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Information transfer and fidelity in quantum copiers
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We find that very different quantum copying machines are optimal depending on the indicator used to assess
their performance. Several quantum copying machine models acting on nonorthogonal input states are inves-
tigated, and assessed according to two types of criteria: transf8hahnoninformation encoded in the initial
states to the copies, and fidelity between the copies and the initial states. Transformations that optimize
information transfer for messages encoded in qubits are found for three situafipméien the message is
decoded one state at a tim@&) with simple schemes that allow the message to be encoded using block-coding
schemes; an@) when the copier produces independent copies. If the message is decoded one symbol at a
time, information is best copied by a Wootters-Zurek copier.

PACS numbd(s): 03.67.Hk, 03.65.Bz

I. INTRODUCTION state. In Sec. V the performance of these copiers is assessed

Quantum copying has attracted considerable interest irallccording to information transfer and fidelity criteria, and

> : . compared to the performance of fidelity-optimized copiers
recent years, ever since the discovery of the no-cloning theq(— .
) . nown previously.
rem[1,2], and the universal quantum copying machjgé
which copies arbitrary unknown qubits with the best fidelity.
To date, most treatments have used fidelity to characteriz: MUTUAL INFORMATION AND FIDELITY MEASURES
the quality of the copies produced. The fidelity between two A. Fidelity, and some of its drawbacks

quantum states characterized by density operatemndp Fidelity is used in many fields as an indicator of closeness
IS between two states, and is often quite useful. It is probably
2 also one of the easiest such indicators to calculate. However,
F(pi,po)= [ Tr[\/(;} Y% 5(p 1)1’2“ . (1) it sometimes suffers from a number of drawbatésamples
of which are given beloywwhen used as a measure of close-
A good summary of its properties is given in Rgf]. Inthe  ness over broad classes of systems, so there will be times
case where one of the states is pure, the fidelity is simply th&hen one wants to use a different indicator.
square of the overlap between the two states. While a fidelity of 1 obviously implies identical states,
Many authord5-15 have made use of two fidelity mea- and 0 implies orthogonal states, what intermediate values
sures for quantum copiers: thiobal fidelity of the com- mean is highly dependent on the particular states that are
bined output(both copie of the copier, with respect to a being compared, particularly if both states are impure. Thus
product state ofunentanglef perfect copies, and thiecal a statement such as “The fidelity between the two states was
fidelity of one copy with respect to the original input state.X,” to be unambiguous, often needs considerable additional
Here, we will concentrate on a different indicator of copyinginformation on the states that were compared. To give an
success: mutual information content between the copies argkample: For standard optical coherent states of complex
the originals. One finds that which copier is optimal depend@mplitude«, given by
greatly on which indicator is used. In practice, this will mean -
that what sort of quantum copier is best depends on what one la)= _(1,2)‘6422 a_”l
wants to do with the copies afterward. a)=e i=o n! ",
This article proceeds in the following fashion. After com-
menting on some drawbacks of fidelity, and why one mightthe fidelity between two pure coherent statgs) and
want to use different indicators, we outline exactly what we|a+ 1) is always constant:
mean by information content between copies and originals in
Sec. Il. General features of the copiers that will be consid-
ered are mentioned in Sec. Ill. Copiers optimized for maxi-
mum copied information are given in Sec. (@nd deriva-
tions are given in Appendixes A and) Bor three cases(1) Now if «=0, the two states are the vacuum and a low-
when the information is decoded from the copies one state gthoton-number coherent state—states with qualitatively dif-
a time; (2) when efficient block-coding schemes are used tdferent properties. However, it is large, then|a) and
transmit as much information as is allowed by the Holevo|la+ 1) are macroscopic, and experimentally indistinguish-
bound; and3) when the copies are an unentangled producible, but the fidelity between them is stillel/
Another drawback of fidelity is that it is not directly re-
lated to other quantities commonly measured in experiments.
*Electronic address: deuar@physics.ug.edu.au While the fidelity is an expectation value of an observable
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(the observable being either one of the two statésannot pB.

usually be calculated from the results of experiments whose |(A:B)=E PiAPJBH |ogz—'E|;, (6)

aim is to do something other than measure fidelity. It is not L P;

in general directly related to expectation values or measure-

ment probabilities of other quantities, so it does not saywhereP} is the overall probability of the receiver obtaining

much about the usefulness of a copy. In this sense, fidelit}he jth measurement result, averaged over the input states.

characterizes the closeness of the mathematical representa-To use this measure to characterize a copying machine,

tion of physical states more than the closeness of the physiather than the specific message encoding or the ingenuity of

cal properties of those states. Of course, in many situationghe receiver in constructing a measuring apparatus, three

these two types of closeness are equivalent, but not alwaygoints should be noted. First, even if a perfect copier is used,

For the specific case of quantum copiers, global or locathe amount of information that can be transmitted from origi-

fidelities are not robust to unitary transformations made ormals to copy depends on the ensemble of states that is used to

the copies individually after all copying has been completedgncode the message. Thus, the information about the original

and also can be very high even though the copies are uncoextractable from the copy(A:B) must be compared to the

related with the originals. For example, suppose a message dgnount of information extractable from the origingA:A).

