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We perform the first numerical three-dimensional studies of quantum field effects in the Bosenova experi-
ment on collapsing condensates by E. Donley et al. �Nature �London� 415, 39 �2002�� using the exact
experimental geometry. In a stochastic truncated Wigner simulation of the collapse, the collapse times are
larger than the experimentally measured values. We find that a finite temperature initial state leads to an
increased creation rate of uncondensed atoms, but not to a reduction of the collapse time. A comparison of the
time-dependent Hartree-Fock-Bogoliubov and Wigner methods for the more tractable spherical trap shows
excellent agreement between the uncondensed populations. We conclude that the discrepancy between the
experimental and theoretical values of the collapse time cannot be explained by Gaussian quantum fluctuations
or finite temperature effects.
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I. INTRODUCTION

Experimental progress in dilute gas Bose-Einstein con-
densates �BECs� has recently allowed increasingly detailed
studies of the quantum nature of the atomic field �1–4�. This
has been accompanied by advances in the numerical treat-
ment of many-body quantum field theory applied to BEC
dynamics, most notably in a better understanding of phase
space methods �5� and Hartree-Fock-Bogoliubov theory �6�.
Therefore, experiments in which the physics is sufficiently
straightforward that quantitative agreement with many-body
quantum theory can be expected are especially appealing.

In this paper we extend our previous analyses �7,8� of one
of these: The JILA Bosenova experiment of Donley et al. �9�,
in which 85Rb BECs were made to collapse by switching
their atomic interactions to attractive. Many interesting phe-
nomena associated with the collapse, like bursts and jets,
have attracted widespread attention. These have been under-
stood qualitatively using a variety of models �7,8,10–23�.
However, precise quantitative agreement, of the kind sought
in this paper, has not been fully achieved.

Here we are concerned with a quantitative description of
the most basic aspect of the collapse experiment: The time to
initiation of the collapse, tcollapse. The abrupt onset of atom
losses in the experiment allows a precise measurement of
this time. It has previously been shown that the Gross-
Pitaevskii �GP� theory substantially overestimates these col-
lapse times �7�. However, quantum corrections in the frame-
work of time-dependent Hartree-Fock-Bogoliubov �HFB�
theory were shown not to accelerate the collapse of a BEC in
a spherically symmetric trap �8�. Here we investigate the
collapse in a cigar shaped trap, exactly as in the experiment.
Our simulations use the stochastic truncated Wigner approxi-
mation �TWA�, with the experimental parameters. We find

that the inclusion of quantum effects does not yield results in
agreement with the experiment. Therefore, for the Bosenova
experiment, despite an excellent qualitative understanding,
we do not yet have quantitatively precise theoretical models
for even the simplest aspects. The implications of this are
discussed in the Conclusion.

We also compare the TWA with the HFB formalism for a
spherically symmetric trap. We find that the quantum deple-
tion predicted by both methods agrees very well. As both
methods independently confirm an excited state population
insufficient to accelerate the collapse, we can rule out zero
temperature depletion as a mechanism for collapse accelera-
tion.

Moreover, using both quantum field methods we show
that the initial presence of a thermal cloud increases the pro-
duction rate of uncondensed atoms. This results in a reduc-
tion of the condensate population just before collapse, which
in principle could appear as a slightly accelerated collapse.
However, as we explain in Sec. VI, this effect would be
difficult to detect in an experiment. Irrespective of this, even
for temperatures about three times higher than the experi-
mentally measured temperature of T=3 nK, the acceleration
of the collapse due to depletion is insufficient to bring the
theoretical and experimental results into agreement.

In summary, we present a careful quantitative study of the
best characterized experimental data in the Bosenova experi-
ment: The collapse time. We find that not only the GP model,
but also the HFB and TWA theories fail to explain the col-
lapse times. Further experimental and theoretical work
should resolve this unsatisfactory situation.

This paper is organized as follows. In Sec. II we give a
brief overview of the Bosenova experiment. Section III con-
tains the theoretical background of the TWA and HFB meth-
ods for the quantum field description of BECs. This is fol-
lowed in Sec. IV by a discussion of the numerical limitations
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of the TWA. Sections V and VI contain the results of the
TWA for the collapse of a BEC in a cigar trap. Finally in Sec.
VII we report on the comparison between HFB and TWA in
a spherically symmetric case.

