 ~less than about 1.5) this angle choice maximizesS. Fig-
ures 4 and 5 illustrate the variation in the value ofS with
variation in choice of angles.

Violations of the Bell inequality, and hence contradictio
with the predictions of local hidden variables, are indicat
for 0.96&r 0&1.41, the maximum violation ofS'1.0161 be-
ing aroundr 0'1.12. We note that this approximate value
r 0 was also found by Tara and Agarwal@18# to be optimal
for the demonstration of EPR correlations, and correspo
to the greatest amount of two-mode squeezing. We h
mentioned previously in the Introduction, however, that t
existence of such correlations does not imply necessari
violation of local realism for the experimental arrangeme
we consider in this paper.

We note that the violations are lost at larger coher
amplitudes r 0. It is possible to obtain~Appendix B!
asymptotic~larger 0) analytical forms for the probability dis
tributions which allow a complete search for all angles. R
sults indicate no violations of the Bell inequality~6! are pos-
sible.

ts

ac-

FIG. 3. Plot ofSversusr 0, for the angle values indicated in th
text: d15d25d5p/2 ands55p/4.
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In the largerr 0 limit the probability distributions forx and
y begin to show two widely separated peaks~as indicated by
Fig. 2!. For our particular choice of quantum state~the pair
coherent state! the 11 and21 results will never be truly
macroscopically distinct because there is always a non
probability for values ofx near zero. Nevertheless we hyp
thetically consider a situation where the11 and21 results
of the measurement correspond to macroscopically dist
outcomes, resembling the ‘‘alive’’ and ‘‘dead’’ states of th
‘‘Schrödinger cat.’’ This is the truly macroscopic limi
stressed by Leggett and Garg@25#. In fact it can be demon-
strated that, for any quantum state, the incompatibility w
local hidden variables must become increasingly small,
the case where the quadrature phase amplitude resultsx and
y only take on values increasingly macroscopically distin
In this limiting case, the addition of a noise term of order t
standard quantum limit~this corresponds to a varianceD2x
51) to the result of quadrature phase amplitude meas
ment will not alter the11 or 21 classification of the result
Yet it can be shown that the quantum predictions for
results of such a noisy experiment are given by the conv
tion of the quantum Wigner functionW(x0

A ,xp/2
A ,x0

B ,xp/2
B ) for

the state ~10!, with the Gaussian noise term (1/4p2)
3exp(2@x0

A21xp/2
A 21x0

B21xp/2
B 2#/2). This new Wigner func-

tion is always positive~see, for example, Ref.@26#! and can
then act as a local hidden variable theory which gives all

FIG. 4. Forr 051.1 we show a contour plot ofSas a function of
s andd. The inset has units ofp on its axis and shows a closeup
the region of violation denoted in the dashed square. Note the s
violations occur for the lower square atd53p/2 ands53p/4.

FIG. 5. Plot of the variation of the maximum value ofS ~opti-
mizing with respect tos) versusd1 andd2. Herer 051.1.
ro

ct

r

t.

e-

e
-

e

quantum predictions in the truly macroscopic ‘‘dead’’
‘‘alive’’ classification limit.

Accurate quadrature phase amplitude measurements
been performed in a now significant number of squeez
state experiments, in which the measurement is perform
using homodyne detection. This technique employs a lo
oscillator field to create an amplification prior to detectio
which means that fields of large intensity fall on the pho
detectors. The method employs photodiode detectors an
more highly efficient than detection~see, for example, Ref
@27#! in the photon counting experiments which have ch
acterized tests of Bell inequalities so far. These previous
periments are limited by detection efficiencies to the ext
that no strong Bell inequality test has been performed
date. Given the efficiency of the homodyne detection meth
then, the smallness of the violation for the experiment p
posed in this paper is not necessarily an indication of a r
tive lack of feasibility.

We then proceed to examine the effect of loss, such
from nonideal detectors, on the violations of the strong B
inequalities.

