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Quantum limits to center-of-mass measurements
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We discuss the issue of measuring the mean position (center of mass) of a group of bosonic or fermionic
quantum particles, including particle number fluctuations. We introduce a standard quantum limit for these
measurements at ultralow temperatures, and discuss this limit in the context of both photons and ultracold
atoms. In the case of non-interacting harmonically trapped fermions, we present evidence that the Pauli
exclusion principle has a strongly beneficial effect, giving rise to a 1/N scaling in the position standard
deviation—as opposed to a 1/ VN scaling for bosons. The difference between the actual mean-position fluc-
tuation and this limit is evidence for quantum wave-packet spreading in the center of mass. This macroscopic
quantum effect cannot be readily observed for noninteracting particles, due to classical pulse broadening. For
this reason, we also study the evolution of photonic and matter-wave solitons, where classical dispersion is
suppressed. In the photonic case, we show that the intrinsic quantum diffusion of the mean position can
contribute significantly to uncertainties in soliton pulse arrival times. We also discuss ways in which the
relatively long lifetimes of attractive bosons in matter-wave solitons may be used to demonstrate quantum

interference between massive objects composed of thousands of particles.
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I. INTRODUCTION

The topic of mesoscopic quantum effects is of great cur-
rent interest, especially in photonic or in ultracold atomic
systems where a large decoupling from the environment is
possible. An important degree of freedom is the average or
center-of-mass position of a large number of particles. It is
now possible to observe quantum diffraction of the center of
mass in molecules such as Cg, and related fullerenes [1].
Larger physical systems would provide an even stronger test
of quantum theoretical predictions. As well as testing quan-
tum theory in new, mesoscopic regimes, these types of ex-
periment have potential applications to novel sensors. For
example, ultraprecise measurements of position may be use-
ful in measuring gravitational interactions, or other forces
that couple to conserved quantities.

In this paper, we wish to examine the quantum limits to
center-of-mass position fluctuations. We further discuss these
limits in the context of mesoscopic systems of interacting
particles, atoms, or molecules. This is an important issue in
quantum-optical or ultracold atom environments, where
center-of-mass motion places a limit on coherence properties
[2] of photonic or atom lasers. A localized system of particles
features a dual particle and wave nature, that is, it has con-
jugate observables of momentum and position, as well as
conjugate observables of number and phase. As pointed out
by Landau and Peierls [3], free particle momentum is a quan-
tum nondemolition (QND) observable. In fact, the momen-
tum of a quantum soliton can be nondestructively measured
via the position of a probe soliton after their collision [4].
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The quantum position fluctuation increases with propagation
distance due to an initial momentum uncertainty. This places
a fundamental limit on momentum QND measurements.

We generalize the concept of the standard quantum limit
of a mean position measurement [5,6] to any kind of quan-
tum field. The standard quantum limit is defined here as the
position uncertainty of a many-body ground state for nonin-
teracting particles with a given density distribution and total
momentum. For massive particles, this corresponds to the
Heisenberg-limited uncertainty of the center of mass of a
group of noninteracting particles in an external potential, at
zero temperature. Intriguingly, we find completely different
scaling laws for different particle statistics: while bosons
haver a position uncertainty (standard deviation) that scales as
1/VN, fermionic center-of-mass uncertainties scale as 1/N
for N particles. This is caused by the particle correlations
induced by Fermi statistics. The scaling indicates that ultra-
cold fermions are the preferred system for ultrasensitive
measurements of center of mass.

A necessary requirement for quantum-limited measure-
ments is an extremely low level of fluctuations and noise,
which makes laser pulses and ultracold atoms the most rea-
sonable choices at present. As an example, the localized soli-
tons of the attractive one-dimensional Bose gas can now be
observed both in quantum-optical and in atom-optical envi-
ronments. As well as technological applications in commu-
nications, these types of soliton show intrinsic quantum ef-
fects. That is, the effects of quantum phase diffusion
(squeezing) [5,7,8] have been observed in experiments
[9-11]. Quantum correlations established by soliton collision
QND [4] have also been demonstrated in experiment [12].
Even though they involve up to 10° particles, these effects
simply do not occur in classical soliton theory.
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Phase squeezing or phase QND measurement does not
lead to center-of-mass changes, which are especially interest-
ing for massive particles, as this degree of freedom is
coupled directly to the gravity field. Due to problems in
quantizing gravity, there have been suggestions that gravita-
tional effects may lead to wave-packet collapse and/or dissi-
pation [13-18]. While this remains speculative, it is clearly
an area of quantum mechanics where there are no existing
tests. To exclude such theories, one would need to violate a
classical inequality involving mesoscopic numbers of mas-
sive particles, whose center of mass was in some type of
quantum superposition state [19]. In real experiments, weak
localization [20] can take place due to interactions with the
environment. It is at least interesting to investigate how this
may occur, as a first step towards testing more fundamental
types of localization. We note that steps in this direction have
been taken recently for noninteracting, massless particles, via
position observations with photons, at the standard quantum
limit or better [21,22].

