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Contradiction of Quantum Mechanics with Local Hidden Variables
for Quadrature Phase Amplitude Measurements
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We demonstrate a contradiction of quantum mechanics with local hidden variable theories for continu-
ous quadrature phase amplitude (“position” and “momentum”) measurements. For any quantum state,
this contradiction is lost for situations where the quadrature phase amplitude results are always macro-
scopically distinct. We show that for optical realizations of this experiment, where one uses homodyne
detection techniques to perform the quadrature phase amplitude measurement, one has an amplification
prior to detection, so that macroscopic fields are incident on photodiode detectors. The high effi-
ciencies of such detectors may open a way for a loophole-free test of local hidden variable theories.
[S0031-9007(98)05671-3]

PACS numbers: 03.65.Bz, 42.50.Gy

In 1935 Einstein, Podolsky, and Rosen [1] presented anase where one uses optical homodyne detection to realize
argument for the incompleteness of quantum mechanicshe quadrature phase amplitude measurement [4,5]. The
The argument was based on the validity of two premiseshomodyne detection method employs a second “local-
no action at a distance (locality) and realism. Bell [2]oscillator” field which combines with the original field to
later showed that the predictions of quantum mechanics afgrovide an amplification prior to photodetection. In these
incompatible with the premises of local realism (or localexperiments then large field fluxes fall incident on highly
hidden variable theories). Experiments [3] based on Bell'efficient photodiode detectors, in dramatic contrast to the
result support quantum mechanics, indicating the failure oformer photon-counting experiments. A microscopic reso-
local hidden variable theories. lution (in absolute terms) of this incident photon number

One feature appears characteristic of all the contradids not necessary to obtain the violations with local hidden
tions of quantum mechanics with local hidden variablesvariables. This is in contrast to many previously cited
studied to date. The measurements considered have distacroscopic proposals [6] for which it appears necessary
crete outcomes, for example, being measurements of spto resolve the incident photon number to absolute precision
or photon number. By this we mean specifically that thein order to show a contradiction with local hidden variable
eigenvalues of the appropriate system Hermitian operatotheories.
which represents the measurement in quantum mechanics,The high efficiency of detectors available in this more
are discrete. macroscopic detection regime may provide a way to test

In this paper we show how the predictions of quantumlocal hidden variables without the use of auxiliary assump-
mechanics are in disagreement with those of local hidtions [2,7] which have weakened the conclusions of the for-
den variable theories for a situation involving continuousmer photon-counting measurements. This high intensity
quadrature phase amplitude (“position” and “momentum”)limit has not been indicated by previous works [8] which
measurements. By this we mean that the quantum predishowed contradiction of quantum mechanics with local
tions for the probability of obtaining resulisand p for  hidden variables using homodyne detection, since these
position and momentum (and various linear combinationsnalyses were restricted to a very low intensity of local-
of these coordinates) cannot be predicted by any local hidsscillator field.
den variable theory. This is of fundamental interest since We consider the following two-mode entangled quan-
the original argument [1] of Einstein, Podolsky, and Rosertum superposition state [9,10]:
was given in terms of position and momentum measure- 27
ments. The original state considered by Einstein, Podol- W) = Nf [roe’s)alroe g ds. (1)
sky, and Rosen, and that produced experimentally in the 0
realization by Otet al. [4] of this argument, gives proba- Here N is a normalization coefficient. Thiy),, where
bility distributions forx andp completely compatible with o = rqe’s, is a coherent state of amplitude = |«| and
a local hidden variable theory. phases, for a system at alocatioh.  Similarly |3)z, where