II. THE BOSENOVA EXPERIMENT

In the experiment �9�, a stable 85Rb condensate was pre-
pared with scattering length as=0 using a Feshbach reso-
nance, before as was switched to a negative �attractive� value
as=acollapse. The resulting collapsing condensate was ob-
served to lose atoms until the atom number was reduced to
about the critical value below which a stable condensate can
exist �9�. Usually the remnant atom number was found to be
slightly greater than the critical value, a puzzle which has
only recently been explained, with the help of a new experi-
ment �24�, by the formation of multiple bright solitons.

The onset of atom number reduction is quite sudden. After
the change in scattering length a few milliseconds of very
little loss is observed. This is followed by a rapid decay of
condensate population �within �0.5 ms� after which the con-
densate stabilizes again. This behavior results from the scal-
ing of the loss rate with the cube of the density, the peak
value of which rises as 1 / �tcollapse− t� near the collapse point
�10�. The sudden onset of atom loss allows a precise defini-
tion of the collapse time tcollapse, as the time after initiation of
the collapse �as→acollapse� up to which atom loss remains
negligible. In this paper we focus our attention primarily on
a case with acollapse=−10a0, where a0 is the Bohr radius. For
this case the experimentally measured tcollapse is �6±1� ms
�9,25�, while Gross-Pitaevskii studies found it to be about
10 ms �7�.

A quantitative result of the experiment is the dependence
of tcollapse on the magnitude of the attractive interaction, pa-
rametrized by the �negative� scattering length acollapse. These
measurements are performed starting with Nini=6000 atoms
in an ideal gas state, i.e., the interaction between atoms is
tuned to zero. The tcollapse data points presented in �9� have
undergone one revision of their acollapse values by a factor of
1.166�8� due to a more precisely determined background
scattering length �25�.

Other experimental features like the bursts and jets men-
tioned in the Introduction have also been measured in great
detail, tempting quantitative explanation. However, the HFB
and TWA methods used in this paper become impractical
soon after the initiation of collapse, and are therefore unsuit-
able for analysis of the full collapse, even if they correctly
modeled the collapse times. References �8,17� review the
state of theoretical studies of the Bosenova experiment.

III. QUANTUM FIELD MODELS OF A HARMONICALLY
TRAPPED BEC

The Hamiltonian for a Bose gas of interacting atoms in an
external trapping potential V�x� is given by

Ĥ =� d3x �̂†�x�Ĥ0�̂�x�

+
U0

2
� d3x �̂†�x��̂†�x��̂�x��̂�x� ,

Ĥ0 = −
�2

2m
�2 + V�x� . �1�

Here �̂�x� ��̂†�x�� is the field operator that annihilates
�creates� a boson at position x, m is the atomic mass, and
U0=4��2as /m is the interaction strength with the s-wave
scattering length as. In the following we use parameters cor-
responding to the collapse experiment �9�. The 85Rb atoms
with m=1.41�10−25 kg are confined in a cigar shaped cy-
lindrically symmetric trap V�x�=m���

2 r2+�z
2z2� /2, where

the trap frequencies are ��=17.5�2� Hz and �z=6.8
�2� Hz. For comparative purposes, we additionally con-
sider a spherical trap with the geometric mean frequency �̄
= ���

2 �z�1/3=12.8�2� Hz in Sec. VII.
In the actual BEC collapse atom losses due to three-body

recombination play a crucial role. These losses are taken into
account in the master equation for the time evolution of the
system’s density operator �̂ �26�:

d�̂

dt
= −

i

�
��̂,Ĥ� +

K3

6
� d3x�2��̂�x�3����̂†�x�3� − ��̂�x�3�

���̂�x��� − ���̂†�x�3���̂�x�3�� . �2�

The three-body loss constant K3=1�10−39 m6 s−1 is chosen
as in �7�. K3 is not very well constrained experimentally, but
in simulations its value can be varied by factors of 10 to 100
without significantly affecting the collapse time �7�. The rea-
son for this is that the three-body loss acts only as a diag-
nostic for a rapid increase in density at the point of collapse.
In the time leading to this increase, the density of the con-
tracting BEC remains low enough for three-body loss to play
no role in the dynamics. Only at and after the actual time of
collapse does the precise value of K3 become relevant.