Quantum wave-packet spreading of the center of mass is
an intrinsic quantum prediction for untrapped particles at all
particle numbers. However, this is masked by the single-
particle effects analogous to classical pulse broadening for an
optical pulse in a linear dispersive medium. A soliton or
quantum bound state can suppress this single-particle or clas-
sical pulse broadening, and allows the intrinsic center-of-
mass quantum spreading to be observed [6], in a similar way
to the known quantum noise effects found in amplified soli-
tons [23]. We find that this is an exactly soluble problem for
any initial quantum state. No linearization or decorrelation
approximation is needed, which allows us to examine quan-
tum wave-packet spreading over arbitrary distance scales. In
order to distinguish classical pulse broadening from quantum
wave-packet spreading, we calculate the standard quantum
limit of this measurement for an initially coherent soliton
pulse. This requires knowledge of the time evolution of the
density distribution for an interacting many-body system,
which is nontrivial, and requires numerical solutions.

II. CENTER-OF-MASS OPERATORS

We start by noting that while a centroid exists for any
localized, measurable quantity, it is most interesting for a
conserved quantity. For any physical system with a con-
served current four density j= (JoJ), it is possible to define a
center of charge (or mass, energy, etc.) relative to the con-
served quantities

fﬂ=ffﬂ(x)d’)x. (1)

In a quantum state that is an eigenstate of the conserved
charge with J,>0, defined on a D-dimensional space, the
definition of the centroid is

.1 A
Xj=7fXJO(X)dDX. (2)
0

After partial integration, the conservation law,
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then implies that the centroid position translates with a ve-
locity given by the spatial part of the conserved current

%4 @)
a Jy
While the concept of measuring the center-of-mass posi-
tion is well known, there are a number of issues involved.
The most obvious is that there is a difference between the
center of mass and the average position of a group of non-
identical particles. This difference vanishes for nonrelativis-
tic particles all of the same mass: for example, isotopically
pure, ultracold atoms. However, there is a real difference in
the case of particles of different masses, and for extremely
relativistic particles and photons, where the effective mass
depends on the momentum. Here the average position differs
from the center of mass. Another subtlety which this paper
treats in some detail, occurs when the system is in a quantum
mixture of different particle numbers: the effects of this are
treated in the remainder of this section.

A. Massive fields

We first consider nonrelativistic massive quantum fields

lIAf,-(x), where each component has an equal mass. The fun-
damental particle statistics can be either fermionic or
bosonic. As usual for quantum fields, the commutators are

[W,(0,%), W i(r.x")]. = 8,8 (x - x'). (%)
Introducing the particle density

A% = 2 ix) = 2 W0 Wi(x), (6)
we can define the total particle number
N= f dPxi(x), (7)

which is exactly conserved in the absence of dissipative pro-
cesses such absorption or amplification. In this paper, we will

consider cases where the system has an uncertainty in N, but
we will exclude states with zero particle number. In terms of
operational measurements with small particle numbers, this
may require postselection to exclude states of this type—
since, of course, the center of mass is undefined in such
cases.

In order to define center of mass or mean position for
systems with particle number fluctuations, several definitions
are possible, depending on measurement procedures. There
is more than one measurement procedure possible, since the
quantum state need not be an eigenstate of the number op-
erator. Hence, different number states could have an arbitrary
relative weighting.

In the absence of external potentials, systems of interact-
ing particles also have an invariant quantity due to transla-
tional invariance, which is the total momentum (in D dimen-
sions):
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bl J [0V, (0 - V0T, 01, (8)

Here we use the Einstein summation convention for repeated
indices. We use a capital letter to emphasize that this is an
extensive quantity, proportional to the number of particles.

B. Massless fields

Massless fields—photons—are the most commonly used
particles where measurements are made at the quantum level.
In this case, we can distinguish two different important
cases.

(i) Narrow band fields in one-dimensional wave guides or
fibers experience dispersion, which causes them to behave as
massive particles. In a similar way, the paraxial approxima-
tion for beams allows diffractive behavior to be treated in an
effective mass approximation. These cases can be handled in
the same way as the treatment given above.

(ii) More fundamental issues arise in free space, where
there is a long-standing fundamental problem of how to de-
fine photon position. In addition, as there is no photon mass,
even the idea of center of mass requires care. Instead, one
must either use the concept of a center of energy, or of a
center of photon number. We shall focus on the latter concept
here.

To treat the free-space average position, we can use a
conserved local density obtained from the dual symmetry

properties of Maxwell equations [24]. We introduce &,,
where o=+ 1, which are the helicity components of the com-
plex Maxwell fields in units where c=gy=uy=1, and the

corresponding complex vector potentials ./Zlg, so that
E=E+iB=VxA=§,+E..
It is easily checked from the complex form of Maxwell’s

equations that i(?é’,,/(?t=V><£g and i(?./zla/(?t=V X,zlg. The
photon density is then

(& A +E,- A, )
with a corresponding conserved current of

A g A A A A
J=2 I:(E(T,X.A,,+Af,><8(,). (10)
o 4
We note that with these definitions, the photon density is
not positive definite in small volumes and time intervals.