encoded in a binary alphabet of orthogonal stdfs|1), Second, if observeB makes a suboptimain terms of

and sent through a lossless communication channel that imecovering the original messagset of measurements, then

terchanges the states, i.e., they undergo the transformationB’s stupidity will affect the mutual information. To eliminate
the effect ofB’s ingenuity (or lack of it), it has to be as-

|0)—|1), (4) sumed that optimal measurements are made to recover the
encoded message.
|1)—|0), (5) Third, a characterization of the copier would usually in-

volve examining its information-copying performance for a

then the fidelity of the transmitted with respect to the initial 9iven set of input states. However, these may occur with
state iszerg but nothing of interest has been lost. It is suf- Various a priori probabilities P{*. We will take the case
ficient for an observer receiving the message to relabel thihere these probabilities are chosen to encode the maximum
states which they receive to recover the original message. amount of information in the signal states to be most repre-
Con\/erse|y, consider the situation where very nonorsentative of the behavior of information in the copier. Thus
thogonal state$a) and |b) are used to encode a message the mutual information quantities that will be used in later
Using appropriate error-correction schemes, some informasections of this article arg,(A:B) andl,(A:A), given by
tion can be reliably transmitted with this encoding. However,
now suppose that the message is intercepted by an eaves- I m(A:B)=max{maxI(A:B)], (7)
dropper, who simply sends the same st@té (|a)+ |b)) on Py el
to the intended receiver every time. The fidelity between sent
and received states is still very high, but the received meswhere {P} denotes the set ci priori probabilities of A
sage carries no information from the sender. using theith state in the encoding of the message, &fig
Global fidelity measures are often particularly removedis the set of all positive valued operator measudd. We
from experimental results, since they compare the combinedill call 1, the copied information
state of both copies with a perfect copy state that is generally While this quantity can be more laborious to calculate, it
unattainable due to the no-cloning theorem. However, irhas some advantages over fidelity. It is unchanged by rela-
practice, one usually makes copies so they can subsequentigling or by local unitary transformations on the copies after
be considered only individually. they have left the copier, as well as always being zero if the
copies are independent of the originals.
Also, such mutual information is a physical quantity of
interest in its own right, and is in fact what one is interested
A different, natural, measure of copying efficiency thatin many fields(such as cryptography, for exampl€ven
can be used is the amount of muté8hannoninformation  where this is not the case, mutual information between origi-
[16] shared between the original states, and the copies. Thigals and copies can often be calculated from probability dis-
mutual information does away with some of the drawbacksributions of experimental measurements. Furthermore, it is
of fidelity, as discussed below. clear what the statement “the mutual information transfer
Consider two observers: one of them, the seritidreled  from A to B is x”” means physically, with no further knowl-
A), is sending states chosen from some ensemble, where tiggige of the actual quantum states that were sent. It could be
a priori probability of sending théth variety of state i®'.  said that the information-copying capacity of a guantum
The other observer, the receivéabeledB), makes mea- cloner quantifies theractical usefulnessn many situations,
surements on one of the copies, obtaining ftiemeasure- of the copies produced by it.
ment result with probabilityaﬁi, given that theth state was There is a qualitative difference between information-
sent into the copier. The amount of informatiGn bits per  theoretic quantities such as copied information, and quanti-
sent statpthat the receiver has obtained from the sender idies such as fidelity. Fidelity, and similar quantities such as
the Shannon mutual information, given by the Hilbert-Schmidt norm, or the Bures distance, are quanti-

B. Mutual information measures
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fications of relations between two quantum stgms more  ciples involved easier to see, without introducing too much
precisely, between their mathematical representatjovisle  complexity.
information-theoretic quantities deal with the relations be- Thus, we will consider the case where obse@ncodes
tweenensemble®f states. This is the reason that they area message into a binary sequence of pure quantum states
robust to such postcopying effects as relabeling of the C°p$iA=|¢iA><lﬂiA| (i=1,2) with equala priori probabilities of
states. being sent P/=1%). The P* are chosen to be one-half for
two reasons(l) this is the simplest cas€?) this is the situ-
C. Ultimate and one-state copied information ation where the maximum amount of information is encoded
Hn the input states.
Since there are only two input states, the dimension of the
relevant Hilbert space can be reduced to 2 by appropriate

Consider the situation discussed in the preceding subse
tion. ObserveA encodes a message into a sequence of quan-

tum states, chosen from a set of sta{tplé}' labeled by tf; unitary transformations, because the states span at most a
indexi. Each of the sent states hasapriori probability Pi"  tyo-dimensional manifold in Hilbert space. Any such can be
of being theith one in the set. When the copying maCh'newntten (discarding an irrelevant phase fagtar an orthogo-

acts on the signal state{, it produces a copy state?,  nal basis{|+),| )} as

which is usually different from the original. It has been

shown[18,19 that the mutual information betweehandB Ay _ V4 e singl—
can be no more thah,(A:B), given by |¢7)=cosg| +)+e*sing| -), (9a)
I m(A:B)<Iy(A:B)= S(Z Plp,) > PAS(pR, |43)=sing|+)+e "' cose| ), (9b)
i

(8a) where the parametér ranges from 0 tar/4 (other values of
0 are equivalent to a relabeling of the two statés the rest
whereS(p) is the von Neumann quantum entropy of stateof the article, .« will be taken to be zero for simplicity, al-
p: though all results can easily be extended to the nonzero case.
This, then, gives a one-parameter family of input states:

S(p)=—Tr[plog,p], (8b)
|y =cosd|+)+sinb|—), (109
a result known as the Holevo theorem.
I i h i inf i ill Il
n practice, the transmitted information will usually be |¢§)=sin0|+)+cos€|—). (100

significantly less tham,(A:B). However, it has been shown
[20,2]] that if A encodes the message using only certain
sequences of states out of all the possible dakBough still  These can be fully labeled by the fidelity between them,
respecting the priori probabilities of individual statesand

B makes measurements on whole such sequences rather than
on individual states, then as the length of these sequences
increases, the information capacity per state can approach
arbitrarily close to the Holevo bourlg,(A:B). This is called In a similar fashion, by taking the least complex case, the
a block-coding scheme, and such a communication setup opiers considered will be unitary, create only two copies,
analogous to sending and distinguishing only wholeand be symmetric. By symmetric we mean that the reduced
“words” at a time in the message, rather than individual quantum states of both copies by themselves are equal.
“letters.” In this analogy, letters correspond to individual  The unitarity of the copying process implies a “black
quantum states, and words to sequences of them. Naturalligox” process: no external disturbance is required during the
only special choices of the “words” to be used will ap- copying. Probabilistic copier$10,22 are not considered
proach the Holevo bound, E(B). here.