IV. EFFECT OF DETECTION INEFFICIENCIES
AND LOSS

It is well known that a nonideal photon detector can
modeled by a beam splitter followed by an ideal detec
@13#. The attenuating beam splitter mixes our input sign
mode operatorâ with the vacuum operatorâvac to give two
outputsĉA and d̂A at locationA:

ĉA5Ahâ1A12hâvac,
~21!

d̂A5A12hâ2Ahâvac,

where h is the overall efficiency factor. The measure
quadrature phase operator is now that ofĉA . With two spa-
tially separated beam splitters modeling loss at each dete
we may write our total input state as

u in&5B 1/2E
0

2p

ur 0ei §&au0&avac
ur 0e2 i §&bu0&bvac

d§, ~22!

where theu0& represent the vacuum inputs for input mod
avac and bvac to the two beam splitters. Using techniqu
outlined in Yurke and Stoler@28#, one writes the output stat
as

uout&5B 1/2E
0

2p

uAhr 0ei §&cA
uA12hr 0ei §&dA

3uAhr 0e2 i §&cB
uA12hr 0e2 i §&dB

d§. ~23!

The final probability of observing resultsxu and xf for the
quadrature phase amplitude measurements in attenu
modescA andcB is

me
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Pu,f~xu ,xf!5E
2`

1`

dxvac,uE
2 inf

1 inf

dxvac,f

3 zcA
^xuudA

^xvac,uucB
^xfudB

^xvac,fuout& z2,

~24!

where we use Eq.~15! to calculate the probability amplitude
Calculation of the Gaussian integrals@use *d2x exp(2luxu2
1mx*1nx)5(p/l) exp(mn/l) which is valid for anym or n
and Rel.0# in xvac,u andxvac,f and simplification gives the
following modification of Eq.~18!:

Pu,f~xu ,xf!5
B

2p
expS 2

1

2
~xu

21xf
2 ! D E

0

2p

dqE
0

2p

dq8

3exp$2A2@A~Ahr 0!xu

1B~Ahr 0!xf#1C~Ahr 0!%

3exp$2~12h!r 0
2cosq2q8%. ~25!

Following the calculation in Appendix A finally gives th
marginals 1/2 as before and the expressionPu,f(xu ,xf) un-
changed except thatk52Ahr 0 /A2 in Eq. ~A15!.

Calculations reveal violations to be negligible forh
;0.95. Such high efficiencies may be achievable with
modyne detection. However, the sensitivity to loss, also
ticed in the observation of fringes due to quantu
‘‘Schrödinger-cat’’ states@28#, indicates that the limiting fac-
tor may well be the difficulty in the preparation of the qua
tum state.

V. TWO-MODE ‘‘SCHRÖ DINGER-CAT’’ STATES

In this section we look at the possibility of violating th
inequality~6! with the following superposition of two-mod
coherent states~dropping explicit reference to the two mode
for brevity!:

ucat&5A 1/2~ za0‹1eiwz2a0‹!, ~26!

where za0‹5ua0&aub0&b and ua0&a is a coherent state in th
modeâ. The normalization is given by

A 2152~11e22(ua0u21ub0u2)cosw!. ~27!

Where the values ofa0,b0 are large this state becomes
superposition of states macroscopically distinct in ph
space and thus resembles the Schro¨dinger-cat state. There
has been much discussion of the single-mode versions,
~14!, of this state, and recent experimental developme
@23#. Multimode even-odd coherent states were studied
@29#.

Both the EPR argument and the Bell inequalities make
assumption of locality and hence we need to make meas
ments at two distinct locations, distant from each other.
this end we have generalized the single-mode cat state~14!
to two modes which are separated as indicated in Fig. 1

We note that the two-mode cat state can be generate
principle by passing a single-mode ‘‘cat’’ state~14!,

N1/2~ ua&1eiwu2a&) ~28!
-
-

e

q.
ts
in

n
re-
o

in

„where a is real and N2152@11exp(22uau2)cos(w)#…
through a beam splitter with a second vacuum input such
the output modes are given by Eq.~21!. Yurke and Stoler
@28# have considered this situation to show that the out
state is the two-mode cat state

uout&5N~ uAha&cuA12ha&d1eiwu2Aha&cu2A12ha&d).

~29!

We evaluate the relevant probability distribution
Pu,f(x,y) for measurement ofXu

A andXf
B for the two-mode

superposition state~26!,

Pu,f~x,y!5
A
2p (

L,R521

11

KLRexpH 2
1

2
@xu1zLR

A,u#2J
3expH 2

1

2
@xf1zLR

B,f#2J , ~30!

where in the above equationL andR index four terms withL
andR taking on the values61 andKLR is defined as

KLR5exp$~LR21!~ ua0u21ub0u21Riw/2!% ~31!

and the variablezLR
A,u52(Ra0e2 iu1La0* eiu) has been in-

troduced to simplify the notation. The variablezLR
B,f for the

other mode can be obtained simply by replacinga0 andu by
b0 andf, respectively.

