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Microcanonical temperature for a classical field: Application to Bose-Einstein condensation
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We show that the projected Gross-Pitaevskii equation~PGPE! can be mapped exactly onto Hamilton’s
equations of motion for classical position and momentum variables. Making use of this mapping, we adapt
techniques developed in statistical mechanics to calculate the temperature and chemical potential of a classical
Bose field in the microcanonical ensemble. We apply the method to simulations of the PGPE, which can be
used to represent the highly occupied modes of Bose condensed gases at finite temperature. The method is
rigorous, valid beyond the realms of perturbation theory, and agrees with an earlier method of temperature
measurement for the same system. Using this method we show that the critical temperature for condensation in
a homogeneous Bose gas on a lattice with a uv cutoff increases with the interaction strength. We discuss how
to determine the temperature shift for the Bose gas in the continuum limit using this type of calculation, and
obtain a result in agreement with more sophisticated Monte Carlo simulations. We also consider the behavior
of the specific heat.
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I. INTRODUCTION

The Gross-Pitaevskii equation~GPE! has proven to be an
extremely useful description of macroscopic Bose-Einst
condensates~BECs! at or near zero temperature@1#. It is the
first and sometimes only tool to be used in the description
many experiments in the field of nonlinear atom optics a
Bose-Einstein condensation. The validity of the GPE
many wide-ranging experimental situations now appears
yond doubt.

However, it has been proposed that the GPE can als
used to represent the nonequilibrium dynamics of Bose g
at finite temperature@2–5#. The underlying argument is tha
for modes of the gas with an average occupation much la
than 1, the classical dynamics is far more important than
quantum dynamics. This is analogous to the semiclass
approximation utilized in laser physics for the electroma
netic field. A major advantage of using the GPE in su
situations is that it is nonperturbative and so can be app
in the region of the critical point as long as the condition
occupation numbers is observed. In Ref.@6# a finite tempera-
ture Gross-Pitaevskii equation is derived from the quant
many-body Hamiltonian for the Bose gas with this appro
mation in mind. An alternative route to similar equations
motion is possible via the use of the Wigner representa
@7#. This approach may be more familiar to those from t
quantum optics community.

Some of the first numerical calculations utilizing the GP
for finite temperature simulations were performed by Dam
et al. @8# and Marshallet al. @9#. More recently there have
been several calculations using the so-called ‘‘classical fie
approximation. In particular we mention those of Go`ral and
co-workers@10–12#, Sinatra and co-workers@13–16#, and
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the current authors@17,18#. These calculations are all relate
by the fact that they include no damping terms in the GP
and thus rely onergodicity for the system to thermalize
Classical field methods involving both damping and stoch
tic terms have been considered by Gardineret al. @19#, Stoof
and Bijlsma@20#, and Duine and Stoof@21#.

While the qualitative results from previous work hav
been promising, there has been some difficulty in perform
quantitative calculations using such methods, and in part
lar in determining the temperature of the system at equi
rium. We partially addressed this issue in previous work
ing a variety of methods to determine the temperature of
simulations@17,18#. The most reliable of these involved fit
ting time-averaged quasiparticle occupations and energie
the classical limit of the Bose-Einstein distribution functio
However, this method relies on the existence of a basis
approximately diagonalizes the Hamiltonian~quasiparticles!
for which energies and wave functions can be calculated
advance. This method is therefore only applicable in
realm of perturbation theory, and fails for even moder
temperatures in systems with large nonlinearities. Hence
desirable to find a more widely applicable scheme for una
biguously determining the temperature of numerical simu
tions.