With this in mind, there are two obvious candidates for a  Physically, there are two subsystemsnd ¢ (which can
mutual information quantity with which to characterize copi- be considered two dimensional for reasons outlined above
ers: theultimate copied informatiorgiven by I, and the put into the unitary copying machine, and two come out. At
one-state copied information | which is the maximum in- the input, the subsystem contains the original state to be
formation obtainable if measurements are made on only oneopied, whilec contains a “blank” state that is always the
state at a time. Both will be considered in what follows.  same, irrespective of what enterscaBoth subsystems con-
tain the(usually imperfecdtcopies when they exit the copier,
while an ancillary machine state subsysteis also used in
some of the copiers. At the input, all three subsystems are
unentangled, while at the output, entanglement is usually

In the interest of clarity and simplicityand, one must present. Due to unitarity, the full entangled output states con-
admit, ease of analysisonly the most basic relevant copying sisting of all three subsystents ¢, andx are pure, but the
setups have been investigated. This should make the prirstates of individual subsystems are in general mixed.

f=F(p?.p%)=sirf(26). (12)

Ill. GENERAL PROPERTIES OF THE COPYING SETUPS
CONSIDERED
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IV. THREE INFORMATION-OPTIMIZED QUANTUM whereq, which we will call the distinguishability parameter,
COPIERS is

In this section, we present transformations for several
copiers optimized for information transfer to the copies, q=vi-f. (14b)
given a binary sequence of equiprobable input states. All
these copiers are symmetric. The input states are in generg}

h | and the d  orth ity is ch om the purely classical nature pf, it follows that the
nonorthogonal, and the degree of orthogonality IS charactery; e copied information{* is no bigger thari{“. In

ized byf, the square of the overlap between the two inputfact applying more WZ copying machines to the copies
~ A ~ A . . . 1
statespy andp; . These will be compared to known fidelity- made by the first one, in a cascade effect, creates larger num-

optimized copiers in the next section. bers of copies, each of which still carries the same amount of
(one-statginformation as the original message. In this way,
A. Copiers that optimize the one-state copied information arbitrary numbers of optimal copies can be made—similarly

Rather than carry out a tedious optimization, it stands to;[r?fgror\rlwvact’igﬁ can make arbitrary numbers of copies of classical

reason that if any unitary copier allows one to extract as The local fidelity between a copy and the originals is
much information about the originals from the copies as y Py 9

from the originals themselves, then it achieves the optimum.
Is there such a copier? f

Perhaps surprisingly, one finds that the Wootters-Zurek F(plpB)=1— > (15)
(WZ) quantum copying machingl,3] (used in the original
proof of the no-cloning theoremallows one to extract as
much information(using a one state at a time extraclion  There are other copiers related to the WZ copier which
from either of the copies as from the original. One can imag-allow the same optimal one-state information transfer. One
ine that the same information transfer could be achieved bgxample is the family of copying transformations created by
making measurements on the originals, and sending the r@pplying identical local unitary transformations on both cop-
sults classically, but that a simple unitary transformationies after they come out of the WZ copier. The particular
with no coupling to the external environment can achieve théransformation presented above in Ef2) is the one that
same is perhaps less obvious. What is more, the WZ copiegives the best local fidelity out of this family of transforma-
does much better than any fidelity-optimized copiers, as wilktions.
be seen later.

Explicitly, the transformation of the input stat€$0) is

. B. Copiers without ancilla that optimize
given by

the ultimate copied information

It is also of interest how well information can be trans-

A .
|42)—sin 6|+ +)+cosé| - —), (128 itted when the possibility of complicated block-coding
schemes is allowed, as discussed in Sec. Il C. To make the
Ph)—cosb|+ +)+sing| — —), (12p  calculations relatively tractable analytically, we have made
two restrictions on the copiers that we considered for this
task.

where the basis vectofs- —), etc., indicate tensor products X . .
|+)o|—)c Of the basis vectors for the and ¢ copy sub- First, only copiers that do not use an ancillary subsystem

systems, respectively. The combined state of the copies i €ntangled with the copies, have been considered. It is
highly entangled, but the reduced density matrices of th&roPably possible to obtain somewhat better performance in
copies(the full output density matrices traced over all sub-Ultimate information copying by using such helper sub-

systems except one copgre in the classically mixed states SYStems, since discardingafter copying is completed par-
tially relaxes the conditions that the copy statesndc must

satisfy to preserve unitarit§since one then has more param-
~ g cosd 0 eters left to optimize over It is not clear how much better
P1=\ o  sirtg)’ (1338 one could do with such helper states, but we suspect not

much better, since from Fig. 2 below, the copier considered

here is only marginally better than several others obtained by
g Sirf 6 0 optimizing over different indicators such as fidelity and one-
P2=| o o2l (13D state copied information.

Second, for similar reasons, we have assumed that since

The one-state copied information, which is the same a$oth possible input statgs;" are of equal purity T[[(;'iA)_Z]
can be extracted from the originals, is (totally pure, in fack, then both reduced copy statef will
be of equal purity also:

1V2=3[(1+q)logy(1+q)+(1—q)logx(1—q)], . .
P ’ ’ (14 T2 =T (55?2, (16)
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This is also a property shared by all other copiers mentioned X X
in this article. The usual assumptions of Sec. llI, such as both |5)— \/;Ib1>+ \/E — I COShy|Dy)
copies being equal, apply also.
So, an ancillaless copier, that produces two identiesili- 1—X+r,COSh
ally imperfec) copies of any of two possible pure signal + \/f(|b3)+|b4>), (170

states, that makes copies of the same purity whichever of the
two input states is sent, and tHgtven the abovemaximizes
the amount of information that can be transmitted to each ofvhere
the copies by any block-coding scheme when the two input
states are equiprobable, is given by the somewhat lengthy  y—1(1 4 co@ep,,+ 2, oS+ 1 -2 i),
characterization below. The details of how this was obtained (179
have been left for Appendix A.