The event probabilities~20! can then be written in terms
of error functions, for example, as

P11
AB ~u,f!5

A
4 (

L,R521

11

ELR
A ~u!ELR

B ~f!KLR . ~32!

HereELR
A (u)5erfc(zLR

A,u/A2) @and similarly forELR
B (f) but

replacingA with B# has been introduced as shorthand for t
complementary error function of a particular argument.

Using techniques@30# allowing calculation of the error
functions with imaginary arguments we conduct a numeri
search over all angles for a violation of the inequality~6!.
We found no violation, however.

VI. CONTRADICTION WITH LOCAL REALISM FOR
QUADRATURE PHASE AMPLITUDE MEASUREMENTS

ON A ‘‘SQUEEZED TWO-MODE CAT’’ STATE

In order to improve chances of observing both EPR c
relations and contradiction with local hidden variables
consider the two-mode superposition state evolved under
action of a two-mode squeezing operator, correspond
physically to interaction with a nondegenerate parame
amplifier or equivalent system generating photon pairs. T
we consider interactions given by the interaction Ham
tonian,

HI5 i\k~ â†b̂†2âb̂!. ~33!

A. EPR correlations for the squeezed cat state

It can be shown that such an evolution will generate E
correlated beamsâ and b̂, in the sense of the original EPR
argument@1,10#. We define the following particular quadra
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ture phase amplitudes for modesâ and b̂: X̂a5â1â† and
P̂a5(â2â†)/ i , and similar definitions for the modeb̂. Now
the solutions for the operators after a timet are

â~ t !5â cosh~kt !1b̂ sinh~kt !,
~34!

b̂~ t !5b̂ cosh~kt !1â sinh~kt !,

and for the quadrature phase operators

X̂a~ t !5X̂a~0!cosh~kt !1X̂b~0!sinh~kt !,

X̂b~ t !5X̂b~0!cosh~kt !1X̂a~0!sinh~kt !,
~35!

P̂a~ t !5 P̂a~0!cosh~kt !2 P̂b~0!sinh~kt !,

P̂b~ t !5 P̂b~0!cosh~kt !2 P̂a~0!sinh~kt !.

As kt increasesX̂a(t) becomes increasingly correlated wi
X̂b(t) and P̂a(t) becomes increasingly correlated wi
2 P̂b(t), with the correlation becoming perfect in the lim
kT→`. With modesâ and b̂ spatially separated after inte
action, this has been shown by one of us@10# to give a direct
example of EPR correlations.

We can make two spatially separated measurements o
correlated quantities in each mode. The results can be
tracted, yielding an estimate of the error in inferring t
value atA from a measurement atB. That is, we calculate
dx5X̂a(t)2gX̂b(t) anddp5 P̂a(t)1g P̂b(t) @10#. The factor
g is a simple amplification factor which we shall modify
give the best estimate possible~the minimum error!. Over an
ensemble of measurements we can calculate the varia
associated with our inference ofX̂a from X̂b, and P̂a from
P̂b : Dx

25^dx
2&2^dx&

2 andDp
25^dp

2&2^dp&
2.

The minimum variance will occur for a particular value
g. Hence finding the local turning point withg yields

Dx,min
2 5

DX̂a~T!2DX̂b~T!22@^X̂a~T!,X̂b~T!&#2

DX̂b~T!2
, ~36!

where we have a similar expression forDp,min
2 and the cova-

riance is^x,y&5^xy&2^x&^y&. We can calculate the nece
sary averages for the two-mode ‘‘cat’’ state using the eq
tions of motion. It is then easy to calculate the minimu
variance product and this is illustrated in Fig. 6. As can
seen from the figure, we predict that the productDx,min

2 Dp,min
2

drops below the quantum limit (Dx
2Dp

2,1/g4) illustrating
EPR correlations.

B. Contradiction with local realism

In order to search for a violation of the Bell inequality, w
must calculate the probability distributions for the results
the two quadrature phase amplitude measurements at
tions A and B. One may use the same techniques as u
above for the pair-coherent state. To give some visual in
mation, however, we choose here to perform the calcula
by first calculating the Wigner function, which is easi
evaluated. The density operator for the system is
he
b-

es

-

e

f
ca-
d

r-
n

r~ t !5N̂ucat&^catuN̂†. ~37!