In a succinct yet insightful paper, Rugh@22# expressed the
temperature of a classical Hamiltonian system in terms o
phase space expectation value of a suitable function of
canonical position and momentum coordinates@Eq. ~19! of
this paper.# Using the ergodic theorem, this expectation val
over phase space can be interpreted as a dynamical ave
for a system in equilibrium, and immediately lends itself
applications in numerical calculations. Rugh developed t
procedure further in@23#, and generalized it to include sys
tems with other conserved quantities in addition to the
ergy @24#. This generalization turns out to be crucial for th
application of the method to the interacting Bose gas. Rug
formula for the temperature has been applied to several
©2003 The American Physical Society15-1
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tems to date, for example, in the field of molecular dynam
This has led to the notion of a configurational temperat
for gases, which depends only on the spatial coordinate
the particles, in addition to the usual kinetic temperat
which depends only on the momenta@25–27#.

In this paper we apply the microcanonical formalism
Rugh to the BEC Hamiltonian to determine the temperat
of numerical simulations of thermal Bose gases. The met
is nonperturbative and does not rely on the existence of w
defined Bogoliubov quasiparticles. The paper is organize
follows. In Sec. II we briefly summarize the expression
the temperature and other derivatives of the microcanon
entropy, and describe their application to the BEC Ham
tonian. Section III presents our numerical results for our p
jected GPE~PGPE! system, while Sec. IV relates our calc
lations to other dynamical calculations of classicalf4 field
theory, as well as to calculations of the shift of the transit
temperature for a homogeneous Bose gas. We conclud
Sec. V.

II. FORMALISM

A. Hamiltonian

We consider a classical system withM independent
modes. The Hamiltonian can be written asH5H(G), where
G5$G i%5$Qi ,Pi% is a vector of length 2M consisting of the
canonical position and momentum coordinates. In these
ordinates we define the gradient operator¹ in terms of its
components¹i5]/]G i .

In the notation of Rugh@24#, the HamiltonianH may have
a number of independent first integrals, labeled byF
5F1 , . . . ,Fm , that are invariant under the dynamics ofH.
We could defineF05E and include the conserved energ
with the other constants of motion in this notation, but f
clarity we consider it separately. A particular macrostate
such a system can be specified by the values of the conse
quantities, labeled asH5E,Fi5I i .

The expression for the temperature of such a system in
microcanonical ensemble is given by

1

kBT
5S ]S

]ED
Fi

, ~1!

where all other constants of motion are held fixed, and wh
the entropy is given by

eS/kB5E dG d@E2H~G!#)
i

d@ I i2Fi~G!#. ~2!

In this case, the temperature of the system can be wri
as

1

kBT
5^D•X~G!&, ~3!

where the angle brackets correspond to an ensemble ave
and the components of the vector operatorD are

Di5ei

]

]G i
, ~4!
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where ei can be chosen to be any scalar value, includ
zero. The vector fieldX can also be chosen freely within th
constraints

DH•X51, DFi•X50, 1< i<m. ~5!

Geometrically this means that the vector fieldX has a non-
zero component transverse to theH5E energy surface, and
is parallel to the surfacesFi5I i . The expectation value in
Eq. ~3! is over all possible states in the microcanonical e
semble; however, if the ergodic theorem is applicable the
can equally well be interpreted as a time average. For fur
details on the origin of this expression we refer the reade
Rugh’s original papers@22–24#, as well as to the derivation
by Giardinàand Levi @28#, Jeppset al. @26#, and Rickayzen
and Powles@29#.

B. Dimensionless BEC Hamiltonian

The full quantum many-body Hamiltonian for the Bos
gas in dimensionless form is

H̃5E d3x̃F¹C̃†~ x̃!•¹C̃~ x̃!1Ṽ~ x̃!C̃†~ x̃!C̃~ x̃!

1
Cnl

2
C̃†~ x̃!C̃†~ x̃!C̃~ x̃!C̃~ x̃!G , ~6!

whereH5NeLH̃, N is the number of particles in the system
x̃5x/L, L is the unit of length,eL5\2/(2mL2) is the unit of
energy,m is the mass of the particles, andṼ( x̃) is the dimen-
sionless external potential if any is present. The dimensi

less quantum Bose field operatorC̃( x̃) is here normalized to

1, *d3x̃^C̃†( x̃)C̃( x̃)&51, andCnl is the nonlinear constan
defined as

Cnl5
NU0

eLL3
5

8paN

L
, ~7!

wherea is thes-wave scattering length. In this expression w
have assumed a high momentum cutoff and made use o
replacement of the true interatomic potential with the tw
body T matrix V(x)→U0d(x), whereU054p\2a/m.

