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We demonstrate a contradiction of quantum mechanics with local hidden variable theories for cont
ous quadrature phase amplitude (“position” and “momentum”) measurements. For any quantum s
this contradiction is lost for situations where the quadrature phase amplitude results are always m
scopically distinct. We show that for optical realizations of this experiment, where one uses homod
detection techniques to perform the quadrature phase amplitude measurement, one has an amplifi
prior to detection, so that macroscopic fields are incident on photodiode detectors. The high
ciencies of such detectors may open a way for a loophole-free test of local hidden variable theo
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In 1935 Einstein, Podolsky, and Rosen [1] presented
argument for the incompleteness of quantum mechan
The argument was based on the validity of two premise
no action at a distance (locality) and realism. Bell [2
later showed that the predictions of quantum mechanics
incompatible with the premises of local realism (or loca
hidden variable theories). Experiments [3] based on Bel
result support quantum mechanics, indicating the failure
local hidden variable theories.

One feature appears characteristic of all the contrad
tions of quantum mechanics with local hidden variable
studied to date. The measurements considered have
crete outcomes, for example, being measurements of s
or photon number. By this we mean specifically that th
eigenvalues of the appropriate system Hermitian opera
which represents the measurement in quantum mechan
are discrete.

In this paper we show how the predictions of quantu
mechanics are in disagreement with those of local h
den variable theories for a situation involving continuou
quadrature phase amplitude (“position” and “momentum
measurements. By this we mean that the quantum pred
tions for the probability of obtaining resultsx and p for
position and momentum (and various linear combinatio
of these coordinates) cannot be predicted by any local h
den variable theory. This is of fundamental interest sin
the original argument [1] of Einstein, Podolsky, and Rose
was given in terms of position and momentum measu
ments. The original state considered by Einstein, Pod
sky, and Rosen, and that produced experimentally in t
realization by Ouet al. [4] of this argument, gives proba-
bility distributions forx andp completely compatible with
a local hidden variable theory.

Second we suggest a new macroscopic aspect to
proposed failure of local hidden variable theories for th
0031-9007y98y80(15)y3169(4)$15.00
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case where one uses optical homodyne detection to rea
the quadrature phase amplitude measurement [4,5].
homodyne detection method employs a second “loc
oscillator” field which combines with the original field to
provide an amplification prior to photodetection. In thes
experiments then large field fluxes fall incident on high
efficient photodiode detectors, in dramatic contrast to t
former photon-counting experiments. A microscopic res
lution (in absolute terms) of this incident photon numb
is not necessary to obtain the violations with local hidd
variables. This is in contrast to many previously cite
macroscopic proposals [6] for which it appears necess
to resolve the incident photon number to absolute precis
in order to show a contradiction with local hidden variab
theories.

The high efficiency of detectors available in this mo
macroscopic detection regime may provide a way to t
local hidden variables without the use of auxiliary assum
tions [2,7] which have weakened the conclusions of the fo
mer photon-counting measurements. This high intens
limit has not been indicated by previous works [8] whic
showed contradiction of quantum mechanics with loc
hidden variables using homodyne detection, since th
analyses were restricted to a very low intensity of loca
oscillator field.

We consider the following two-mode entangled qua
tum superposition state [9,10]:

jCl ­ N
Z 2p

0
jr0eißlAjr0e2ißlB dß . (1)

Here N is a normalization coefficient. ThejalA, where
a ­ r0eiß, is a coherent state of amplituder0 ­ jaj and
phaseß, for a system at a locationA. Similarly jblB, where
b ­ r0e2iß andr0 ­ jbj, is a coherent state for a secon
system at a locationB, spatially separated fromA. The
© 1998 The American Physical Society 3169
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quantum state (1) is potentially generated, from vacuu
fields, in the steady state by nondegenerate parame
oscillation [10] as modeled by the following Hamiltonian
in which coupled signal-idler loss dominates over line
single-photon loss.