Second we suggest a new macroscopic aspect to th@ = rpe 'S andry = | 8], is a coherent state for a second
proposed failure of local hidden variable theories for thesystem at a locatio®, spatially separated from. The
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quantum state (1) is potentially generated, from vacuum We formulate a Bell inequality test for the experiment
fields, in the steady state by nondegenerate parametriepicted by making the simplest possible binary classifica-
oscillation [10] as modeled by the following Hamiltonian, tion of the continuous resulisandy of the measurements.
in which coupled signal-idler loss dominates over linearWe classify the result of the measurement totbkif the
single-photon loss. guadrature phase result(or y) is greater than or equal
. Ctat . P tete to zero, and-1 otherwise. With many measurements we

H =ihE(aiby — aiby) + &b, I'" + aybi . (2)  puild up the following probability distributions?* () for
obtaining a positive value of; P2(¢) for obtaining a
positivey; and P42 (0, ¢), the joint probability of obtain-
ai'ng a positive result in botlk andy.

Thea! anda,, andh; andb,, are the usual boson cre-
ation and destruction operators for the two spatially sep

rated systems (for example, field modes) at locatians If we now postulate the existence of a local hidden vari-

and B, respectively. In many optical systems theand  _u\o theorv. we can write the probabiliti for
b, are referred to as the signal and idler fields, respec A b 5.4 (1,y)

tively. Herek i h ¢ drivi hi hgetting a resultv and y, respectively, upon the simulta-
Vely. Merer represents a conerent ariving source Whichheq,s° measurements) and Xj in terms of the hidden
generates signal-idler pairs, whilé represents reservoir

. . . . - variablesa as follows:
systems which give rise to the coupled signal-idler loss.

The Hamiltonian preserves the signal-idler photon num- s 5

ber differencei; a;-b by, of which the quantum state (1) Pog(x.y) = ] PN (0, M)py(p, M) dA. (3)

is an eigenstate, with eigenvalue zero. We note the anal-

ogy here to the single-mode “even” and “odd” cohereniThe p(A) is the probability distribution for the hidden

superposition state§*(la) + | — a)) [wherea is real  Variable state denoted by, while p{(6, A) is the proba-

andN:!' = 2[1 *= exp(—2|a|?)]] which are generated by bility of obtaining a result upon measurement atof X4,

the degenerate form (put; = b;) of the Hamiltonian given the hidden variable state Thep?(¢, A) is defined

(2). These states for large are analogous to the famous similarly for the results and measuremenBat The inde-

“Schrodinger-cat” states [11] and have been recently exPendence op?(6, A) on ¢, andpy(¢, A) on 6, is a con-

perimentally generated [12]. sequence of the locality assumption that the measurement
Consider the experimental situation depicted in Fig. 1atA cannot be influenced by the experimenter’s choice of

Measurements are made of the field quadrature phase af@rameterp at the locations (and vice versa) [13]. It fol-

plitudes X; at locationA, and X4 at locationB. Here lows that the final measured probabiliti£s® (6, ¢) can

we defineX) = a, exp(—if) + aj exp(i6); and X5 = be written in a similar form:

biexp—i¢) + B}L expi¢p). Where our system is a har-

monic oscillator, we note that the angle choideéor ¢) PLE(0. ) = [ p(NPLO. VpL(d. 1) dA.  (4)

equal to zero and- /2 will correspond to position and mo-

mentum measurements, respectively. The result for theshere we have simply4 (0, ) = [._, p2(6, A) dx, and

amplitude measuremefi, is a continuous variable which similarly for pB(¢, A). Itis well known that one can now

we denote by. Similarly the result of the measurement deduce [2] the following “strong” Bell-Clauser-Horne

X(‘Z is a continuous variable denoted by | inequality.