However, the total photon number N is well defined and
positive definite, so that a position centroid is well defined
for this conserved quantity. For the remainder of this paper
we will focus on nonrelativistic massive particles for defi-
niteness, while noting that many results that only depend on
the existence of a conserved current will hold in the general
case of a photon field.

C. Intensive position

For quantum states that are eigenstates of number with
N>0, the obvious definition is
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f xi1(x)dPx
N

™ =

(1

This is undefined for the vacuum state, but is well defined for
all other number eigenstates. For the nonrelativistic massive
particle case, this obeys the expected commutation relation
with the total momentum operator,

The presence of the vacuum in states composed of mix-
tures or superpositions of number eigenstates introduces the
requirement of deciding which relative weights to use for
different particle numbers. The important fact to note is that
the mean position of any vacuum component is undefined
and, as such, its presence does not contribute to one’s knowl-
edge of the mean position. Accordingly, as mentioned previ-
ously, we choose to work in a restricted Hilbert space which
does not include the vacuum state. Practically, this is equiva-
lent to performing heralded particle number measurements
where any null results are discarded. From a mathematical
perspective, we work with a projected density operator p’
=PpP, where P=(I-|0)(0]). In order to extract position in-
formation from linear superpositions or mixtures of number

states, we introduce the center-of-mass position operator
[25], which is well defined in our projected Hilbert space,

fxﬁ(x)de
X=—"—". (12)

N
This intensive quantity also obeys the expected commutation
relation with P:

[XA[’ﬁj]¢=ih 51/ (13)

Thus, provided any measurement of the vacuum is discarded,

x and P form a pair of canonical conjugate variables with the
dimensionless uncertainty relation

2

A h
(AFNAPY) = —

4 (14)

for states projected into our restricted Hilbert space.

D. Extensive position

Although X has the usual definition of the mean position,
its operational denominator makes it is difficult to measure
using many standard techniques, or even to represent in a
normally ordered form. We can also introduce an extensive
position operator, which produces a result proportional to the
number of particles as well as their position. We define

X = %N, (15)

which is well defined without projection in the Hilbert space.

However, X and P do not form a pair of canonical conjugate
variables, since
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[Xvisﬁj]t:iﬁ 5[]1\7 (16)

Through the uncertainty relation, we see that X is sensitive
not only to positional fluctuations but also fluctuations in the
total particle number or beam intensity:

(AXNAP?) = ——* 2< 2> (17)

Furthermore, as an extensive operator, X transforms in the
following way. In a new reference frame S’ where x'=x
+Ax, we find that

X' =X + AxN, (18)

rather than just being translated by a ¢ number.

We note that the extensive position does have a canonical
conjugate partner, in terms of the intensive or mean momen-
tum operator

. P
p=" (19)
N
with a corresponding commutator of
[X.p).=it 5. (20)

E. Quasi-intensive position operator

We will finally define a quasi-intensive position operator,
which corresponds to the typical direct measurement proce-
dures in optics. With this operator, the position is first mea-
sured with techniques that are extensive—but the final result
is normalized by the average particle number. This has the
property that in an ensemble with variable numbers of par-
ticles, more weight is given to those measurements that in-
volve the most particles. Here

X
@y

X= (21)
which can still be considered a useful measure of the mean
position of a particle distribution, especially in the limit of

large <]\A/> where total number fluctuations are suppressed. It
is interesting to note that the conjugate variable, the mean
momentum, is the same as for an extensive position. This is
analogous to the mean frequency of a laser pulse in a disper-
sive medium, which also corresponds closely to standard op-
erational measurements used in laser physics.

In order to measure fluctuations about ()A() or (i), how-

ever, care must be taken due to the fact that X transforms in
the following way under translation:

L N
X' =X+Ax—. (22)
(N)
By considering fluctuations about x" =0 in a reference frame
where x'=x—(X), we define
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" (23)
(N)

and thus minimize the number fluctuation contribution. Fol-

lowing from Eq. (17), this obeys the uncertainty relation

h2<1(]2>

(AZPNAP) = —
4Ny

as the total number and momentum operators commute.
In order to avoid complications arising from this issue, we
will only consider isolated systems where it is always pos-

sible to find an inertial reference frame in which (X)=(P)
=0.

III. QUANTUM LIMITS ON POSITION UNCERTAINTIES

Intrinsic quantum uncertainty in the results of projective
measurements is perhaps the most striking difference be-
tween quantum mechanical observables and classical vari-
ables. Here we seek to characterize this uncertainty in the
center-of-mass (c.m.) measurement by introducing a stan-
dard quantum limit to the variance in the distribution of re-
sults. This is not a lower bound—there is none—but rather a
natural limit that one can expect to achieve using standard
cooling and/or stabilization methods. The question of exactly
which state to use to calculate such a characteristic c.m. is
difficult to answer uniformly, especially as the states acces-
sible to bosonic systems are different to those accessible to
fermionic systems.