We write this as, recallingL and R take the values11 or
21,

r~ t !5A (
L,R521

11

e(LR21)Riw/2N̂D̂~Ra0!z0‹Š0zD̂†~La0!N̂†,

~38!

where

D̂~a0!5exp~a0â†2a0* â1b0b̂†2b0* b̂!,

N̂5exp~2 iĤ I t/\!.

The symmetric characteristic function is

xs~h1 ,h2!5Tr$r~ t !eh1â†2h1* â1h2b̂†2h2* b̂%5A (
L,R521

11

xLR ,

~39!

where

xLR5ŠLa0zN̂†exp~h1â†2h1* â1h2b̂†2h2* b̂!N̂zRa0‹

3e(LR21)Riw/2. ~40!

Now, sinceN̂ is a unitary operator

xLR5ŠLa0zexp@h1â~ t !†2h1* â~ t !1h2b̂~ t !†

2h2* b̂~ t !# zRa0‹e
(LR21)Riw/2, ~41!

where the operatorsâ(t) andb̂(t) are given by the equation
of motion ~34!. Normally ordering the products in the expo
nential yields

xLR5expH 2
1

2
h†A1h2h†XLR1XRL

†hJ KLR , ~42!

FIG. 6. The product of the minimum inference varianc
Dx,min

2 Dp,min
2 for the ‘‘squeezed’’ two-mode ‘‘cat’’ state. The EPR

incompleteness argument can be formulated when this pro
drops below 1/g4 ~dashed line!. The parameters area05b050.9,
w50, andg5A2.
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where

h5~h1 ,2h2* !T,

XLR5S R cosh~kt !a01 L sinh~kt !b0*

L cosh~kt !b0* 1 R sinh~kt !a0
D ,

A15S cosh~2kt ! sinh~2kt !

sinh~2kt ! cosh~2kt !
D .

The Wigner function is the Fourier transform of the chara
teristic function:

W5A (
L,R521

11

WLR , ~43!

WLR5
1

p4E d2he2X†h1h†XxLR , ~44!

with X5(a,b* )T. We can use the result for Gaussian in
grals

I 5E d2h exp~2lh†Ah1h†x11x2
†h!

~45!

5uAu21S p

l D D

expS 1

l
x2

†A21x1D ,

whereD is the dimension of the vectors to evaluate the
tegrals, yielding

WLR5
4KLR

p2
exp$22~X2XRL!

†A2~X2XLR!%, ~46!

where

A25A1
215S cosh~2kt ! 2sinh~2kt !

2sinh~2kt ! cosh~2kt !
D . ~47!

Now, we can introduce new variablesx and p such that
a5(xa1 ipa)/2 and b5(xb1 ipb)/2. Using the vectorsx
5(xa ,xb)T and p5(pa ,2pb)T, together with x05(XLR

1XRL* )/g andp05(XLR2XRL* )/gi, Eq. ~46! then becomes

WLR5
g4KLR

4p2
expH 2

g2

2
~x2x0!TA2~x2x0!

2
g2

2
~p2p0!TA2~p2p0!J . ~48!

Setting kT50 gives the Wigner function for the two
mode cat state, plotted in Fig. 7. We observe the presenc
fringes and note the function is negative. The figure illu
trates the effect of increasingkT. Note that the Wigner func-
tion remains negative, preventing the interpretation of
Wigner function as a direct hidden variable theory.

In the limit of large interaction time where cosh(kt)
'sinh(kt) then
-

-

-

of
-

e

x05
2 cosh~kt !

g
Re~Ra01Lb0!S 1

1D ,

p05
2 cosh~kt !

g
Im~Ra02Lb0!S 1

1D ,

where here Re and Im refer to real and imaginary parts. B
of these expressions are real, and hence there are no com
terms in WLR that can lead to oscillations. HereWLR be-
comes a Gaussian and is everywhere positive, and can a
a local hidden variable theory for quadrature phase meas
ments. We conclude therefore that no contradiction of lo
realism for our proposed experiment will occur in this lim

We introduce the following variables to include a hom
dyne measurement at an arbitrary phase angle. That is
start from Eq.~46! but introduce the more generalxu , xf ,
pu andpf : a5eiu(xu1 ipu)/2 andb5eif(xf1 ipf)/2. We
define the vectorsx5(xu ,xf)T, p5(pu ,2pf)T. Now we
obtain

FIG. 7. Wigner function plotted withxa5xb5x and pa5pb

5p and w50 for an initial two-mode ‘‘cat’’ state witha05b0

52.
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WLR5
g4KLR

4p2
expH 2

g2

2 S x1 ip2
2

g
XRLD †

3A3S x1 ip2
2

g
XLRD J , ~49!

with

A35E†A2E5S cosh~2kt ! 2sinh~2kt !e2 i (u1f)

2sinh~2kt !ei (u1f) cosh~2kt !
D

~50!

and

E5S eiu 0

0 e2 ifD . ~51!