In Ref. @6# the field operator is split into a classical pa
and a quantum part, with the boundary determined by
requirement that the average occupation number^Nk& of
modes below the cutoff satisfies^Nk&@1. Equations of mo-
tion were derived for the classical part, before taking t
mean value. This resulted in the finite temperature Gro
Pitaevskii equation, which describes the evolution of a cl
sical field coupled to an effective bath described by a qu
tum Boltzmann-like equation. This equation proves to
somewhat difficult to solve numerically, and in Refs.@17,18#
we reported results focusing on a simplification we term
the projected Gross-Pitaevskii equation. This equation
scribes the evolution of a classical field only, with a cutoff
a given momentum or energy. It is identical to the usual G
except that it evolves a wave function which is restricted t
finite-sized basis satisfying the classical condition^Nk&@1.
5-2
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MICROCANONICAL TEMPERATURE FOR A CLASSICAL . . . PHYSICAL REVIEW A 68, 053615 ~2003!
The PGPE for a homogeneous system is written explic
for the homogeneous gas in Eq.~26! of this paper.

In this paper we wish to determine the temperature of
restricted system described by the evolution of the PG
Thus the Hamiltonian we consider is the classical version

Eq. ~6! obtained by replacing the field operatorC̃( x̃) with
the classical fieldc( x̃), subject to the important restrictio
that c( x̃) is constructed from a finite number of low-energ
modes. We can therefore write it in the form

c~ x̃!5 (
kPC

ckfk~ x̃!, ~8!

where C labels the classical modes in the coherent reg
below the cutoff, as defined in@6#.

C. Canonically conjugate position and momentum variables

We must now make a choice of the canonically conjug
coordinates of our Hamiltonian. As we are defining our cl
sical field in a basis, it seems natural to convert to a ba
representation. If we choose our basis to be that which
agonalizes the ideal gas Hamiltonian@the first two terms of
Eq. ~6!# we find

H5(
n

encn* cn1
Cnl

2 (
mnpq

cm* cn* cpcq^mnupq&, ~9!

where the matrix element is

^mnupq&5E d3x fm* ~x!fn* ~x!fp~x!fq~x!. ~10!

The equation of motion for the$cn% is given by the PGPE
This problem can be mapped exactly to the one conside
by Rugh by defining real, canonically conjugate coordina
Qn andPn ,

Qn5
1

A2en

~cn* 1cn!, Pn5 iAen

2
~cn* 2cn!, ~11!

with the corresponding inverse transformation

cn5Aen

2
Qn1

i

A2en

Pn , cn* 5Aen

2
Qn2

i

A2en

Pn•

~12!

With these definitions, the evolution of thecn coefficients
given by the PGPE maps exactly to the evolution of
coordinatesQn and Pn given by Hamilton’s equations. Th
PGPE is therefore in one-to-one correspondence with a c
sical microcanonical system, and its equilibrium propert
can be studied using the wide variety of techniques that h
been developed in classical statistical mechanics.

We have performed numerical calculations for t
homogeneous PGPE, and so we use a plane wave
where fn( x̃)5exp(ik̃n• x̃), n5$nx ,ny ,nz%, and en5uk̃nu2
5(2punu)2. However, the method we describe is gene
and can be applied directly to inhomogeneous systems
BECs in magnetic and optical dipole traps.
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Calculations on a grid

The implementation of a projection operator in the GPE
an essential feature of any classical simulation. While
have explicitly defined a projection operator in terms of
basis set, other authors have implicitly chosen a momen
cutoff by the use of a finite-size grid in their GPE simul
tions @11,12#. The method of temperature determination d
scribed in this paper can also be applied to these calculati
but with a different choice of postion and momentum co
dinates.