For a system with known density distribution and ex-
change statistics, we define the standard quantum limit to the
c.m. uncertainty to be the variance remaining when a nonin-
teracting system of the same particles is reduced to zero tem-
perature in an external potential that reproduces the given
density distribution. It is important to note that this definition
makes no restriction on the statistics of the characteristic
system. However, we will find that the statistics do have a
large effect on the way that the quantum limit scales for a
given density.

In the following analysis, we consider the variance in the
intensive mean position operator, in the form

|Ax|2—]$dedey{Ax Aya(x)i(y)}. (24)

Rearranging this expression by using normal ordering and
commutators gives the result that

1 . A
|AR]> = —(NG? +:|AX[%), (25)
N2
where we define the particle density variance operator
1
& =— | d°x{|Ax*i(x)} (26)
N

and the normally ordered c.m. variance
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:|A)A(|2::dedeyAx~Ay2 \f’j(y)‘f';'(x)\ffj(x)\f’i(y).
ij

(27)

Note that the exact operator ordering in the last expression is
important if the decomposition is to be correct for both
Fermi and Bose field operators.

A. Bosonic fields

The simplest configuration for a system of degenerate
bosons has all particles described by a single normalized
mode function y(x). Thus, the characteristic states consid-
ered here are formed using functions of the creation operator

at=[dPx{x(x) ¥ (x)}.

1. Number states

Zero temperature bosonic number states can expressed in
the following way:

[P
IN) = —=(a,)"]0). (28)
VN
Evaluating the c.m. variance of this state using the above
decomposition is straightforward as the expectation value of
the normally ordered term :|AX|*: vanishes, leaving

0.2

(AxP) = . (29)

where 02=(5?).

2. Coherent states

For bosons, the second term of Eq. (25) also vanishes for
any coherent state of the field operators, given our comoving
reference frame. Here we define a coherent state using a
projection, as explained earlier, which projects out the
vacuum state in order to correspond to a heralded or postse-
lected measurement. Such states can be formally defined as

: o Laal]"
jahp=[el 117123 2= o).
n=1 .

(30)

This state can be viewed as a suitable reference state for
quantum noise, in which the uncertainty in a position mea-
surement is governed entirely by the spread in the particle
distribution, |x(x)|>. After normalizing by the particle num-
ber, we find

1
(A% = o*( — (31)
This is different from the following result, obtained by con-
sidering the variance in the quasi-intensive position operator

X which for the coherent state above is given by

i O
(AXP)=—.

(32)
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FIG. 1. Deviation of the variance (relative to the wave-packet
variance, o2) of the quasi-intensive c.m. coordinate (dashed) from
the true intensive c.m. coordinate (solid) for a heralded coherent
state.

From the graphical comparison shown as Fig. 1 it is clear
that the standard quantum noise limit for the extensive
(quasi-intensive) position measurement is lower than that for
the intensive position measurement. This can be understood
as a consequence of the fact that an extensive position mea-
surement for a coherent state effectively weights all indi-
vidual particle position measurements equally. This is advan-
tageous for a coherent state—as in a laser pulse—where all
particles arrive independently, and carry the same informa-
tion. However, not all pulses have the same number of inde-
pendent particles. An intensive measurement weights all col-
lective particle position measurements equally, regardless of
particle number. This gives less weight per particle measure-
ment when the particle number is large, and hence is less
than optimal.

B. Fermionic fields

Identifying a characteristic c.m. uncertainty for a cold
Fermi gas is a natural extension to the above discussion. We
therefore consider a spin-polarized gas of N identical fermi-
ons at zero temperature. In other words, we consider a sys-
tem in which all modes below the characteristic Fermi en-
ergy contain a single fermion each, while those above this
energy are vacant. Using the Hartree-Fock assumption of
wave-function factorization, this state can be written

N-1
W) = (H a})lm
j=0

where the fermion creation operator for the jth free-particle
energy level is defined as

(33)

il = f dPxx;(x) ¥ (x) (34)
and y;(x) is an orthonormal set of mode functions (energy
eigenstate basis).