We need to integrate out thep terms as this will yield
Pu,f(x,y):

Pu,f~x,y!5E dpW,

~52!

Pu,f~x,y!5 (
L,R521

11

Pu,f~x,y!LR .

Now, expanding out Eq.~49! and integrating overpu fol-
lowed bypf leads to a messy expression which, after so
work, can be simplified as

Pu,f~x,y!LR5
g2KLR

2pAC expH 2
g2

2
xTA4

21x1RTx1GJ
5

g2KLR

2pAC exp$2a~xu
21xf

2 !12bxuxf1R1xu

1R2xf1G%, ~53!

where

C5cosh~2kt !22sinh~2kt !2 cos~u1f!,

A45S cosh~2kt ! sinh~2kt !cos~u1f!

sinh~2kt !cos~u1f! cosh~2kt !
D ,

R5g~A3X̃LR1A3
TX̃RL* !

2
g

2C ~A32A3
T!A4~A3X̃LR2A3

TX̃RL* !,

G5
21

2C ~A3X̃LR2A3
TX̃RL* !TA4~A3X̃LR2A3

TX̃RL* !

22X̃RL
† A3X̃LR ,

X̃LR5E21XLR ,

a5g2 cosh~2kt !/2C,

b5g2 sinh~2kt !cos~u1f!/2C.
e

Now, finally, we integrate over a quadrant of the tw
dimensional Gaussian to get the joint probability of detect
a (1) result atA and a (1) result atB.

P11
AB ~u,f!5 (

L,R521

11

P11
AB ~u,f!LR ,

P11
AB ~u,f!LR5E

0

`

dxuE
0

`

dxfPu,f~x,y!LR . ~54!

We may integrate this directly by numerical integration. A
ternatively some work~Appendix C! allows for expressions
which may be evaluated more readily by numerical te
niques allowing for a search with a wide range of angles. T
main obstacle to finding a violation is the large size of p
rameter space that needs to be searched. The full CH-
inequality depends on values ofa0 , b0 , kt, andw. Again it
is useful do define the anglesd15u2u8 andd25f82f. A
quick search reveals that the maximum value of our CH-B
inequality always seems to occur ford15d2. In order to
reduce the size of the search of parameter space, we will
d15d2 in the following calculations. Givend15d25d, the
CH-Bell inequality can be reduced to a three-angle for
S(u,f,d). We shall also assume thata05b0 and further that
this value is a real number.

With these restrictions a preliminary search of parame
space does indeed find a violation, with the ‘‘best’’ valu
occurring for the parametersa05b050.9 andkt50.6.

Exploring the behavior of the maximum ofS(u,f,d)
with w shows the behavior that seems independent of
other parameters. In this search the domains ofu, f, d, and
w were divided into 50 points.

Henceforth we will choosew50. Examining the behavior
with d also gives a preferred value for this parameter, w
d50.7p.

Finally we are in a position to plotS(u,f) and this is
performed in Figs. 8 and 9, which show a region where

FIG. 8. The violation of the CH-Bell inequality found for
squeezed two-mode ‘‘cat’’ state. A contour plot ofS that contains
the maximum violation found. Parametersa05b050.9, kt50.6,
w50, and d50.7p. The maximum achieved violation isS
51.008 atu5f50.42p.
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violation occurs. The maximum value reached isS51.008 at
u5f50.42p.

Now we can examine the behavior witha0 in more detail.
This is depicted in Fig. 9. Notice thatS rapidly approaches
one so that the violation is for a small parameter range o
Note also thatS seems to approach one asymptotically fro
above, seeming to imply that a macroscopically sized su
position state would also violate the CH-Bell inequal
~though by a tiny amount!.