There is a whole family of copying transformations, re-
lated by local unitary transformations on the copies after theyand the fourlb;) are orthogonal basis states, given in terms
have stopped interacting with each other, which give thedf the usual+) and|—) basis states used in Eq4.0) and
same ultimate information copietf,. Of these, we will (12) by the matrix equation
specify that particular one in this family which gives the

greatest local fidelity between the copies and originals. The by) |++)
transformation can be written in terms of the parametgrs |b,) |—+)
and ¢,,, which have to be determined numerically. In terms =U , (18
of the initial stateg10), [b3) [+-)
|ba) |==)

A 1+rmb /1—rmb 17
1)~ 2 [01)+ 2 [02), 178 here the unitary matrix) is

1+sin¢g /2 1-sing /2  coSp,/2 COSp /2
1| 1-sing, /2 1+sing,/2 —coSp,/2 —COSp,/2

5 . . 19
2| —cos¢y/2 cosp/2  1+sing,/2 sing,/2—1 (19
—COS¢hy/2 COSp /2  sing,/2—1 1+sing,/2
|
As can be seen from the above, the basis stfigs are Now cos¢,, is dependent on,,, and is given in terms of
entangled over the two copies. it as the second largel23] real root of the following quartic

The parameted,, is actually the angle between the Bloch polynomial in cospy,:
vectors of the two possible reduced copy stai€s which O:CO§¢m[r2m(2_rﬁq_zm)ﬂcoé(ﬁmmrfﬂ(l

can be written
—V1-ra)]+cofpni2[rm+2ri+4f(Y1—ri—1)]}

~s 1(1+9 oy
p?=§ . 1_q), (209 +CoSp[4r2(1+\1—r2—4f)]+[(4f—1)2—(1
—r2)2+2(r2—af)J1-r2]. (22)
~x 1{1-9 oy
B_— . . . . . .
pz—z( a  1+q)’ (20b) The ultimate copied information is given by

Iﬁ:%[(1"_rm)log2(1+rm)+(1_rm)|092(1_rm)]

where the parametersandqy are s
—2[(1+dn)logx(1+ay) + (1 aqu)log(1-ayn) ],

qzrmsi@, (21a 23
which can be made a function of, only, using Eq{(22). To
5 obtain the optimum copier, we find numerically the value of
_ m I that maximized}, onr,e[vy1—f,1].
AH rmc037, (21 The one-state copied informatidk} is given by the same
expression in the distinguishability parametgras for the
and appear in the expressions ferand | . WZ copier[Eq. (143], with g now given by Eq.{(2139.
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FIG. 1. One-state copied informatigm bits

oy,
44, .
+ .
*+‘*++++++ .
e,

o 8 e ST T per signal statel ; for the copying machines dis-
:rgs_ ”m++Hmml;z;:ﬁz;.:mﬂr.mm cussed in Secs. IV and V and Appendix C, as a
- fraction of the maximum one-state informatith
o4k ) extractable from the input staték0), plotted as a
e function of the fidelityf between the two pure
03k e Wootters—Zurek Copier | input signal states.
—— Ultimate-Info Optimal Copier
02r ----  Global Fidelity Optimal Copier 1
——————— Local Fidelity Optimal Copier
01r = Unentangled Optimal Copier .
Se—— o]0
00 0{1 0!2 0{3 014 015 0!6 0{7 0{8 019 1
f = fidelity between possible original states
It is interesting to note that, for input states which are C. An optimal copier that gives unentangled copies

_su_fficiently nonorthogonalf(; 0.2_06), the copier given here As has been remarked by many previously, optimal quan-
is just the WZ copier descn_bed in Sec. IV A. In_these casesym copiers typically produce highly entangled copies. This
¢m=m and rp,=J1—f. This sudden change in behavior 3|50 applies to the two quantum copiers given in Secs. IV A
(particularly evident in Fig. 1 and Fig. 3 belpwnay be due  ang |v B. Nevertheless, copies of some quality can be made

to excluding the use of ancillary subsystems. Allowing theseyjthout entanglement between them. This might be desirable
may make thé optimal copier consistently bett&lthough i some situations.

pOSSibly not by mUChtha.n the Wootters-Zurek for all values Once again two S|mp||fy|ng assumptions have been made
of f, even the small ones. to make the calculation easier. It has been assumed that the
The local fidelity between copies and originals for this copies are, again, unentangled with ancillary machine states,
copier 1s and that the output state of the copier is simply a product
state of the two identical copies, rather than a classical mix-
~ A ~B. 1 ture of several such product states. The case with additional
F(p{'pP)=3(1+aV1—f+auVh). (249 machine states present might allow somewhat higher infor-

----------- Input States 1
Ultimate—Info Optimal Copier
----------- Wootters—Zurek Copier 8
- — - — Global Fidelity Optimal Copier
——————— Local Fidelity Optimal Copier -
s Jnentangled Optimal Copier

07F . o 00000000000 UQCM B . . .
e FIG. 2. Ultimate (Holevo bound copied in-
—~086F formation (in bits per signal stajel, for the
= copying machines discussed in Secs. IV and V
vIo.s— and Appendix C, depending on the fidelitye-

tween the two pure input signal states. The
Holevo bound on information extractable from
the originals is also given under the name “Input
States.”