We now calculate the expectation value of the mean po-
sition variance operator given by Eq. (25). For the first term
in this equation, we employ the commutation relation

[‘f’(x),éjL:Xj(x) to show that
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N-1
T[TV =3 (= 1x;(0[w ), (35)
j=0

where |‘P(_7))=(H§CV=_01(CQZ)("’SJ’<))|0). Taking the inner product
of this result with its conjugate leads to

N-1
?=23 | exaxPly el (36)
=0

To evaluate the second term in the expectation value of
Eq. (25) we consider the action of two Fermi field operators
on the system state vector:

N
V(y)W(x)[ WMy = D) (= 1)y 0k=D)( - i)
k=1
X x;(%) xi(y) [ W) (37)

Again taking the norm of the result, we find

N
CIXPy =2 | @xdPyix - ylx ) Plxdy)?

k=1
= X; X)X x ¥ x; W1 (38)

Up until now, the single particle basis y;(x) has been ar-
bitrary. For definiteness, we will assume that the functions
)(j(x)=<x| J) are energy eigenstates of a simple harmonic os-
cillator of mass m and frequency w. That is,

1N—l ‘ ‘ lN_l .
P= 2 | PP = G,

where we have also defined the first quantized position op-
erator G=(g,.q,,4.) such that §,|x)=x,|x). Recalling that
this operator can also be expressed in terms of raising (&L)
and lowering (&,) operators, we find

1 % N-1 D .
s 3 3 Wil + 61}l

and hence the variance due to the wave-packet extent is in
this case

D#
=——N. (39)
2mw
The normally ordered component of the c.m. variance can
be evaluated using a similar approach. The first line in Eq.
(38) vanishes due to the odd parity of the integrand. The
remaining term gives

N-1 D

CXPY== 2 D Gl

k=0 u=1
Dh

N-1
== M_w%o LG+ 1)1 g+ 70—t 4

which after combining the two terms in brackets leaves
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CIXPy=- zD—ﬁN(N— 1). (40)
maw

Taking into account spin degeneracy of an S-component
Fermi gas, which gives rise to S independent measurements
each with N/S particles, the c.m. variance for an N-particle
Fermi gas at zero temperature held in an harmonic trap is

Y
(JAR]?) = IR (41)

The contribution from the normally ordered term vanishes
for N=1 and is less than zero for all N> 1. As this term
always vanishes for a bosonic number state, while the wave-
packet variance is identical for a bosonic gas constrained to
the same density profile as the fermionic gas we have just
considered [i.e., (ﬁ(x))=2?i1 | x;(x)[*], it is clear that the stan-
dard quantum limit for c.m. measurements is intrinsically
lower for fermions than for bosons. In the special case of
non-interacting, harmonically trapped fermions, the position
variance is N times smaller than for bosons with the same
density variance.

IV. QUANTUM WAVE-PACKET SPREADING

In pure state evolution, any increase in the uncertainty
above the standard quantum limit is regarded as originating
in quantum wave-packet spreading of the center of mass. We
thus define

oom = (AX?) - O'EQL (42)

to measure this phenomenon. We note that states for which
oou>0 are the “strange quantum states” which are men-
tioned in the photonic case by some previous workers [6],
and also play a role in the theory of quantum nondemolition
position measurements and gravity-wave detection. This
must be carefully distinguished from uncertainties in mixed
states, which are not caused by quantum superpositions.

A similar property to quantum wave-packet spreading is
already known, and observed experimentally. In the Gordon-
Haus effect [23] in amplifying optical fibers, the soliton time
of arrival is perturbed by the effect of laser amplification.
Soliton timing jitter of this type is an extrinsic property of
the amplifying system. Instead, we will treat the intrinsic
quantum effects which are present even in the absence of the
spontaneous emission noise of a laser amplifier.

To solve for the time evolution of the c.m. uncertainty of
arbitrary states, we first note that Eq. (4) can be directly
integrated to give the following result, for any (effectively
nonrelativistic) system prepared in an eigenstate of the total
particle number operator:

A

P
Xn(1) = Xn(0) +1—,
R(0) = %0(0) + 1

where m can be either the mass of an atom or the effective
mass of a polariton, as discussed in Sec. II A above. For
extreme relativistic or massless photon propagation, the lack
of a longitudinal dispersion mechanism implies that wave-
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packet spreading is analogous to diffraction, and occurs
transversely to the propagation direction. This must be
treated using the conserved number density current operator
of Eq. (10).

This result can be generalized to other states, provided
that the total number is conserved during the evolution. Un-
der this condition, the Heisenberg picture evolution of the
intensive and quasi-intensive mean position operators are,
respectively,

X(1) =x(0) +¢ (43)

A

mN

X(1) = X(0) +¢ (44)

A

m{N)

In the pulse frame, taking the squares gives the evolution of
the (true intensive and quasi-intensive) mean position:

(8ROP) = (RO)P) + (%(0)- B+ POV

PTEIS
+ %<|P| /N7, (45)
(8ZOP) = (EO)F) + (£0) - P+ - 20)/()
TN
+ (R, (46)

Bosonic coherent state evolution. When the system is ini-
tially prepared in a coherent state [projected to remove the
vacuum state, as in Eq. (30)], the mean position uncertainties
evolve as

. 1 ht fit\?

<|Ax(t>|2>P=A—[a+ﬂ—+y(—)], )
(N)p mn

where «a, B,y are functions of the initial wave-packet shape

only. These are given by

a- f PP,

B=i | x-[(VX ())x(x) - x x)(Vx(x)]d"x,

7=f |V x(x)*d"x,

where x(x) is again the normalized spatial mode in the co-
moving frame.