In the following subsections we describe two different
approaches to finding approximate solutions of the quantum
evolution given by Eq. �2�.

A. Truncated Wigner method

To obtain the time evolution of �̂ we may represent �̂ in a
suitable phase space �5�. In this case we make use of the
Wigner representation. We define the multimode Wigner
function:

W��	k�,�	k
*�� = 	

k

� 1

�2d2
k�exp
�
k


k
*	k − 
k	k

*�
� Tr
exp
�

j


 jâj
† − 
 j

*âj��̂� . �3�

Here âj
† �âj� creates �annihilates� atoms in the jth single par-

ticle mode. These may be eigenstates of the harmonic oscil-
lator or position eigenstates on a discrete grid. Using this
representation it is possible to obtain the evolution of
W��	k� , �	k

*�� from Eq. �2�. If the resulting equation is trun-
cated by neglecting derivatives higher than second order
with respect to the 	k, it takes the form of a Fokker-Planck
equation �FPE�, which can then be mapped onto a stochastic
differential equation �SDE� �5�. The validity criteria for the
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truncation and details of the procedure are discussed in Refs.
�27–29�.

Other theoretical approaches, such as the positive-P or
gauge-P phase space methods �30,31�, can include the full
quantum evolution of the s-wave scattering physics, but still
necessitate an approximate description of three-body losses.
We have implemented both these methods for a one-
dimensional, and also for a spherically symmetric, collapse
scenario and found them to be numerically intractable.

Compared to the situation without loss �27� the inclusion
of three-body recombination in the master equation results in
additional terms in the stochastic differential equation. These
have been thoroughly treated in �32�. Drawing on these pre-
vious studies, we can write down the simplest SDE �33�
which describes a trapped BEC with three-body loss:

d��x� = −
i

�

−

�2

2m
�2 + V�x� + U0���x��2���x�dt

−
K3

2
���x��4��x�dt +�3K3

2
���x��2d��x,t� . �4�

Details regarding the construction of the dynamical noise
term d��x , t� are given in Appendix A. By setting d��x , t�
=0 in Eq. �4� we can recover the usual Gross-Pitaevskii
equation including three-body loss �7�.

The initial state of the stochastic wave function ��x� has
to be chosen such that it represents the Wigner function of an
initial coherent state BEC. At zero temperature this is
achieved by the addition of initial vacuum noise 
�x�:

��x,t = 0� = �0�x� +
1
�2


�x� . �5�

Here �0�x� denotes the oscillator ground state, which is ap-
propriate since the starting point of the experiment is a non-
interacting BEC. 
�x� is a Gaussian distributed complex ran-
dom function that fulfills the conditions 
�x�
�x��=0 and


�x�*
�x��=��x−x��, where f̄ denotes the stochastic average
of f .

The truncation of higher order derivatives in the FPE is
safely applicable when all modes in the problem are highly
occupied �28�. If the three-dimensional collapse scenario is
numerically solved on a spatial grid as in �7�, 6000 atoms are
spread out over �4�106 position space modes �i.e., grid
points�. Thus in the position basis the mode occupation cri-
terion cannot be fulfilled. Also the addition of the initial
noise as in Eq. �5� becomes problematic, leading to aliasing
effects at the edge of the computational grid. These can be
overcome in periodic situations as described in �34�, but
would be persistent in a harmonic trap.

Here we choose a powerful method to solve the Gross-
Pitaevskii equation in the oscillator �energy� basis instead.
The method was presented in �35� and applied to BECs at
finite temperature in �36,37�. In our work we extend the for-
malism in order to solve Eq. �4�. The stochastic field ��x� in
Eq. �4� can be expanded in terms of eigenstates � of the
one-dimensional harmonic oscillator:

��x,t� = �
�l,m,n��C

clmn�t��l�x��m�y��n�z� , �6�

which fulfill


−
�2

2m

�2

�x2 +
1

2
m�x

2x2��l�x� = �l�l�x� . �7�

Similarly �m�y� and �n�z� solve the oscillator equation in the
y and z dimensions. The summation in Eq. �6� is restricted to
all modes with total energy below a certain cutoff Ecut:

C = �l,m,n:�l + �m + �n � Ecut� . �8�

The values for Ecut are given in units of ��� ���̄� for the
cylindrical �spherical� case. Further details of the approach
are given in Appendix A.