0.2 0{3 04 0{5 0{6 077 078 0.9 1
f = fidelity between possible original states
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a FIG. 3. Local fidelity F(p®,pB) between a
< 0.94f § copy and the original, for the copying machines
,_,_3 discussed in Secs. IV and V and Appendix C, as
a function off, the fidelity between the two input

signal states.
----------- Wootters—Zurek Copier

——  Holevo-Optimal Copier

) «+weeeene Unentangled Optimal Copier
09r . - ---  Global Fidelity Optimal Copier
------- Local Fidelity Optimal Copier

0.88 I I 1 1 1 1 I 1
0 0.1 0.2 03 0.4 0.5 06 0.7 038 0.9 1

f = fidelity between possible original states

mation transmissiom, with block-coding methods, for the A family of copiers which do as well in the information

same reasons as in Sec. IV B. This would be interesting toneasures, but worse in local fidelity between originals and

check, but we have not done this to date. Allowing classicatopies, is given by making unitary transformations on the

correlations between copies and a machine state subsystentopies individually.

does not, however, improve information transmission. The one-state copied informatidhi is given by the same
Given the above two restrictions, a copier that optimizesexpression irg as for the WZ copie(14a, with g now given

both the one-state and ultimate copied information, whileby

keeping the copies unentangled, is given by

=V1-+/f. 2
1+V1-f 1-V1-f q Vi (27)
—_— | |-
|%> 2 | ) 2 | ) The ultimate copied information is
+ 3+ =)+ +)), (25a . L fU4 1_fU4
N=1-— log,(1+ f14) — > log,(1—f/4).
(28)
1Ny 1+V1-f
|42)— 2 [++)+ 2 == The local fidelity of copies with respect to originals is
+ 3V + =)+ —+)), 250 ~p o~ \/—
)+ =) (25 FOR AP = 10 (1-H1-VD]l. (29
with notation identical to Eqs(12). See Appendix B for It turns out that this copier also gives the best local fidelity
details of the optimization. out of such unentangling copietsee Appendix R
This gives pure state copiéthey must be pure from the
unitarity of the transformation, since the input states are V. A COMPARISON OF THE COPIERS

pure, and the output state E§®Z) iB) . . )
To see how well the copiers rate in terms of the informa-

tion measuredy andl,, we first need to determine how

1 [+ fua much information _could .be extragted from the input states if
pB=_ 1+v1 \E (263 they were not copied. Since the input states are not orthogo-
1 2 1/4 ’ . . . _

f 1-V1i—+f nal for f>0, then a full bit of information cannot be ex
tracted from each state even though they are equiprobable.
One finds that the information extractable one state at a
time is
. 1{1-v1- \/; L4 - I I
P2=3 :
2 f1/4 1+V1-f 19=3[(1+q)logx(1+a)+(1-q)log(1-q)], (30)
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with the distinguishability parametey=\1—f. This is the The copiers that give optimum unentangled copies do
same as with the Wootters-Zurek copi@édg. The ultimate generally significantly worse than the other copiers apart
information extractable from the signal if block-coding from the UQCM, but one sees that all the copiers apart from
methods are used is, however, unlike that for the WZ copierthe WZ copier and UQCM converge to the same efficiency

much larger: (much worse than the optimuynior high values off, i.e.,
when the signal states are not very orthogonal.
. 1+ \/f 1— \/? Note that a plot of the actudtather than relativeamount

Iogz(l—\/f). of information extractable from the original signd] is
(31  Shown in Fig. 2 as the Wooters-Zurek curve, singf
=19.

lh=1-— log,(1+/f) - 5

It is interesting to compare the performance of the copiers
given in Sec. IV to previously known fidelity-optimized
ones. Three will be considered here, and a brief summary of The ultimate(Holevo bound copied informatior ,, gives
the copies they produce is given in Appendix C in terms ofan absolute maximum on how much information could pos-
the input state overlap paramefer sibly be transmitted by a given copier, with the best signaling

These three copiers are as followd) The universal scheme that is possible. In general, to achieve this bound, the
quantum copying maching8] (UQCM), which copies arbi- encoding/decoding scheme has to be very elaborate, and it is
trary qubits with a local fidelity of 5/6. This is the maximum often not achievable in practice due to complexity. In the
possible if it is to copy all with equal fidelity2) A copier  case of qubit systems being transmitted here, this would en-
found by BruRRet al. [8] that optimizes the global fidelity tail making measurements of many-qubit observables to de-
when copying one of two nonorthogonal input stat@.A code the information: a difficult task at present.
copier also found by Bruf&t al. [8,24] that optimizes the As can be seen in Fig. 2, most of the copiers cluster just
local fidelity when copying one of two nonorthogonal input below the optimal capacity achieved by the copier of Sec.
states. So let us see how they compare in performance. IV B. While this is not necessarily the absolute optimum that
can be achieved, as there remains the possibility that intro-
ducing helper machine states may increase this bound, this
bunching makes it seem plausible that no large gains can be

The one-state copied information is a good indicator ofachieved beyond this. This ultimate-information optimal
the efficiency of communicating classical data to the twocopier is quantitatively not much better than the Wootters-
copies. The recovery and coding of the information in thisZurek copier. Its greatest gains, which are still quite modest,
case relies only on measurement of one-qubit states, armbme when the overlap between signal states is high, where
classical error-correction schemes. the absolute information content in the signal is small.

Looking at Fig. 1, one sees that the Wootters-Zurek It can be seen that, while the no-cloning theorem did not
copier, apart from achieving the optimum and transmitting astop one from perfectly copying information contained in
much one-state information to both copies as was encodeghe state at a time, its effect is strong where block-coding
originally, is also far better at it than any of the other copiersschemes are allowed. This is because, if we restrict ourselves
shown (except for the smalf- region, where the ultimate- to the one case at a time situation, we are not utilizing those
information optimized copier becomes the WZ'he WZ  properties of the states that are affected by the no-cloning
copier has by far the simplest transformation out of thes¢heorem. The difference between what can be extracted from
copiers, so it seems that for basic information transmissiom copy and from the originals is quite striking, and for highly
the simplest copier is the best. overlapping input states, over 60% of the information in the

The fidelity-optimized copiers do not do as well as theoriginals is unavailable from a copy.