On a finite grid, the Hamiltonian~6! can be discretized in
real space and the classical equivalent can be written as

H5hxhyhz(
n

F ~¹an!21~¹bn!2

1Vn~an
21bn

2!1
Cnl

2
~an

21bn
2!2G , ~13!

wheren[$nx ,ny ,nz% labels the grid point,hx ,hy ,hz are the
grid spacings for each axis, and we have definedcn5an
1 ibn . In this case the appropriate position and moment
variables are

Qn5A2an , Pn5A2bn . ~14!

However, we believe that it is important to define th
projector using a basis that is relatively well defined in e
ergy at the cutoff~we stress that this does not mean that
basis has to be well defined in energybelow the cutoff!. It
has previously been shown@30# that the single particle en
ergy levels of a partially condensed system are essent
those of the trapping potential for energiese>ER'3mC ,
where mC is the condensate energy eigenvalue. Thus
above cutoff projector can be written

Q̂$F~x!%5 (
k¹C

fk~x!E d3x8fk* ~x8!F~x8!, ~15!

where the$fk% are the basis states appropriate to the pot
tial, and the notationk¹C describes a summation over a
modes above the energy cutoffER . As this basis is complete
the below cutoff projector is simply

P̂51̂2Q̂, ~16!

which gives the result written explicitly in Eq.~27!. We also
require the classical condition

Nk5
kBT

ER2m
@1 ~17!

to hold at the cutoff and so forER'3mC this should also be
satisfied.

For a trapped Bose gas, the implicit momentum projec
based on the finite-grid method is not at all well defined
energy at the cutoff, and we believe that this may lead
difficulties. However, this is yet to be invesigated nume
cally; for further discussion of this issue we refer the rea
to @31#.
5-3
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D. Choice of vector field X

In order to satisfy the conditions~5! we can choose a
vector field of the form

X5aDH1(
i 51

m

biDFi , ~18!

where them11 coefficients$a,bi% are determined by the
m11 simultaneous equations in Eq.~5!. Due to the freedom
in the choice of the vector operatorD we can set any com
ponent of the length 2M vectorX to zero. This turns out to
be useful as the components corresponding to the momen
and position variables can be of different orders of mag
tude. Two particular choices we make use of later areXP
with D5DP5$0,]/]Pi% and XQ with D5DQ5$]/]Qi ,0%.
These lead to two different calculations for the temperat
that agree in general only if the system is in thermal equi
rium. This provides a useful check that the simulations h
in fact thermalized.

In Rugh’s first two papers@22,23# the only first integral
considered was the energy, and he choseD[¹ which
yielded the~dimensionless! formula

1

T
5K ¹•

¹H

u¹Hu2L . ~19!

For the BEC Hamiltonian we consider, however, there
other first integrals that must be taken into account. M
importantly, the evolution conserves the normalization of
wave function, but other first integrals that may occur a
both the angular and linear momentum.

The effect of including these additional first integrals
the definition of the vector fieldX is to account for the en
ergy that is associated with a conserved quantity and hen
unavailable for thermalization. This ensures that only the
propriate free energy is used to calculate the temperature
conjecture that the same result can be achieved by first tr
forming to a coordinate system where the total angular
linear momenta, etc., are all zero and therefore do not c
tribute to the energy of the system. In fact, Rugh dem
strated this explicitly in@24# for a system of particles with a
conserved center-of-mass motion.
, w
d

d
ith
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An exception to this, however, is the conservation of n
malizationN5(ncn* cn . This must be considered explicitl
because there is no coordinate system in which it can
made to vanish. The constraint onN means that the ground
state of the system will, in general, have a finite energy.
example, a noninteracting gas in a harmonic trap of f
quencyv must have at least the zero-point energy\v/2 for
each spatial degree of freedom. For a nonideal, homo
neous gas the restriction that at least one of thecn must be
nonzero means that there will always be a finite interact
energy associated with the ground state energyẼ05Cnl/2.
These energy contributions are not accessible for therma
tion, however, and including the normalization constraint
lows them to be removed. We note, however, that the ef
of this constraint is in general more complicated than
simple subtraction of the ground state energy~which could
be achieved by hand! and depends on the definition of th
operatorD used to calculate the temperature, as shown
low.