VII. CONCLUSION

We have expanded on our previous publication to pres
two quantum systems which give a violation with local re
ism for experiments involving only quadrature phase am
tude ~position and momentum! measurements. A small bu
conclusive deviation from a Bell inequality has been fou
for a pair-coherent state and a suitably squeezed super
tion of two two-mode coherent states. The effect of detect
inefficiency and loss on the violation has been calcula
~transmission of order 95% required!. While such efficien-
cies may be obtainable by the homodyne detection pro
dure, this sensitivity to loss may hinder the generation of
suitable quantum state.
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APPENDIX A

Provided we can interchange the order of integration
complete the square, we write, using the result~18!, Eq. ~20!
as

P11
AB ~u,f!5

B
4E0

2p

dqE
0

2p

dq8

3exp$2r 0
2@cos~q2q8!21#%erfc~A!erfc~B!.

~A1!

FIG. 9. The violation of the CH-Bell inequality found for th
squeezed two-mode ‘‘cat’’ state. The behavior ofS with a0 ~note
that a05b0). The parameters arekt50.6, w50, u5f50.42p,
andd50.7p.
y.

r-

nt
-
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si-
n
d
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e

d

Similarly we can construct@note that we must haveP1
B (f)

5P1
A (f) from the symmetry of the pair-coherent state und

interchange ofâ with b̂]

P1
A ~u!5

B
2E0

2p

dqE
0

2p

dq8

3exp$2r 0
2@cos~q2q8!21#%erfc~A!. ~A2!

We will employ a power series expansion for the err
functions:

erf~k@eia1e2 ia8# !5
2

Ap
(
n50

`

(
r 50

2n11
~21!nk2n11~2n!!

n! r ! ~2n112r !!

3eiu(2n112r )eia(2r 22n21), ~A3!

where we have also used the binomial expansion and
substitution a85a2u. Note the following result which
arises when integrating the above expression:

E
0

2p

da erf~k@eia1e2 ia8# !5(
n,r

~ . . . !E
0

2p

daeia(2r 22n21)

5(
n,r

~ . . . !2pd r ,n11/250,

~A4!

where (. . . ) denotes the terms in Eq.~A3! that are not ex-
plicitly written. This result follows since bothr and n are
integral values and the delta functiond r ,n11/2 will always be
zero.

Now we have

P1
A ~u!5

Be22r 0
2

2 E
0

2p

dqE
0

2p

dq8e2r 0
2cos(q2q8)

3H 12erfS 2
r 0

A2
@ei (q2x)1e2 i (q82x)# D J .

~A5!

With a change of variables toa5q2x and a85a2u,
whereu5q2q8, it is evident that because of Eq.~A4!, the
integral over the error function vanishes, leaving an integ
that can be identified as a Bessel function:

P1
A ~u!5

Be22r 0
2

2
~2p!2I 0~2r 0

2!5
1

2
. ~A6!

Now, P11
AB (u,f) can be treated in a similar way.

P11
AB ~u,f!5

Be22r 0
2

4 E
0

2p

dqE
0

2p

dq8e2r 0
2cos(q2q8)

3$12erf~A!2erf~B!1erf~A!erf~B!%

~A7!

and it can be seen that the first term will give a value of1
4 ,

the next two terms will vanish, and the last term is the on
one that will present any difficulty. Hence we can write
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P11
AB ~u,f!5

1

4
1F„erf~A!erf~B!… ~A8!

andF is the function left after dropping the first three term
in Eq. ~A7!. As before, each of the terms in the produ
erf(A)erf(B) can be expanded in a power series, yielding

erf~A!erf~B!5
4k2

p (
n50

`

(
m50

`

(
r 50

2n11

(
p50

2m11

3 f ~n,m,r ,p!~2k2!m1n

3eiu(2n2r 1p22m)e2iq(r 2n1m2p)

3e2 ix(2r 22n21), ~A9!

f ~n,m,r ,p!5
~2n!! ~2m!!

n!m! r ! p! ~2n112r !! ~2m112p!!
,

~A10!

where k52r 0 /A2 and the variable change ofq85q2u
has been utilized.

The integrals will now yield a Kroneckerd function and a
modified Bessel function:

F5
Be22r 0

2
k2

p (
n,m,r ,p

f ~n,m,r ,p!e2 ix(2r 22n21)

3E
0

2p

due2r 0
2cos(u)eiu(2n2r 1p22m)E

0

2p

dqe2iq(r 2n1m2p)

~A11!