The stochastic equation �4� has to be solved for many
realizations �trajectories� �38�. If the Wigner representation is
used, symmetrized quantum averages can then be determined

from averages over all trajectories �5�. In what follows � f̂�
denotes the quantum expectation value of f̂ . We obtain the
condensed �coherent� and uncondensed �incoherent� popula-
tions for each oscillator mode from

ncond
lmn = ���̂lmn��2 = �clmn�2, �9�

nunc
lmn = ��̂lmn

† �̂lmn� − ���̂lmn��2 = �clmn�2 − ncond
lmn −

1

2
. �10�

The �̂lmn ��̂lmn
† � are field operators that annihilate �create� an

atom in the mode with quantum numbers l ,m ,n. The num-
bers of condensed and uncondensed atoms �Ncond, Nunc� are
then obtained by summing the populations in all the modes.
The total atom number is given by Ntot=Ncond+Nunc.

A more rigorous definition of the condensate component
of the stochastic field is given by the Penrose-Onsager crite-
rion �39�. Exemplary applications of this method can be
found in �36,40�. To employ the criterion we would need to
average and subsequently diagonalize the one-body density
matrix of size Nmodes�Nmodes, which however is not feasible
in our case as will be explained in Sec. IV.

Finally we point out that the mode occupation criterion of
�28� can be slightly relaxed to the requirement that the noise
density defined by �c�x ,x����l,m,n��C ��l�x��m�y��n�z��2 is
smaller than the condensate density nc within the volume
where the latter is significant �29,41�. This criterion is basis
dependent and for the Bosenova problem it can be fulfilled in
the oscillator basis but not in the position basis.

B. Time-dependent Hartree-Fock-Bogoliubov approach

A different method to go beyond the mean-field theory is
to derive the Heisenberg equation for the field operator

�̂a�x , t�, and subsequently decompose �̂a�x , t� into a con-
densate part �a�x , t� and quantum fluctuations �̂�x , t�, such

that �̂a=�a+ �̂ and ��̂a�=�a. The quantum fluctuations can
be described in terms of their lowest order correlation func-
tions: The normal density GN�x ,x��= ��̂†�x���̂�x�� and
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anomalous density GA�x ,x��= ��̂�x���̂�x��. The derivation of
the dynamical equation for the condensate contains a factor-
ization of the expectation values in accordance with Wick’s

theorem �42�, e.g., ��̂a
†�̂a�̂a�=2��̂a

†�̂a���̂a�+ ��̂a
†���̂a�̂a�.

This implies the assumption that the system is in a Gaussian
quantum state �i.e., a coherent state or even a squeezed state�.
We obtain a dynamical equation for the condensate:

i �
��a�x�

�t
= 
−

�2

2m
�2 + V�x� + U0��a�x��2��a�x�

+ 2U0�a�x�GN�x,x� + U0�a
*�x�GA�x,x� .

�11�

Here GN�x ,x� represents the density of uncondensed atoms.
Hence this modified Gross-Pitaevskii �GP� equation contains
the interaction of the uncondensed component with the mean
field.

We also phenomenologically model three-body loss from
the condensate, by adding the following term to Eq. �11�:

− i
�

2
K3��a�x��4�a�x� . �12�

To obtain the time evolution of the condensate we have to
supplement Eq. �11� by evolution equations for GN and GA,
which are listed in Appendix B. We refer to Ref. �8� for
further details regarding a method to solve the set of coupled
equations in a harmonic trap. These equations require a
renormalization of the coupling strength U0 due to the mo-
mentum cutoff K=� /�x of the numerical grid used in the
simulations �43�. One must distinguish the physical interac-
tion strength U and the parameter U0 in the Hamiltonian,
which are related by

U0 =
U

1 − 	U
, 	 =

mK

2�2�2 . �13�

A similar renormalization issue arises in the truncated
Wigner method where the same prescription has to be used
to relate the numerical coupling to the physical interaction
strength �28�. In the interaction strength regime of interest
for this paper the difference between U and U0 is negligible.
A careful renormalization is hence unnecessary and we can
directly employ U0=U=4��2as /m in our simulations.