WZ, which in itself is to be expected, as after all they were The behavior of the copiers for high overlap between
optimized for fidelity, not information transfer. However, states is as one would expect. That is, the Wootters-Zurek
they do very much worse, causing the loss of much informaeopier becomes much less efficient than the others when
tion that could be regained if better copiers were used. Thiblock-coding schemes are used, as the other copiers do not
shows quite clearly that fidelity is not necessarily a goodfully entangle the copies with each other, thus allowing one
measure of the quality of the copies for all situations. It isto extract some extra information by looking at several se-
perhaps also surprising that, even though we are considerimguential states together.

information transmitted tonecopy here, the copier that has  Since the Wootters-Zurek copier hbas=1,,, by compar-
been optimized for global fidelity between the combined outing the values ofl, for the local and global-fidelity-
put state and perfect copies, does significantly better than theptimized copiers to the WZ copier, one can see that for
one that has been optimized for local fidelity between ahese fidelity-optimal copiers, much more information than
single copy and original. I, can be sent to the copies by allowing complicated block-

The UQCM gives much less information transfer than thecoding schemes which use correlations between subsequent
other copiers, since all the others have been specifically tasignal states. This approach, however, is unhelpful with the
lored for the two signal states, whereas the UQCM musWootters-Zurek copier, and is of very little help when using
handle any arbitrary states with equal fidelity. the UQCM.

B. Ultimate copied information

A. One-state copied information
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As for the other information measure, the global-fidelity- nel between two observers is significantly greater when the
optimized copier does slightly better than the local fidelityreceiver gets undisturbed state§ ) than when the receiver
one. The unentangled copier does slightly worse than thgets one copy, even when the copier is highly optimized
rest, except for the UQCM which is consistently worse on all(1}}). This is an information-theoretic manifestation of the
counts, as it is not tailored to the input states like the othersno-cloning theorem.

C. Local fidelity APPENDIX A: DERIVATION OF THE

This is shown for various copiers in Fig. 3. The UQCM is ULTIMATE-INFORMATION OPTIMAL COPIER
absent from the plot, as its local fidelity lies fgr below the  The copier sought has the following properties: it takes
others shown there. Figures 1 and 3 show quite clearly that _ . ~ A .
L . . ) : ; one of two (=1,2) pure input statef25] p:* of Hilbert
fidelity and information transfer quantify quite different di ion 2. and b itarv t f ! i t
properties of the copying transformation, and one has to kee%pace: |men§|9n »andby a ur.u ary transtorma |9n c[eoa esa
in mind which properties are desired, before deciding on &t@t€p; consisting of two(possibly entangledcopies
guantity to characterize efficiency. and p{), again of Hilbert space dimension 2. The state of

As expected, the best local fidelity occurs for the copiereach copy, when the other copy is ignored, is identical, and
that was optimized for this, and the global fidelity optimal both possible copy statésorresponding to input stajelsave

copier is almost as good. The WZ copier is no good at fidelequal purity, as measured by their self-fidelity[ p#]. As-

ity at all for significantly overlapping states. The unentangledsyming all states considered are normalized, these conditions
copier is once again slightly worse than most of the othersggn pe written as

The sharp change in behavior for the ultimate-information

optimal copier is particularly evident in this plot. normalization: T[;,{\]zl, (A1)
VI. COMMENTS AND CONCLUSIONS input pure: pA=[yMN (A, (A2)
It was seen in the previous section that quantum copiers o -
optimized for fidelity measures are far from optimal for basic unitarity:  pi=|¢i)(il, (A3)
information transmission to the copies, and, vice versa, o o
information-optimized copiers are far from optimized for fi- Trp1p2]=Trlpip5]=1, (A4)

delity between copies and originals. This indicates that vari- R L o

ous measures of quality should be used for quantum devices, symmetry: pP’=Tr[p;1=p =Trpi]=p iB, (A5)

depending on what final use is to be made of the states cre-

ated. equal purity:  T{(pD)?]=Tr[(p3)?].  (A6)
Some other general trends that were seen for the quantum

copying devices that were considered, include the followingAnd, of course, on top of these conditions, the Holevo bound

The ultimate-copied-information-optimized copier behaveson ultimate information copietl, is to be maximized.

more similarly to the fidelity-optimized ones than to the one- The output states can be written in terms of a vector of

state optimized WZ copiefwhere it differs from the WZ  complex expansion coefficients in some basis as

The fidelity-optimized copiers are not bad when one allows

multiparticle measurements on the copies, but are far from 1 . . .

optimal if one does not. This may be because the fidelity- l;) = ﬁ[aj Bi€' %81, y,e'%x, 5,€' ], (A7)

optimized copiers preserve some of the quantum superposi-

tion of the input stategas evidenced by the off-diagonal A s

terms in the density matrices of the copieshereas the WZ Z?gfgw)c.yjl\,lﬁjr;nyélliz&iatei cEr? 9\1/3(]331]2 irjgdjz +tyhfe N 5?292@%?]& of

copier makes the copies purely classical mixtures when the%e expansion coefficients can be made real and positive

are considered individually. To get extra information trans-_ . . : . i
mission by making measurements on multistate observable\évIthout affecting the final bound, by multiplying by appro

.p/riate unphysical phase factors, so let us do this toathe
one needs some quantum effects between the successive . . . ;
: ; . Now, any two states in a two-dimensional Hilbert space
copy states, and these effects are lacking with the WZ copier. ) N