To deal with the normalization constraint, we need
choose a vector fieldX that satisfies Eqs.~5! with F15N
5(ncn* cn . The result is

X5
DH2lNDN

uDHu22lNDN•DH
, ~20!

where the parameter

lN5
DN•DH

uDNu2
~21!

looks similar to a chemical potential. For a system on a r
space grid withD5¹ and a Hamiltonian given by Eq.~13!
we find that lN5mGPE, where mGPE is the usual Gross-
Pitaevskii form of the chemical potential, obtained from t
Hamiltonian of Eq.~13! by doubling the interaction term
However, in general the expression of Eq.~21! does not have
a simple interpretation.

Substituting Eq.~20! into Eq. ~3! we find that our full
expression for the temperature is
1

T
5K D2H2lND2N2DlN•DN

uDHu22lN~DH•DN!
L 2K ~DH2lNDN!•@DuDHu22~DH•DN!DlN2lND~DH•DN!#

@ uDHu22lN~DH•DN!#2 L . ~22!
The second term in this expression is of order 1/M , and so in
many situations it can reasonably be neglected. However
have calculated the full expression for all results presente
this paper.

E. Other thermodynamic quantities

The method described in this paper can also be use
calculate first derivatives of the microcanonical entropy w
e
in

to

respect to any of the first integrals of the Hamiltonian@24#.
In particular, we find that to calculate the quantity

S ]S

]F j
D

E,Fi

, iÞ j ,

the constraints on our vector field should be
5-4
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DH•X50, DFi•X51, DF j•X50, iÞ j . ~23!

For the BEC Hamiltonian, we have

m

kBT
52S ]S

]ND
E

, ~24!

and on implementing the required constraints we find tha
appropriate vector field is that given by Eqs.~20! and ~21!
but with the roles ofH andN reversed.

In addition, higher-order derivatives of the entropy c
also be determined, making available quantities such as
specific heatcsp of the system@23#. This quantity could in
principle be calculated from the expression

1

csp
512

^D•~XD•X!&

^D•X&2
, ~25!

where the vectorX is determined by Eqs.~20! and ~21!.
However, for the BEC Hamiltonian the expressions for su
quantities are unreasonably complicated, and we do not
sider them in this paper. Instead, higher derivatives will s
ply be obtained numerically once the temperature is de
mined.

III. NUMERICAL RESULTS

In this section we apply the formula Eq.~22! to data from
simulations of the PGPE described in@17,18#, as well as to
many other simulations with a wider range of energies a
nonlinear parametersCnl . For a full description we refer the
reader to Ref.@18#. Briefly, the calculations evolve the pro
jected Gross-Pitaevskii equation@6# for the homogeneous
gas in three dimensions

i
]c~ x̃!

]t
52¹̃2c~ x̃!1CnlP̂$uc~ x̃!u2c~ x̃!%. ~26!

The nonlinear constant isCnl52mNU0 /\2L, whereN is the
total number of particles in the volume, andL is the period of
the system. Our dimensionless parameters arex̃5x/L, wave
vector k̃5kL, energy ẽ5e/eL , and time t5eLt/\, with
eL5\2/(2mL2). The projection operatorP̂ excludes all
components of the nonlinear term in the GPE outside
coherent region, and is defined by@cf. Eqs.~15! and ~16!#

P̂$F~x!%5 (
kPC

fk~x!E d3x8 fk* ~x8!F~x8!, ~27!