The cutoff is determined by the spatial lattice spacing in
the HFB case, and by the energy cutoff Ecut in the TWA case,
after equating the free particle kinetic energy to the energy
cutoff: Ecut=�2K2 / �2m�. The cutoffs are chosen to ensure
numerical accuracy of the simulations and, in particular, that
the results of interest are invariant with respect to changes in
the cutoffs. For our HFB simulations the highest cutoff is
K=1.3�107 m−1, and �	U � =4.5�10−3, corresponding to
less than one-half percent renormalization. For our TWA
simulations the maximum cutoff is Ecut�50 and therefore
K=3.8�106 m−1, and �	U � =1.3�10−3, again correspond-
ing to negligible renormalization.

We note that the three-body loss term in the HFB formal-
ism, Eq. �12�, only incorporates loss processes among con-
densate particles, whereas the implementation in Eq. �4� of
the TWA contains loss also for the uncondensed fraction. The

comparison between the methods in this paper is done for
very small uncondensed population and small total losses, so
that this difference can be neglected.

IV. NUMERICAL CONSTRAINTS

The aim of this section is to clarify the basis of the con-
clusions drawn from our simulations.

In this article we present solutions of Eq. �4�, modeling
the Bosenova experiment without any significant free param-
eters, using three different levels of approximation of the
truncated Wigner method.

GP evolution: Gross-Pitaevskii evolution only. In this case
both the noise on the initial state and dynamical noise are
omitted �
=0; d�=0�.
TWA with initial noise: Truncated Wigner evolution without
dynamical noise �d�=0�.
TWA with dynamical noise: Complete truncated Wigner evo-
lution �
�0; d��0�.

The reasons for studying the GP evolution are twofold.
First, it aids the determination of the required number of
oscillator modes by comparison with the established position
space results �7�. Secondly, it allows us to quantify the dif-
ferences between the classical and quantum field results.

To determine the required mode numbers, the GP equa-
tion is solved in the harmonic oscillator basis in order to
reproduce the atom number curve of Ref. �7�. In doing so,
we encountered a limitation of the oscillator basis: Due to
the extremely narrow peak of the condensate wave function
at the collapse time �14�, numerically accurate simulations
beyond this point require a very large number of modes,
�106. Simulating the condensate evolution much beyond the
collapse time is therefore not feasible �44�. Figure 1 shows
the number of atoms remaining in the condensate for differ-
ent numbers of oscillator modes employed. In the case of 4
�105 modes, the result appears close to convergence against
the solution of the GP obtained on a spatial grid �7�. How-
ever, we can conclude from the evolution of the peak densi-
ties that a cutoff of at least Ecut�150, corresponding to about
1.5�106 modes, would be required to evolve through the
collapse. Nevertheless, we find that the evolution until

0 5 10
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5000
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N
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n
d

t(ms)

E Ncut modes

30

50

100

5 10
4

1 10
4

4 10
5

FIG. 1. GP evolution only. Atom number Ncond in the conden-
sate during collapse with acollapse=−10a0. ��� Results obtained on a
spatial grid �7�. Thick lines correspond to solutions of Eq. �4� in the
energy basis. Inset: A table with the number of modes for different
Ecut and a legend. As Ecut increases, the atom number curves ap-
proach the correct position basis solution.
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�8 ms can be accurately represented with a basis size that is
computationally tractable in the stochastic multitrajectory
treatment ��5�104 modes, Ecut=50�. With this mode num-
ber, the validity criterion of �29� is safely fulfilled.

V. COLLAPSE OF A CIGAR SHAPED BEC

If Eq. �4� is solved in the truncated Wigner formalism, the
condensed and the uncondensed fractions of the atomic gas
can be distinguished. During the collapse population is trans-
ferred between the fractions due to the interaction. Since the
interaction between the condensed and uncondensed compo-
nents is twice as strong as the self-interaction of the conden-
sate �compare Eq. �11��, a sufficiently strong quantum
depletion could possibly yield a quicker collapse than a pure
BEC.