A small, but perhaps surprising feature was that thgsuch as the reduced states of the two possible cwpﬂemd

global-fidelity-optimized copier gave better performance inp 5, can be described by two Bloch vectars The states

the information measures than the local-fidelity-optimizedare then given by

one, even though only information flowing to one copy was R ~ o

considered. Other features seen include the poor performance  pi(r1)=3(l +o-r;) where o=[01,0,,03] (A8)

of the UQCM relative to the other copiers—unsurprising, R

since the other ones are tailored specifically to the two signadnd o; are the Pauli matrices. By an appropriate choice of

states, and the poorer performance when the copies are mablasis, one of the two Bloch vectors can be chosen to lie in an

unentangled with each other. arbitrary direction, while the other is separated by some
For all copiers considered, when the input signal states arangle ¢, from the first, both of them lying in a plane of our

nonorthogonal, the information carrying capacity of a chan-choosing. Thus there are only three parameters for these two
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states that are not arbitrary, depending on the choice of bas
the lengths of the Bloch vectors, and the angle between
them ¢, . Also, since
Trlpi(r)?1=3(1+[ri[?), (A9)
and we are assuming equal copy puriy6), both Bloch
vectors are of equal length=|r;|. Let us choose these Bloch
vectors to be
ry=r[0,0,1]

and r,=r[sin¢,,0,cosp,]. (A10)

. . . T
Thus, without any loss of generality, the copies can be writy,

ten in an appropriate basis as

~n 1({1+r O

P72l o 1-r) (Al13
.. 1{1+rcosd¢, I sing,
B
= . . All
P2732\ rsing,  1-rcosd, (AL1b)

Using Eqgs(A11),(A7), and conditiongAl),(A5), one ob-

PHYSICAL REVIEW A61 062304

iS: 1= 3[(1+1)logy(1+1)+(1—r)logy(1—r)]—[(1

+gn)logy(1+ay)+(1—au)logy(1—agy)], (Al6)
with
qu=r cos%. (A17)

One finds that 4(r,cos¢,) is a monotonically decreasing
function of cosp,—thus, to maximize, for a given value of
=r,, it suffices to minimize co#, (i.e., make the angle
etween the possible copy Bloch vectors as closertas
possible. I4(r,cos¢,) is also a monotonically increasing
function ofr.

For any particular values aof and cosp,, there are three
parameters left to vary to try to satisfy E¢8.13) and(A14),
after the relation$A12) have been used; K, andC. Each of
the two Eqs(A13),(A14) will give an allowable range fox
(exactly which point in these ranges is satisfied by the copier
then depends o€ and K). The ends of these ranges are
given by

tains the following restrictions on the expansion coefficients

of the total output states; :

Y1=B1, v2=PB2,
Be=1+r—a? 2_1 2
1 Ay, BZ_ +r COS¢r Ay, (Alza)
2=a?-2r, &5=a5—2rcosg,,
Bi(a e ?p1+ 5 eP01™ bp1)=0, (A12b)
Bo(aye'?s2+ 862~ ¢s2)=rsing,.  (A12c)

Now Eq. (A12b) implies that either8;=0 or (a;=&; and
2¢p1= @5+ ). The second possibility is uninteresting, as
it immediately leads to =0, which givesl = 0—certainly
not the optimum case, one hopes!

Also, using the unitarity conditiofA4) and the equal
purity condition(A6), one obtains the restrictions

2f=x+r(r—1)cos¢, + Cy1—r2\x(x—2r cose,),
(A13)

r2(1—coS¢,)=2(1+r cos¢, —X)[X—r cose,

+KX(X—2r cos¢,)],

respectively. For brevity, the mutually independent param
etersx,K,C have been introduced, where

(A14)

X=a3, (A153)
K=cog gt dyo—ds2), (A15b)
C=cog ¢y2_ ¢yl)- (AlSC)

Note that the conditioriA14) is equivalent to Eq(A12c).
Using Egs.(8), (A8), and(All) leads tol being given
by the expression

g cosey =0 C==+1 A18
oC 0 or C=x (A18a)
for Eq. (A13), and
9 cosey =0 K=+1 A18b
K0 OrRE= (A18D)

for Eq. (A14). Only those values of cas, for which the two

X ranges partially overlap give allowable copiers. Now, for
any particularr=r,, if we vary cosg,, the x ranges will
vary also. In particular, at that value of c@swhich lies at
the boundary of allowed cah(r,) values, at least one ex-
tremity of the firstx range, due to EqA13), will coincide
with an extremity of the secondrange due to EqA14). Of
course, not all cases whexaange extremities coincide will
correspond to a cas (r,) extremity, but any parameters for
which suchx extremities coincide will give viable copiers
[they could be well within a region of allowed cegr,)
valueg. Hence, if we look at all the parametdmgiven by
Egs. (A13), (Al4), and (A18)] where x range extremities
occur, then one of them will give the desired minimum
cos¢,(r,) value. It turns out that this ca(r,) minimum
corresponds toK=C=1 when re[y1-f,1]. For r
<y1-—f, cosg,(r,) can reach its absolute minimum value of
—1, but sincel 4 is also monotonically increasing in the
optimuml 4 copier must have=1—f, so these low values
of r can be ignored. This leads to the second largest real root
of polynomial(22) as the expression for c@s(r) that maxi-
mizesly for a givenr=1—f. The final value ofr which
maximizesl  out of all the copiers considered,, is given
now by a straightforward, one-parameter maximization of
I 4(r,cosg,(r)) overr e[ y1—f,1]. Because this calculation
is simple, straightforward, and accurate numerically, but not
so simple analytically, an analytical solution has not been
attempted.
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Now, to find the particular transformation which, given one findsgy = Vfq,. Withr=1, I, depends only ony , and
input stateg10), not only maximized but also makes the will reach extreme values either when
local copy-original fidelity as large as possible, first make the
Bloch vectors of the copies be in the same plane as the Bloch

vectors of the input states, and then make both pairs sym- dﬁ: Ek,g2 1=y =0, (B4)
metric about a common axis. The Bloch vectors of the input dgy 2 1+qu
states are
h i f gy =(fYr1).
slz[\/f,o,\/ﬁ] and 52:[\/?’0,_ \/ﬁ], or at the endpoints of thg, range:qy=(f"“orl). One sees

that Eq.(B4) is only satisfied foqy=f,,=f=0, so for gen-
eral f, extreme values of are reached af;,=1 or f,
=f. f;,=1 leads tol;=0, so the optimal value fof,, is
again \/f. Thus the same copiers that are optimal jnare
&lso optimal inly, .