where$fk% is an orthonormal basis appropriate to the pro
lem. For the homogeneous system with periodic bound
conditions, the relevant basis is the plane wave states, an
this procedure is simply the application of a forward Four
transform, removal of components withk̃. k̃c , followed by
the inverse transformation. The quantityk̃c defines the mo-
mentum cutoff for the coherent region, and for all data p
sented in this paper we usek̃c51532p.
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We begin with randomized initial fieldsc( x̃) with a given
energy on a three-dimensional~3D! grid with 32 points in
each dimension and evolve these until the field has reac
equilibrium. We calculate all thermodynamic quantities fro
sampling 200 field configurations in equilibrium.

Cutoff dependence of simulations.The choice of momen-

tum cutoff k̃c51532p is motivated simply by computa
tional convenience. It also allows for comparison of t
Rugh method of temperature measurement with data f
earlier calculations.

For a given initial energy, the resulting equilibrium tem
perature depends on the number of modes below the cu
This can be easily understood from the equipartition theor
—if more modes are present, less energy will be containe
each one and therefore the final temperature will be low
Also, the dimensionless critical temperature for a syst
with a fixed normalization depends on the cutoff, as can
seen in the text beneath Eq.~28!.

Work is currently in progress to develop a description
the modes above the cutoff and their coupling to the PG
The aim of this work is a complete computational meth
that will be insensitive to the exact position of the cuto
Exploring and developing techniques for the nonperturba
classical field is an important part of this program, and
focus on this aspect of the problem in this paper.

Despite this, there are some equilibrium calculatio
which can be carried out immediately using an approxim
treatment of the modes above the cutoff. We present res
for one such calculation~the shift in Tc with interaction
strength! in this paper. These results have only a weak
pendence on the cutoff.

Use of the classical field method at Tc . The classical field
can describe only modes that satisfy the high-occupa
condition. But even at the critical temperature and above,
lowest-energy states will have the largest occupations—
for a wide range of parameters, many of these can sat
Nk@1. These are the modes that are responsible for crit
behavior, such as the shift inTc and the increase in specifi
heat. The remaining modes~that are not simulated! behave
essentially as an ideal gas.

As a physical example, consider our simulations
Cnl520 000. ChoosingL525 mm, and 87Rb, this corre-
sponds to approximately 3.83105 atoms below the cutoff
satisfying Nk.10 at Tc of about 370 nK. There are
about 1.33106 atoms in total, with a total number density o
8.331013 cm23. Thus in this situation nearly 30% of th
atoms are simulated by the PGPE.

A. Comparison of methods of temperature determination

As described in Sec. II D there are many choices of
operatorD that may be used in Eq.~22!. The resulting cal-
culations give the same temperature only if the system i
equilibrium, so this provides an important confirmation th
the system has thermalized. In this paper we consider
casesDQ5$]/]Qi ,0% and DP5$0,]/]Pi%, and we refer to
the temperatures calculated from these operators asTQ and
TP , respectively. AllowingQ or P derivatives only in the
5-5
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separate definitions of the operatorD simplifies the calcula-
tion of Eq. ~22! due to the elimination of mixed derivatives

We begin by comparingTQ andTP with previous results
from Ref.@18#. In this earlier work we obtained temperatur
using three different methods, two based on Bogoliubov q
siparticles and perturbation theory, and a third nonpertur
tive calculation. This third method did not have a firm the
retical basis; however, we showed that the results w
consistent with the two other calculations in their regime
validity, and gave reasonable results more generally. Figu
shows the relative differences between the simulation t
peraturesTQ andTP calculated from Eq.~22! and the tem-
peraturesT0 determined from the earlier method 3. Th
simulation data used are the same as those plotted in F
of Ref. @18#.