Here we present results for a collapse with
acollapse=−10a0, for which the experimentally measured
tcollapse is �6±1� ms �9,25�. We find that only very few un-
condensed atoms are created prior to the actual collapse; see
Fig. 2�a�. This result qualitatively agrees with our previous
studies of a spherically symmetric geometry with the HFB
method �8�. Due to the very small depletion in the initial
stage, our quantum treatment does not show an acceleration
of the collapse compared to the GP evolution. We deduce
this from the identical peak densities in Fig. 2�b�. As dis-
cussed in the previous section, despite the numerical limita-
tions we can thus conclude that the inclusion of zero tem-
perature quantum depletion does not result in agreement
between theory and experiment.

Figure 2�a� shows that the dynamical noise contributes
significantly to the evolution of the uncondensed atom num-
ber. Figure 4�b� confirms that dynamical noise is necessary
for exact agreement with the HFB approach.

We have checked that these results are qualitatively un-
changed for other scenarios, i.e., where the attractive inter-
action is changed to acollapse=−6a0 and acollapse=−25a0. In the
latter case, we have observed a larger production of uncon-
densed atoms just before collapse, which also did not signifi-
cantly accelerate the collapse.

VI. INCLUSION OF A THERMAL CLOUD

As a next step towards even more accurate modeling of
the experiment we include initial thermal population in the

uncondensed modes. We will show that, if temperature ef-
fects are taken into account, the precise results for the mea-
sured collapse times might depend on whether Ncond or Ntot is
measured.

In the oscillator basis representation, the initial state for
nonzero temperature �28� is

clmn = �0,lmn + 
lmn
2 tanh
 �lmn − �

2kBT
��−1/2

. �14�

Here �lmn=�l+�m+�n are the energies of the oscillator modes
with quantum numbers l ,m ,n. T is the temperature of the
cloud and �0,lmn are the corresponding expansion coefficients
of the GP ground state. The 
lmn are complex Gaussian
noises obeying 
lmn

* 
l�m�n�=�ll��mm��nn�. Although the tem-
perature in the Bosenova experiment was measured to be
3 nK, in Fig. 3 we present our results for a few different
temperatures: T=0, T=3 nK, T=5.3 nK, and T=8 nK. We
plot the final 2 ms of simulated time. This corresponds to the
collapse stage and exceeds the time of �8 ms for which we
can employ sufficiently many modes to ensure a reliable
simulation. Nonetheless we would like to draw some quali-
tative conclusions from these simulations of “BEC collapse
in a restricted mode space.” First, if the collapse time was
deduced from the condensate atom number alone, which is
shown in Fig. 3�a�, it appears to be shorter for increased
temperature. The reduction by �0.75 ms for the experimen-
tal temperature of 3 nK is however by far not enough to
reach agreement with the experimental collapse time of
�6±1� ms. Secondly, the reduction in condensate atom num-
ber just before collapse, compared to the GP dynamics, re-
sults from stimulated transitions to uncondensed modes
rather than an increased total atom loss, which can be de-
duced from an inspection of Nunc and Ntot. These qualitative
features are independent of the value of Ecut used in the
simulations. However we point out that the quantitative de-
tails of the evolution of condensed and uncondensed frac-
tions for the times presented in Fig. 3 depend on Ecut. Figure
3�b� shows that the acceleration of collapse is much smaller,
if only the total atom number is taken into account.

In the experiment �9�, the measured atom number was
deduced from counting atoms in the central region of the
trap. The increased population of the uncondensed modes
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FIG. 2. Initial 8 ms of evolution after the change in scattering
length from 0 to acollapse=−10a0. �a� Nunc for the solutions with
dynamical noise �solid� and initial noise only �dashed�. �b� Conden-
sate peak density for GP evolution �solid� and TWA with dynamical
noise �dashed�. The result is unchanged, hence no acceleration of
the collapse occurred before 8 ms, which exceeds the experimental
collapse time of �6±1� ms. In both �a� and �b� Ecut=50.
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just before collapse occupies the same spatial region as the
condensate. Since the experimental method did not distin-
guish between condensed and uncondensed atoms, we con-
clude that the experiment probably did not capture the above
described temperature effect. We note that, for T�0, the
evolution of the total number of atoms is only marginally
changed compared to the GP results.