54pBe22r 0
2
k2 (

n,m,r ,p
f ~n,m,r ,p!

3e2 ix(2r 22n21)dm2p,n2r I 2(n2m)1p2r~2r 0
2!.

~A12!

Utilizing the d function by settingp5m2n1r on the un-
derstanding that the factorial sequences terminate at zero
can write

F54pBe22r 0
2
k2(

n50

`

(
m50

`

(
r 50

2n11

f ~n,m,r !~2k2!m1n

3I n2m~2r 0
2!e2 ix(2r 22n21), ~A13!

f ~n,m,r !

5
~2n!! ~2m!!

n!m! r ! ~r 1m2n!! ~n1m2r 11!! ~2n112r !!
.

~A14!

We can now change variables in the summations ts
52r 22n21. Truncating then andm summations at some
valueM will yield

F54pBe22r 0
2
k2 (

s52(2M11),s odd

2M11

Xse
2 ixs, ~A15!
t

we

whereXs is a vector of values indexed bys and given ex-
plicitly as

Xs5 (
n5us/2u21/2

M

(
m5us/2u2 1/2

M

f S n,m,
s12n11

2 D
3I n2m~2r 0

2!~2k2!n1m. ~A16!

Equation~A15! is the definition of a discrete Fourier tran
form so by using the fast Fourier transform we can evalu
this expression very quickly.

APPENDIX B

In the limit of larger 0 the exponent in Eq.~A1! becomes
the delta functiond(q2q8):

lim
r 0→`

E
0

2p

dq8exp$2r 0
2@cos~q2q8!21#%5

Ap

r 0
d~q2q8!

~B1!

in which case performing theq8 integrals we get

P11
AB ~u,f!5

ApB
4r 0

E
0

2p

dqerfc@2A2r 0cos~q2x!#

3erfc@2A2r 0cos~q!#, ~B2!

P1
A ~u!5

ApB
2r 0

E
0

2p

dqerfc@2A2r 0cos~q2x!#. ~B3!

For larger 0 , erfc@2A2r 0cos(q2x)# acts like a step function
and hence we can evaluate the remaining integrals. No
that for large r 0 the normalization constant evaluates
B 2152pAp/r 0 we get

P11
AB ~u,f!5U12 2

~u1f!mod 2p

2p U, ~B4!

P1
A ~u!5P1

B ~f!51/2. ~B5!

APPENDIX C

In order to evaluate the expressionP11
AB (u,f) we rotate

the axis byp/4, then scale the axis, and finally change
polar coordinates: (xu1xf)A(a2b)/25r cosv and (xu

2xf)A(a1b)/25r sinv. With this transformation we ar-
rive at

P11
AB ~u,f!LR5

KLR

p E
0

`

dr r E
2v0

v0
dve2r 2

er (Acosv1Bsin v),

~C1!

where v05tan21@A(a1b)/(a2b)#. Using a power series
expansion will give
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P11
AB ~u,f!LR5

KLR

p (
n50

` E
0

`

dr
r n11e2r 2

n!

3E
2v0

v0
dvF S A2 iB

2 Deiv1S A1 iB

2 De2 ivGn

,

~C2!

where

A5~R11R2!/A2@cosh~2kt !1sinh~2kt !cos~u1f!#,

B5~R12R2!/A2@cosh~2kt !2sinh~2kt !cos~u1f!#.

The r integral in Eq.~C2! gives a gamma functionG, while
the v expression can be further expanded as a binomial
ries, and upon integration gives
.

h,

v

tt.

tt
-

.

e-

P11
AB ~u,f!LR

5
KLR

p (
n50

`

(
r 50

n
G~n/211!A2

r B2
n2r

~n2r !! r !

3H sin~v0@2r 2n# !

~2r 2n!
, 2rÞn

v0 , 2r 5n

~C3!

whereA25(A2 iB)/2 andB25(A1 iB)/2.
CalculatingP1

A (u) andP1
B (f) is a straightforward modi-

fication of the previous calculation. Performing the integ
tions yields, after some manipulation,

P1
A ~u!LR5

KLR

2
erfcS 21

A2cosh~2kt !
u1

T~EXRL* 1E* XLR!D ,

~C4!

P1
B ~f!LR5

KLR

2
erfcS 21

A2cosh~2kt !
u2

T~EXRL* 1E* XLR!D ,

~C5!

whereu15(1,0)T andu25(0,1)T.
rse

.
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