H ­ ih̄Esây
1 b̂

y
1 2 â1b̂1d 1 â1b̂1Ĝy 1 â

y
1 b̂

y
1 Ĝ . (2)

The â
y
1 and â1, and b̂

y
1 and b̂1, are the usual boson cre

ation and destruction operators for the two spatially sep
rated systems (for example, field modes) at locationsA,
andB, respectively. In many optical systems theâ1 and
b̂1 are referred to as the signal and idler fields, respe
tively. HereE represents a coherent driving source whic
generates signal-idler pairs, whilêG represents reservoir
systems which give rise to the coupled signal-idler los
The Hamiltonian preserves the signal-idler photon nu
ber differenceâ

y
1 â1-b̂

y
1 b̂1, of which the quantum state (1)

is an eigenstate, with eigenvalue zero. We note the an
ogy here to the single-mode “even” and “odd” cohere
superposition statesN

1y2
6 sjal 6 j 2 ald [wherea is real

andN21
6 ­ 2f1 6 exps22jaj2dg ] which are generated by

the degenerate form (put̂a1 ­ b̂1) of the Hamiltonian
(2). These states for largea are analogous to the famou
“Schrodinger-cat” states [11] and have been recently e
perimentally generated [12].

Consider the experimental situation depicted in Fig.
Measurements are made of the field quadrature phase
plitudes XA

u at locationA, and XB
f at locationB. Here

we defineXA
u ­ â1 exps2iud 1 â

y
1 expsiud; and XB

f ­

b̂1 exps2ifd 1 b̂
y
1 expsifd. Where our system is a har

monic oscillator, we note that the angle choicesu (or f)
equal to zero andpy2 will correspond to position and mo-
mentum measurements, respectively. The result for
amplitude measurementXA

u is a continuous variable which
we denote byx. Similarly the result of the measuremen
XB

f is a continuous variable denoted byy.
t of the
FIG. 1. Schematic representation of a test of the Bell’s inequality. Balanced homodyne detection allows measuremen
quadrature phase amplitudesXA

u andXB
f.
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We formulate a Bell inequality test for the experimen
depicted by making the simplest possible binary classific
tion of the continuous resultsx andy of the measurements.
We classify the result of the measurement to be11 if the
quadrature phase resultx (or y) is greater than or equal
to zero, and21 otherwise. With many measurements w
build up the following probability distributions:PA

1sud for
obtaining a positive value ofx; PB

1sfd for obtaining a
positivey; andPAB

11su, fd, the joint probability of obtain-
ing a positive result in bothx andy.

If we now postulate the existence of a local hidden var
able theory, we can write the probabilitiesPu,fsx, yd for
getting a resultx and y, respectively, upon the simulta-
neous measurementsXA

u and XB
f in terms of the hidden

variablesl as follows:

Pu,fsx, yd ­
Z

rsldpA
x su, ldpB

y sf, ld dl . (3)

The rsld is the probability distribution for the hidden
variable state denoted byl, while pA

x su, ld is the proba-
bility of obtaining a resultx upon measurement atA of XA

u ,
given the hidden variable statel. ThepB

y sf, ld is defined
similarly for the results and measurement atB. The inde-
pendence ofpB

x su, ld on f, andpB
y sf, ld on u, is a con-

sequence of the locality assumption that the measurem
at A cannot be influenced by the experimenter’s choice
parameterf at the locationB (and vice versa) [13]. It fol-
lows that the final measured probabilitiesPAB

11su, fd can
be written in a similar form:

PAB
11su, fd ­

Z
rsldpA

1su, ldpB
1sf, ld dl , (4)

where we have simplypA
1su, ld ­

R
x>0 pA

x su, ld dx, and
similarly for pB

1sf, ld. It is well known that one can now
deduce [2] the following “strong” Bell-Clauser-Horne
inequality.
S ­
PAB

11su, fd 2 PAB
11su, f0d 1 PAB

11su0, fd 1 PAB
11su0, f0d

PA
1su0d 1 PB

1sfd
# 1 . (5)
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The calculation of the quantum prediction forS for the
quantum state (1) is straightforward. We note certa
properties of the distributionPAB

11su, fd: it is a function
only of the angle sumx ­ u 1 f so we can abbrevi-
ate PAB

11su, fd ­ PAB
11sxd; PAB

11sxd ­ PAB
11s2xd; and

the marginals satisfyPA
1sud ­ PB

1sfd ­ 0.5. Results
for S are shown in Fig. 2, for the choice of measure
ment anglesu 1 f ­ u0 1 f0 ­ 2su0 1 fd ­ py4,
u 1 f0 ­ 3py4 (for example, putu ­ 0, f ­ 2py4,
u0 ­ py2, and f0 ­ 23py4). This choice allows the
simplificationS ­ 3PAB

11spy4d 2 PAB
11s3py4d. It can be

shown that for smallr0 (less than about1.5) this angle
choice maximizesS.