VII. HFB VS WIGNER: COLLAPSE OF A SPHERICAL
BEC

In this section we compare the two different quantum field
models of BECs used in this paper. Both rely on approxima-
tions to achieve a numerically tractable description of the
quantum evolution. The formalism of each method and the
approximations involved differ greatly, as outlined in Sec.
III. The quantitative agreement between the evolution of the
uncondensed fraction in both methods that we present in this
section thus gives a strong indication of the validity of our
results.

As has been described in Ref. �8�, Hartree-Fock Bogoliu-
bov simulations are not feasible in the case of the cylindri-
cally symmetric experimental situation, as the correlation
functions GA and GN then become five dimensional. There-
fore in our earlier work �8�, we have used the HFB to inves-
tigate a collapse in a spherically symmetric trap. For the
same reasons, we compare here the TWA and HFB methods
for a range of temperatures of the initial thermal cloud in a
spherical geometry. Finite temperature is taken into account
in the HFB approach by using correlation functions corre-
sponding to a thermal population of oscillator states initially:

GN�x,x�� = �
lmn

1

exp
 �lmn − �

kBT
� − 1

�lmn
* �x���lmn�x� ,

�15�

GA�x,x�� = 0. �16�

Here �lmn�x���l�x��m�y��n�z�. For the finite temperature
TWA simulations we have used Ecut=40.

We find excellent agreement between the uncondensed
atom numbers predicted by HFB and TWA for the initial
5 ms of the collapse �46� and a range of temperatures, as
shown in Fig. 4. The higher the temperature, the larger the
initial uncondensed population Nunc�0�, which causes more
stimulated transitions to the uncondensed fraction. As re-
ported in �47� an increase in temperature of the initial state
also requires more trajectories for the sampling error to be
satisfactorily small.

The TWA and HFB in the spherical case both qualitatively
confirm the results presented in Sec. VI for cylindrical ge-
ometry: Higher temperature thermal clouds yield an in-
creased creation of uncondensed particles just before col-
lapse. This appears as an accelerated collapse on the curve
for Ncond. In contrast, inspection of the total atom number
shows almost no acceleration.

Validity time scale. For the period we consider here, the
approximations involved in both methods are justified and

therefore a comparison is useful. It is known that the trunca-
tion in the TWA and the factorization of correlation functions
in the HFB are valid for short times only, but both methods
suffer from a lack of quantitative knowledge about this time
scale in the general case. For the situation of a BEC in an
optical lattice within the tight binding �Bose-Hubbard� re-
gime, the validity time scales for TWA and HFB have been
shown to coincide. They are given by t�J /U, where J and
U are the Bose-Hubbard hopping strength and on-site inter-
action, respectively �48,49�.

Numerical performance. We find that both methods for
the quantum field treatment of Bose gases, HFB and TWA,
agree in a direct comparison of the uncondensed atom num-
ber evolution during a BEC collapse. The TWA is advanta-
geous for spatially asymmetric problems, as the increasing
dimensionality of the correlation functions renders the HFB
method numerically intractable. However, in a spherically
symmetric case the HFB is advantageous. This is because the
correlation functions GN and GA are only three dimensional
due to the spatial symmetry. Meanwhile, the truncated
Wigner evolution has to always be modeled in a full three
dimensions as the quantum fluctuations cannot be assumed
to be spherically symmetric. The quantum evolution in the
HFB approach is obtained with a single solution of Eqs. �11�,
�B2�, and �B1�, compared to averaging over many realiza-
tions of Eq. �4� in the TWA. As a result our simulations
showed that for the spherical case the HFB requires vastly
shorter CPU times �51�.

VIII. CONCLUSIONS

Our three-dimensional simulations of the Bosenova ex-
periment on collapsing BECs �9� have shown a moderate
acceleration of the collapse if an initial thermal cloud is
taken into account, although the effect is not large enough to
quantitatively account for the discrepancy between experi-
mental and theoretical collapse times. The predictions of
Hartree-Fock Bogoliubov and truncated Wigner theories for
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FIG. 4. Increase in uncondensed atom number Nunc�t�−Nunc�0�
during the first stages of a spherical collapse with acollapse=−12a0

for the TWA and HFB. �a� The TWA results with dynamical noise
�dashed� are in excellent agreement with the HFB result �solid� for
T=0, 3, and 5.3 nK. Dotted lines indicate the sampling error. Nu-
merical parameters are given in the footnote �50�. �b� Closeup of the
result for T=0. As mentioned in Sec. V, the TWA with dynamical
noise �dashed� agrees better with the HFB �solid� than the result of
the TWA with initial noise terms only �dot-dashed�.
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collapse in a spherically symmetric case agree very well with
each other. However, in a cigar shaped trap, where only the
truncated Wigner method is feasible, the theory disagrees
with the experiment. The origin of this discrepancy is
unknown.