This result agrees with previous approximate linearized
results obtained for initial coherent solitons [5], but is much
more general. It is valid for any initial coherent state, at large
photon number, independent of the nonlinear interaction, due
to the fact that the coefficients depend only on the initial
coherent state. If we recall that the Hamiltonian corresponds

PHYSICAL REVIEW A 75, 033617 (2007)

to coupled propagation of massive bosons, then the reason
for this exact independence of the coupling is transparent.

The definition of X corresponds to a center-of-mass measure-
ment, which never depends on the two-body coupling. How-
ever, the standard quantum limit does depend on the nonlin-
earity. This is because the coupling changes the pulse-shape

(‘ffT(x)\f’(x)>, as an initially coherent pulse with uncorrelated
bosons evolves into a correlated state. Thus, for example, if a
one-dimensional (1D) coherent source produces a sech input
pulse, so that y(x)=sech(x/2)/2, then a=7*/3 m?; B=0; y
=1/12 m~2. This is not a minimum uncertainty state, as

(AX(0)) (AP, = 736 =0.27415 ... >0.25. (48)

Coherent Gaussian input pulses, on the other hand, are a
minimum uncertainty state in momentum and position, as
one might expect. However, these have a large continuum
radiation when used to form solitons. This leads to a para-
dox: the sech-type coherent soliton has a larger uncertainty
product than a coherent Gaussian pulse, yet experimentally
appears more localized.

More complex input states than coherent states can be
considered, and they also can be treated exactly. For ex-
ample, Haus and Lai [5] have considered an input state of
spatially correlated photons, consisting of a superposition of
eigenstates of the inferacting Hamiltonian. In this case, the
mean pulse shape is a sech pulse. However, due to boson-
boson correlations, the resulting state is a minimum uncer-
tainty state in position and momentum [26]. It is unlikely that
any existing laser source can produce the required correla-
tions. Nevertheless, this example shows that, when dealing
with correlated states, it is possible to reach the minimum
uncertainty limit with a non-Gaussian pulse shape.

V. SOLITON PROPAGATION

We next consider weakly interacting particle distributions
confined to a single transverse mode of a waveguide, which
can therefore be treated by an effective one-dimensional field
theory. Examples of such systems include photonic wave
packets in single-mode optical fibers and atomic Bose-
Einstein condensates (BECs) moving in 1D waveguides.
Such physical systems have the property that they can form
solitons, in which the classical wave-packet spreading is
minimized, thus forming excellent candidates for observation
of these center-of-mass uncertainties.

A. Effective field theory

Our starting point is the standard Hamiltonian operator
describing a 1D ensemble of spinless bosons which interact
through a simple S-function potential. In terms of a dimen-
sionless particle density amplitude, (}, the Hamiltonian can
be written

A=y [ agdi- b apaE. @)

where the field operators have the commutation relation
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[be(7), bl ()] = %_5@— ). (50)

Heisenberg’s equations of motion for the field operators are
then

i57$§=ﬁ[(2’§’1:1]~ (51)

These equations simultaneously describe at least two physi-
cally distinct many-body systems, the details of which are
implicit in the characteristic time #,=¢/7 and length xy=x/{
which link the physical and dimensionless coordinate sys-
tems. Together with the mean particle number 7 and the sign
of the nonlinearity, these scaling factors completely specify a
particular system.

Loss (or gain) mechanisms can be formally incorporated
into this model by including terms in the Hamiltonian which
couple the system to external degrees of freedom. After trac-
ing over these reservoir states, this procedure leads to a mas-
ter equation for the reduced density operator in generalized
Lindblad form, which includes c-number damping coeffi-
cients. Although these are frequently added in an ad hoc
fashion, it is important to note that in doing so one implicitly
assumes that the reservoir is at very low temperature and has
no thermal contribution to the system modes [27].

B. Numerical results

Typical results for the mean position variances during the
propagation of a 10* particle coherent state soliton with ini-
tial shape (@):% sech(%g’) are shown in Fig. 2(a). Here the
dashed line represents the analytic solution for the total vari-

ance <A3%2>/x(2), while the solid lines are numerical results
generated using a positive-P [28] stochastic computer simu-
lation equivalent to the quantum nonlinear Schrodinger equa-
tion [7,29]. These results include the total variance (in com-
plete agreement with the analytical result), the standard

quantum limit o%,, and the measure of quantum wave
packet spreading oy, For comparison, Figs. 2(b) and 2(c)
display the evolution of these variances for wider and nar-
rower pulses than the classical soliton solution.