We can see from Fig. 1 that only a small number of poi
differ by more than 1% from the previously determined v
ues, and even these would be hard to detect on a plot o

FIG. 1. Plot of the relative differences of simulation tempe
tures TQ and TP calculated from Eq.~22! with temperaturesT0

determined from the same data plotted in Fig. 9 of Ref.@18#. Open
triangles,DT5TP2T0; black dots,DT5TQ2T0. ~a! Cnl5500, ~b!
Cnl52000, ~c! Cnl510 000.
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absolute temperatures. These results therefore validate
earlier nonperturbative method for temperature determ
tion in a homogeneous system~described in Sec. VI D of
Ref. @18#!. Figure 1 also shows that in general the values
TQ andTP agree with each other within their error bars. T
error is determined from the standard deviation of the exp
tation value of Eq.~22! divided by the square root of th
number of samples~in this case 200!. This estimate assume
Gaussian statistics, which seems reasonable when the d
bution of values is plotted as a histogram; however, it m
underestimate the actual error somewhat. The agreemen
tween these distinct determinations of temperature confi
their validity and provides important further evidence th
the PGPE evolves randomized initial states to a thermo
namic equilibrium consistent with the microcanonical e
semble.

- FIG. 2. ~a! Plot of the condensate fraction versus temperat
for a number of interaction strengths. Solid line,Cnl50; crosses,
Cnl5500; solid dots,Cnl52000; open circles,Cnl55000; pluses,
Cnl510 000; stars,Cnl515 000; open trianglesCnl520 000. ~b!
Plot of the transition temperature versus interaction strength.
transition temperature is determined by the method of Binder
mulants as described in the text.
5-6
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B. Shift of the transition temperature

Figure 2~a! plots the equilibrium temperatures and co
densate fractions for several series of simulations with
ferent nonlinearitiesCnl , as well as for the ideal gas. Thes
can be interpreted to be simulations at a fixed density wit
varying scattering length. It is immediately obvious th
qualitatively the transition temperature increases with
creasing nonlinearity, and this was noted in@18#. Many more
simulations have been performed for this paper, and we n
have a much more reliable measure of temperature. Thu
can now look at the shift of the critical temperature with t
nonlinear parameterCnl for our PGPE system.

We can calculate the transition temperature for a non
teracting gas with equipartion occupation numbers and a
mentum cutoffkc in the continuum limit via

N5N01E
0

kc d3k

~2p!3

kBT

\2k2/~2m!2m
. ~28!

We find that the dimensionless critical temperature for a
mogeneous PGPE system with a momentum cutoff ofkc

52pk/L is T̃c(Cnl50)5p/k, where the dimensionles
temperature is defined byT̃5kBT/(NeL).

Identifying the critical point in a finite-sized system wit
interactions, however, is somewhat more difficult. Here
make use of the method of Binder cumulants@32#, which
have been used in other finite-size calculations for the B
gas@33#. We note that the theory behind Binder cumulants
derived entirely from canonical statistical mechanics. Ho
ever, the calculations of Caianiet al. @34,35# suggest that it is
valid as a numerical tool in the microcanonical ensemb
and we shall follow their lead. The Binder cumulant can
written as

C5
^N0

2&

^N0&
2

, ~29!

whereN0 is the population of the zero-momentum conde
sate mode in our simulations. This quantity chang
smoothly from 1 for the condensed system~ordered phase! to
2 for the uncondensed system~disordered phase!, with the
width of the transition region decreasing with increasing l
tice size. However, in lattice field theory the chemical pote
tial at which curves ofC vs T intersect for different lattice
sizes is universal for a given universality class, which
three-dimensionalXY for our system. It has been calculate
by Campostriniet al. @36# that this critical value isCc
51.2430(1)(5), where the first number in parentheses
due to statistical errors and the second is due to system
errors.

We therefore determine the critical temperature from
simulations by finding the energy at which the Binder cum
lant takes the valueCc in equilibrium. Due to our limited
statistics from 200 field samples, the results are somew
noisy, but we are able to identifyT̃c for the simulations to an
accuracy of approximately 1%.