Close to a Feshbach resonance molecular effects can be-
come important. However, during the sequence of the Bose-
nova experiment, the magnetic field stays clear of the reso-
nance value �9�. Hence molecules play a minor role in this
experiment, as already argued before �8,22�. Also a possible
breakdown of the s-wave approximation and strong effects
due to inelastic collisions do not occur prior to the actual
collapse and hence cannot affect the collapse time. As other
options are ruled out, we conjecture that the collapse time
discrepancy arises from quantum correlations not captured
by our descriptions. Although a Gaussian initial quantum
state is physically reasonable, high order correlations can be
created by the interactions and could become significant dur-
ing collapse. These are not captured by the methods
employed here.

To understand the discrepancy better, it would be desir-
able to conduct an experiment with the aim of measuring the
collapse times and correlation functions for a larger range of
scenarios and with even higher precision.
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APPENDIX A: PROJECTED GROSS-PITAEVSKII
EQUATION IN THE ENERGY BASIS

Using the expansion �6� the stochastic equation �4�
becomes

dclmn = −
i

�
��l + �m + �n + U0Flmn�dt −

K3

2
Glmndt

+�3K3

2
dHlmn. �A1�

The F, G, and dH are overlap integrals defined by

Flmn =� d3x �l
*�x��m

* �y��n
*�z����x��2��x� , �A2�

Glmn =� d3x �l
*�x��m

* �y��n
*�z����x��4��x� , �A3�

dHlmn =� d3x �l
*�x��m

* �y��n
*�z����x��2d��x� , �A4�

d��x� = �
�l,m,n��C

d�lmn�t��l�x��m�y��n�z� . �A5�

d�lmn�t� in Eq. �A5� are complex Gaussian noises that fulfill
d�lmn�t�d�l�m�n��t��=0 and d�lmn

* �t�d�l�m�n��t�=�ll��mm��nn�dt.
It has been outlined in Refs. �35,36� how these integrals

can separately be exactly computed on an appropriately cho-
sen nonequidistant spatial grid. Different spatial grids would
however be necessary for the exact solution of integrals in-
volving different powers of the wave function. To remain
computationally efficient we have chosen a grid which al-
lows the exact calculation of Eqs. �A2� and �A4�. We have
checked that our results are invariant under a variation of the
grid used for evaluation of the integrals.

APPENDIX B: HFB EQUATIONS FOR CORRELATION
FUNCTIONS

In the time-dependent Hartree-Fock-Bogoliubov approach
we have to supplement Eq. �11� by evolution equations for
GN and GA. These are obtained by deriving the Heisenberg
equations for the operators �̂†�x���̂�x� and �̂�x���̂�x�, respec-
tively, and factorizing operator products as described in �8�.
This procedure yields

i �
�GN�x,x��

�t
= ���̂†�x���̂�x�,Ĥ��=�Ĥ0a�x� − Ĥ0a�x���GN�x,x�� + 2U0���a�x��2 − ��a�x���2 + GN�x,x� − GN�x�,x���GN�x,x��

+ U0�GA�x,x�GA
*�x,x�� − GA

*�x�,x��GA�x,x��� + U0��a�x�2GA
*�x,x�� − �a

*�x��2GA�x,x��� , �B1�

i �
�GA�x,x��

�t
= ���̂�x���̂�x�,Ĥ�� = �Ĥ0a�x� + Ĥ0a�x���GA�x,x�� + 2U0���a�x��2 + ��a�x���2+ GN�x,x� + GN�x�,x���GA�x,x��

+ U0��a�x�2GN
* �x,x�� + �a�x��2GN�x,x�� + GA�x,x�GN

* �x,x�� + GA�x�,x��GN�x,x���

+ U0��a�x�2 + GA�x,x����3��x − x�� . �B2�
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