Violations of the Bell inequality, and hence contradic
tion with the predictions of local hidden variables, are in
dicated for0.96 & r0 & 1.41, the maximum violation of
S ø 1.0157 6 0.001 being aroundr0 ø 1.1. This is a
substantially smaller violation than obtained in the di
crete case (whereS ø 1.2) of spin measurements, consid
ered originally by Bell. The choice of Bell inequality and
quantum state to give a violation may not be optimal, b
nevertheless the possibility of a contradiction of quantu
mechanics with local hidden variables is established.

We note that the violations are lost at large cohere
amplitudesr0. In this limit the quantum probability distri-
butions forx andy show two widely separated peaks (a
indicated by Fig. 3), the11 and 21 results of the mea-
surement then corresponding to macroscopically distin
outcomes, resembling the “alive” and “dead” states of t
Schrodinger cat [11]. We obtain asymptotic (larger0) ana-
lytical forms for the probability distributions which allow
a complete search for all angles. Results indicate no v
lations of the Bell inequality (5) possible.

In fact it can be demonstrated that, for any quantu
state, there is no incompatibility with local hidden var
ables for the case where the quadrature phase amplit
resultsx andy only take on values which are macroscop

FIG. 2. Plot ofS versusr0, for the angle values indicated in
the text.
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cally distinct. In this case, the addition of a noise term
of order the standard quantum limit (this corresponds to
varianceD2x ­ 1) to the result of quadrature phase ampli-
tude measurement will not alter the11 or 21 classification
of the result. Yet it can be shown that the quantum predic
tions for the results of such a noisy experiment are give
by the quantum Wigner functionWsxA

0 , xA
py2, xB

0 , xB
py2d

for the state (1), convoluted by the Gaussian noise ter
s1y4p2d exps2fsxA

0 d2 1 sxA
py2d2 1 sxB

0 d2 1 sxB
py2d2gy2d.

This new Wigner function is always positive [14] and can
then act as a local hidden variable theory which give
all the predictions in the truly macroscopic dead or alive
classification limit.

An examination, however, of the homodyne method o
measurement of the quadrature phase amplitudes reve
a macroscopic aspect to the experiment proposed here

FIG. 3. Representation of the quantum prediction for th
probability Pu,fsx, yd of getting a resultx (horizontal axis) and
y (vertical axis), respectively, upon the simultaneous measur
mentsXA

u and XB
f, where u ­ f: (a) r0 ­ 1.1; (b) r0 ­ 2.5

showing the increasing separation of peaks and the interferen
fringes characteristic of quantum superposition states.
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optical fields. The optical realization [4,5] of the quadra
ture phase amplitude measurement (see Fig. 1) involv
local oscillator fields atA andB, which we designate by
the boson operatorŝa2 and b̂2, respectively. The mea-
surement ofXA

u proceeds when the local oscillator field a
A is combined with the field̂a1 using a beam splitter to
form two combined fieldŝc6 ­ fâ2 6 â1 exps2iudgy

p
2.

A variable phase shiftu allows choice of the particular ob-
servable to be measured. Direct detection, using two ph
todetectors, of the intensitiesĉ

y
6ĉ6 of the combined fields

and subtraction of the two resulting photocurrents results
measurement ofID ­ ĉ

y
1ĉ1 2 ĉy

2ĉ2 ­ sA
u , wheresA

u ­
â

y
2 â1 exps2iud 1 â2â

y
1 expsiud. In the limit where the lo-

cal oscillator fields are very intense one may replace t
boson operatorŝa2 andb̂2 by classical amplitudesEA and
EB, respectively. AssumingEA ­ EB ­ E, whereE is
real, we see thatsA

u ­ EXA
u . TheXB

f are measured simi-
larly to XA

u using a second beam splitter [to give field
d̂6 ­ fb̂2 6 b̂1 exps2ifdgy

p
2] and a pair of photodetec-

tors, at locationB.
The important point is that the local oscillator acts a

an amplifier prior to detection, the operatorssA
u , ĉ

y
6ĉ6

and d̂
y
6d̂6 being photon number operators which have

macroscopic scaling in the very intense local oscillato
limit [15]. Thus in these experiments large intensitie
fall incident on the photodetectors, and it is not necessa
to determine these photon numbers with a microscop
uncertainty in order to arrive at the conclusion that loc
hidden variable theories are invalid [16]. This is in contra
with the previous photon-counting experiments, and al
many previous macroscopic proposals, for which it appea
that an absolute resolution of the incident photon numb
is necessary in order to show failure of local hidde
variables. Our result then opens possibilities for testin
quantum mechanics against local hidden variable theor
in a loophole-free way using very efficient photodiod
detectors.
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