The standard quantum limit for the soliton is constant,
which indicates each soliton envelope remains nearly invari-
ant; as one might expect from a classical analysis. This is a
remarkable macroscopic quantum effect. An optical coherent
state soliton consists of linear superpositions of continuum
photons and different number-momentum eigenstates. This is
clearly different to a classical soliton with frequency jitter,
yet it behaves very similarly as far as the center position is
concerned. On the other hand, the standard quantum limit for
a pulse in a linear medium increases in the same way as the
soliton quantum wave-packet spreading, due to the disper-
sive spreading in the average intensity. In the linear case, an
initial coherent state remains coherent, so the increased
quantum positional uncertainty can be attributed to the shot-
noise error intrinsic to the detection of a pulse whose enve-
lope is not sharply localized.

This indicates that the intrinsic quantum wave-packet
spreading can be observed only for the soliton, where it is
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FIG. 2. Mean position variances for 1D coherent pulses of i
=10* particles propagating in a dispersive medium. The three fig-
ures correspond to three different wave-packet shapes: (a) the soli-
ton solution to the 1D nonlinear Schrodinger equation ((Z))
=% sech(%{), (b) a wider pulse of the form (({)) o sech(i{), and (c)
a narrower pulse {$(£)) o sech(¢). The solid lines represent the ana-
lytically determined total variance <A3A€2)/x(2,, while the dashed and
dash-dotted lines represent the numerical results for the classical
(o‘éQL/xg) and quantum (oQQM/x%) contributions, respectively.

easily distinguishable from coherent shot-noise effects. How-
ever, this does not mean that a quantum soliton is unstable.
Each soliton preserves its soliton pulse shape. In this sense,
the soliton quantum diffusion is different from classical pulse
broadening due to linear dispersion. In fact, in the case of the
correlated initial state, the second-order and the fourth-order
correlation functions are invariant [30].
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VI. PRACTICAL EXAMPLES

In this section we consider some practical examples and
numerical estimates with currently available experimental
technologies.

A. Photonic systems

In the optical case, the soliton propagation model de-
scribes a distribution of interacting photons (or strictly, po-
laritons) propagating in a single-mode fiber with a third-
order Kerr nonlinearity, x'*. Here the sign of the interaction
term is positive for normal dispersion and negative for
anomalous dispersion. For x® soliton propagation, we re-
quire the carrier frequency to be inside the anomalous dis-
persion regime.

Typical orders of magnitude of soliton parameters are 7
=107, 1,=10""% s, xo=1 m. With these parameters, we obtain
a standard quantum limit of 10® m for a single coherent
pulse. In 1 km of propagation, the wave packet would there-
fore spread to 10> m, much greater than the standard quan-
tum limit. Although still less than the actual soliton extent of
10~* m, this is a remarkably large quantum wave-packet
spreading in a composite object of 10° particles. An experi-
ment on quantum-mechanical wave-packet spreading in a
composite object of this type (such as that described in [6])
would test quantum mechanics in a region of much larger
particle number than previously achieved.

Unfortunately, however, even fiber attenuations lower
than the usual 0.1 dB/km translate to losses of over 107 pho-
tons from such a pulse over this distance. Since each particle
lost can be used to obtain information about the mean posi-
tion of a pulse, these losses would destroy the coherence
properties of a wave packet. Even so, the remaining statisti-
cal uncertainty is a practical concern—it is, for example,
likely to have a severe effect on the error rate in pulse-
position logic [31]. The effect may be enhanced by using
dispersion-engineered fibers [6].

B. Degenerate Bose gases

The same effective field theory can also describe a dilute,
single-species gas of massive bosonic particles, interacting
through low-energy S-wave (I=0) scattering events and held
in a potential which confines the particles to a single trans-
verse mode but allows longitudinal propagation. In this case,
one finds that

ﬁZ
Xo= — N
mngip
ﬁ3
h=""%73 > (52)
mn-gip

where m is the single-particle mass, and g,p=2%a,w is the
effective 1D interaction strength [32]. For temperatures well
below the BEC transition temperature, such gases are usually
considered to be the matter-wave analog of coherent laser
output, and are thus sometimes referred to as atom lasers.
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Although there are various paths one can take to realizing
matter-wave solitons, we consider here only bright solitons
in the absence of any periodic potential—i.e., solitons for
which the required nonlinearity is provided by an attractive
interaction between atoms. Such solitons have been observed
[33,34] in BECs of "Li atoms, where the presence of a Fes-
hbach resonance is used to tune the effective scattering
length from repulsive to attractive. These experiments
present the very real possibility of directly observing the
quantum dispersion of a mesoscopic object composed of
massive particles, thanks to the extremely slow rate of atom
loss from these systems. For instance, the total predicted loss
rate for a trapped cloud of attractive 'Li atoms of roughly the
same number as that in [33] is around 50/s [35]. (This is
analogous to an optical pulse traveling along a fiber with an
attenuation of less than 107° dB/km.)

Drawbacks in dealing with atomic clouds include the ef-
fect of finite temperatures. This places a classical uncertainty
in the center-of-mass momentum and therefore leads to a
classical spread in center-of-mass position over time, obscur-
ing the quantum diffusion. For a 1D gas of N bosons of mass
m and temperature 7, the equipartition theorem gives

. |ksT
o=\ "=,
th mN

where g, is the linear rate of increase in the thermal mean
position uncertainty.