_ PAO.¢) — PAE0.¢) + PAE(0¢) + PALOL ) _ |

S (5)
A B
PL(0') + PY(9)
local oscillator yal oscillator
bz~ E [ a2~E
) e
A
>
g o+ o b1 B Iw ai » C+ »n
A
BS
is BS system at B system at A [
c.
/ - photodetector hotodetector T',,GA\A A
|D=S¢B= E XQB P Ip=sp =E Xp

FIG. 1. Schematic representation of a test of the Bell's inequality. Balanced homodyne detection allows measurement of the
quadrature phase amplitud&s and X .
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The calculation of the quantum prediction f®for the  cally distinct. In this case, the addition of a noise term
quantum state (1) is straightforward. We note certairof order the standard quantum limit (this corresponds to a
properties of the distributio®48 (6, ¢): it is a function  varianceA’x = 1) to the result of quadrature phase ampli-
only of the angle sumy = 0 + ¢ so we can abbrevi- tude measurement will not alter thel or —1 classification
ate PiB(0,¢) = P18 (x); P48 (xy) = P8 (—x); and oftheresult. Yetitcan be shown that the quantum predic-
the marginals satisfyP?(0) = P2(¢) = 0.5. Results tions for the results of such a noisy experiment are given
for S are shown in Fig. 2, for the choice of measure-by the quantum Wigner functio® (xg, x4, x5, x5 )

ment anglesf + ¢ = 0' + ¢' = —(0' + ¢) = w/4, for the state (1), convoluted by the Gaussian noise term
0 + ¢' =3 /4 (for example, puth = 0, ¢ = —7/4,  (1/4m?)exp(—[(x4)> + (x50 + (x0)* + (x2)?1/2).
¢’ = /2, and ¢’ = —37/4). This choice allows the This new Wigner function is always positive [14] and can

simplificationS = 3P48 (7 /4) — P48 (37 /4). Itcanbe then act as a local hidden variable theory which gives
shown that for small, (less than about.5) this angle all the predictions in the truly macroscopic dead or alive
choice maximizes. classification limit.

Violations of the Bell inequality, and hence contradic- An examination, however, of the homodyne method of
tion with the predictions of local hidden variables, are in-measurement of the quadrature phase amplitudes reveals
dicated for0.96 < ry < 1.41, the maximum violation of ~a macroscopic aspect to the experiment proposed here for
S = 1.0157 £ 0.001 being aroundry = 1.1. This is a
substantially smaller violation than obtained in the dis-
crete case (wherg = 1.2) of spin measurements, consid- 3‘(a)
ered originally by Bell. The choice of Bell inequality and
guantum state to give a violation may not be optimal, but 2}
nevertheless the possibility of a contradiction of quantum
mechanics with local hidden variables is established.

We note that the violations are lost at large coherent
amplitudesr. In this limit the quantum probability distri-
butions forx andy show two widely separated peaks (as °f
indicated by Fig. 3), thet1 and —1 results of the mea-
surement then corresponding to macroscopically distinct -1
outcomes, resembling the “alive” and “dead” states of the
Schrodinger cat[11]. We obtain asymptotic (largeana-
Iytical forms for the probability distributions which allow
a complete search for all angles. Results indicate no vio-
lations of the Bell inequality (5) possible. ~3F

In fact it can be demonstrated that, for any quantum
state, there is no incompatibility with local hidden vari-
ables for the case where the quadrature phase amplitudt L)
resultsx andy only take on values which are macroscopi-

ot

1t

2

-3k

-5 -2 5

FIG. 3. Representation of the quantum prediction for the
probability P, 4 (x, y) of getting a resulke (horizontal axis) and

y (vertical axis), respectively, upon the simultaneous measure-
mentsX; and X%, whereg = ¢: (@) ro = 1.1; (b) ro = 2.5

FIG. 2. Plot ofS versusr, for the angle values indicated in showing the increasing separation of peaks and the interference
the text. fringes characteristic of quantum superposition states.
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of noise (lack of resolution) added to the resultof
the quadrature phase amplitude measuremenx;bf(or
XfZ). However, because of the amplification, prior to
photodetection, due to the local oscillatéar this small
amount of noise inXj can, in principle, for sufficiently
large E, translate to a large amount of noise (lack of
resolution) in the detected photon numbgr