Lastly, let us look at local fidelity. The fidelity between
any two pure states is given by

(A19)

These are in theé(l-frg) plane, and symmetrically spaced
about[1,0,0]. So, to achieve the desired optimum local fidel-
ity copier, the appropriate transformation of the input state
is found to be

)= (UneU)lv), (A202)
~ ~ 1
where| ;) is given by Eq.(A7), and the unitary transforma- F(p1.p2)=2(1+cosg), (BS)
tions are
) in terms of ¢, the angle between their Bloch vectors. To
[ cos§y  siny where £.— de(ry)—m minimize the average over both possible inputs of this Bloch
"\ —singy  coséy ere &= 4 ' angle between originals and copies, we choose the Bloch
(A20b)  vectors of the copies to lie in the same plane as the Bloch
vectors of the originals, and to be symmetric about the same
This can be written as Eq618) and(19). axis. Obviously, in this case, the local fidelity will be maxi-
mized if the Bloch angle between the copies is as similar to
APPENDIX B: DERIVATION OF UNENTANGLED the Bloch angle between the originals as possibiece the
OPTIMAL COPIER Bloch angle between original and copy is half the difference

between thege Sincef,,=f=f, this means that we want
Sflzz Jf again. Hence, the unentangled optimal copier given
in Sec. IV C is optimal in all three indicators considered in
this article.

Choosing Bloch vector parameters such that Hgfl)
holds, f,,= \/f, and local fidelity is optimized, easily leads to

~ B . ~ . .
wherep;” are the copies ang{ is a helper machine state. ,q copier given in Eq(25). It is simplest to use Bloch
The only other constraint on the copier is that it must beyeaciors for this calculation.

unitary, which means that traces are preserved. This imme-
diately leads to[)iB and [)f‘ being pure because the input
states are purévia T p?2]). Furthermore,

Consider copiers producing product states of the copie
This transformation can be written

pl—plepfepl, (B1)

APPENDIX C: SOME FIDELITY-OPTIMIZED COPIERS

o o This section gives a brief summary of the fidelity-
f=(Tlp o5 T p p 5= 151y, (B2)  optimized copiers that are compared to the information-
optimized ones in Sec. V. Expressions are given in terms of
wherefy, andf, are the fidelities between, respectively, thef, the square overlap between the two input states. Much
two copy and two machine states produced after input ofnore detail is given in the literature.
originals. Thus, sincé,<1, it follows that f<f;,<1.
Let us start with optimizing for one-state information

transferl,. It is easily shown that for equiprobable input 1. The copier that optimizes the global fidelity

states,|; satisfies Eq(14a with the distinguishability pa- The quantum copying machine that optimizes the global

rameter given by fidelity between the combined state of both copies and a state
consisting of unentangled perfect copies has been found by

q=v1-f (B3)  BruRet al.[8] The copies produced af@ith the help of a

little algebra

This is most straightforward to show using the Bloch vectors

of the copies. Sincé; is monotonically increasing with, it 1—f f+ \/f

will be maximized wheng is maximized. This is wheti, 1 1+ 1+f 1+

. pi=> —| (Cla

Now let us look atl . For qubit copy states, this is again 2 f+ \/F _ 1__f
given by Eq.(A16), and since the copies are pures 1, and 1+f 1+f
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1-f  f+f
Lo 1|7 Vi+f 1+f 1t
P2721 feF 1-1 (C1b
1+f 1+f
The local fidelity is[from Eq. (47) in Ref.[8]]
Ap A 1 1-f)yi+f+f(1+ Jf
T PP )W (1+4f) |
: 2 1+f
(C2

and the one-state copied information is given by Edla
with distinguishability parameter

1-f

1+f €3

q:

PHYSICAL REVIEW A61 062304

where the angleb is defined by

Vi—1+V1-2\f+9of
NG '

The local fidelity is[rearranging Eq(C11) of Ref.[8]]

F(p.pP)=3{1+cos2¢[1 -+ VE(L+ VF)sin 241},

sin2¢= (C59

(Co)

After some algebra, one finds that
g=V1—fcos2p, (C7a
r=cos2p\1—f+(1+V)2sie24,  (CTH
O =Sin 2¢ cos 2(1+/f), (C70

The ultimate copied information is given by the expressionwhich can be used in expressiofista and (A16), respec-
(A16), wherer, the magnitude of the Bloch vectors of the tively, to find 1, andl.

copies, is in this case

Vi+f(a+2yf)

r=—m—0 9 ——r C4
1+f (C43
and the parametayy is
f+f
Rl (C4b

2. The copier that optimizes the local fidelity

As in Appendix C 1, Brufiet al. have found the copier

that optimizes the local fidelity between a copy and the origi-
nals[8,24]. From Egs(C1)—(C6), and(C12) and subsequent

discussion in Ref[8], the copies are in the states

. Sec2p(cos2p+1-f (1+ﬁ)sin2¢)
PL=7 7 (14 P)sin2¢  cos2p—1—F)'
(C5a
. Sec2p(cos2p—\1-f (1+\/f)sin2¢>>
P2=7 27\ (14 F)sin2¢  cos2p+V1—F)’
(C5bh)

3. The UQCM

The universal quantum copying machif@ copies any
two-dimensional input states with an equal, optimal, local
fidelity of 5/6. This copier is unigue among those mentioned
in this article, in that it uses a machine helper state which
becomes entangled with both copies after the process is com-
plete. Given the input stated0) used in this article, the
UQCM will create the copies

1[3+J1-f 2.f
p]_:_ ’ (C8a)
6\ 2Jf 3-2J1-f
Ly 1(3-V1-f 2.\t cob
Pr76\  20f  3+2y1-%) (C8b
To calculatel; andl,,, use
r=3, (C9b
an=3f (C99

in expressiongl4g and(Al6).
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