For example, using numbers from the experiment of
Khaykovich er al. [33] and assuming a condensate tempera-
ture of 0.57,.=80 nK, we find that the standard deviation in
the mean position due to thermal noise increases linearly at a
rate of 1.3X 107 m/s. This is quite fast, when compared to
the effect of quantum spreading of the soliton wave packet,
which increases the standard deviation at the much slower
rate of 42X 107 m/s. As this is an order of magnitude
smaller than the thermal uncertainty, whose growth rate goes
as the square root of the cloud temperature, this implies that
temperatures less than 1 nK are required to directly observe
quantum wave packet spreading. Although this is well below
what is achieved in current "Li experiments, Leanhardt et al.
[36] have achieved temperatures of less than 0.5 nK in con-
densates of spin-polarized **Na, indicating that it may not be
impossible to achieve such low temperatures in matter-wave
soliton experiments. We note that adiabatic changes in the
interaction strength could be used to compress the soliton,
thereby increasing the quantum position uncertainty relative
to the standard quantum limit.

(53)

C. Degenerate Fermi gases

Ultracold degenerate Fermi gases have recently been ob-
tained in several laboratories [37,38]. The prospects for fer-
mionic solitons have not yet been established clearly, al-
though tunable Feshbach resonances with both attractive and
repulsive interactions are known to exist. The species ob-
served experimentally include 40K SLi, and *He". Atom cor-
relations [39] have already been experimentally observed in
optical measurements with “°K. One of the most interesting
cases is metastable fermionic helium, in which atoms can be
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FIG. 3. Possible soliton double slit interference experiment. The
soliton wave packet (I) broadens over time due to the linear in-
crease in the quantum uncertainty in the mean position. Lasers then
eliminate solitons outside of two “slits” (II). Any remaining soliton
is left to propagate until it undergoes absorption imaging (III).

counted directly using multichannel plate detectors [38]. This
affords an interesting possible avenue to testing the predic-
tion that center-of-mass fluctuations are reduced for fermions
relative to bosons.

D. Double-slit interference of soliton *“particles”

Provided one could overcome the finite temperature diffi-
culty, it would be extremely interesting to conduct double slit
interference experiments with such large quantum objects.
One possible implementation of this idea—essentially an
atomic implementation of the fiber experiment proposal in
[6]—is shown in schematic as Fig. 3. Here a matter-wave
soliton is allowed to propagate without disturbance until its
quantum wave packet is large compared with the soliton
width. A tightly focused laser pulse is then used to remove
the central and outer elements of the distribution, effectively
creating a pair of apertures through which the remaining
components of the distribution pass. At some later time, the
distribution is imaged and the mean position of the soliton
measured. Another approach—provided the separation was
large compared to the soliton size—would be to use temporal
switching of a localized reflective potential, in order to only
affect one part of the quantum soliton superposition. Averag-
ing over many shots should then produce an interference
pattern with any thermal effects being manifest as a loss in
fringe visibility.

One of the primary challenges one would face in conduct-
ing this experiment would be addressing the fact that its
duration needs to be less than the average particle lifetime in

PHYSICAL REVIEW A 75, 033617 (2007)

order to maintain coherence, while still long enough to allow
sufficient quantum wave-packet spreading. A possible solu-
tion might be to use a blue-detuned laser to provide a small
repulsive potential near the center of the wave packet to en-
hance the broadening and thereby reduce the length of time
required to produce an interference pattern. This technique
might also allow one to forgo the use of destructive laser
pulses to create the apertures by instead relying on this re-
pulsive potential to separate the center of mass wave packet
into two components. Another technique which appears pos-
sible, is to employ the recently proposed soliton quantum
beam splitter [40] to initially separate two quantum soliton
components based on their velocities, prior to subsequent
recombination.

A related challenge would be resolving the resulting
fringes, as their width is inversely proportional to particle
number and limited by the trap lifetime through the maxi-
mum length of the experiment. (This can be shown by treat-
ing the soliton as a de Broglie wave of mass mN; m and N
being the single-particle mass and the total number of con-
stituent atoms, respectively.)

Despite these issues, such an interference pattern would
provide smoking gun evidence that quantum mechanical su-
perpositions of massive composite objects of mesoscopic
scale had been achieved [41].

VII. SUMMARY

In summary, quantum wave-packet spreading is a remark-
able macroscopic quantum effect. It provides a fundamental
limit—independent of amplifier noise—both to high-speed
communications in dispersive waveguides, and to applica-
tions of atom lasers. Since it provides a means by which
quantum mechanics can couple to the gravitational field, it
may also provide a route to new tests of quantum mechanics.
Of more practical interest is the fact that the standard quan-
tum limit for center-of-mass measurement variance is highly
sensitive to particle statistics. It is decreased by a factor of N
when the particle statistics are fermionic. This appears test-
able in atom-counting experiments with metastable *He.
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