We note that for the case ofCnl520 000 the predicted
shift in critical temperature is more than 60%. However, t
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corresponds to the shift indimensionlesstemperature of the
low-energy states, not the shift in the critical temperature
the complete system, which will be smaller. This will b
discussed in more detail in Sec. IV B.

C. Calculation of the specific heat

Although the specific heat can theoretically be determin
by a similar procedure to that used for the temperature,
actual formulas are rather complicated and difficult to cal
late. Instead, in this section we use numerical methods
calculate curves for the specific heat.

The calculation of numerical derivatives is difficult fo
data with statistical errors. Here we have applied a smoo
ing spline fitting technique to the raw numerical data f
energy and temperature and calculated the derivative f
this fit. Examples of the spline fits to the numerical data
plotted in Fig. 3.

The specific heat curves calculated from the data in Fig
are shown in Fig. 4~a!. The units of the vertical axis are
scaled by the specific heat of the ideal Bose gas for the s
system atT50. We can see that there is a strong peak n
the critical temperature that increases with increasingCnl .
Scaling theory for critical points in the thermodynamic lim
suggests that the specific heat will be peaked at the ph
transition. In our case the peak is not exactly atTc , as per-
haps would be expected. We presume that this is due to
combination of finite-size effects and numerical errors in
fitting procedure, which we estimate to be a few perce
Similar behavior has also been noted in@34#. Figure 4~b!
shows the maximum value of the specific heat plotted ver
Cnl .

IV. RELATION TO OTHER WORK

A. Dynamics of f4 lattice field theory

The results presented in this paper for the homogene
Bose gas have many similarities to classicalf4 lattice field

FIG. 3. The system energy plotted against the temperat
scaled in units of the critical temperatureTc so that the curves are
distinct in the linear region. Solid line,Cnl50; solid dots,Cnl

52000; pluses,Cnl510 000; open triangles,Cnl520 000. The lines
passing through the numerical data points are the smoothing s
fits.
5-7
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theory, which is often studied in relation to second-ord
phase transitions. In such studies the field is discretized
lattice with the spatial derivatives of the Hamiltonian bei
approximated by finite difference methods. Monte Ca
simulations are then performed to study the thermodynam

However, there have also been ‘‘molecular dynam
simulations of such field theories, and in particular we n
the work of Caianiet al., who considered the phase transiti
via dynamical simulation of thef4 model in both two@35#
and three dimensions@34#. Their equations of motion are

FIG. 4. ~a! The numerically calculated specific heat curves
various interaction strengths. The peaks occur at temperatures
percent below the identified transition temperature. We estimate
error for these curves to be of the order of a few percent. S
black line, Cnl50; dashed line,Cnl52000; dotted line,Cnl

510 000; dash-dot line,Cnl520 000. ~b! The maximum value of
the specific heat plotted versus the dimensionless interac
strengthCnl . For both~a! and ~b!, the specific heat is plotted rela
tive to the corresponding value atT50, and so the quantities ar
dimensionless.
05361
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distinct from those of this paper by virtue of being seco
order in time. Their paradigm Hamiltonian ind dimensions is

H@f#5E ddx
1

2
p2~x!1

J

2
@¹f~x!#21

1

2
f2~x!1

l

4
f4~x!,

~30!

with the canonical position variablesf(x) and conjugate
momentap(x)5ḟ(x), wheref is a vector quantity with up
to four dimensions. We note that as this Hamiltonian is of
form H5p2/21V(f), both the temperature and specifi
heat of these simulations can be calculated from expecta
values of the kinetic energy. This is not possible for t
Hamiltonian we consider in this paper where the interact
term mixes powers of the position and momentum coor
nates.

Also, in Ref. @35# the parameters used wereJ51,l
50.6, and for Ref.@34# the valuesJ51, l50.1, andl54
are specifically mentioned. Thus these calculations appea
be in quite a different regime from the results presented h
Despite these differences, however, it seems that man
their numerical results are qualitatively similar to ours.

B. Shift of Tc in the continuum limit

The results presented in this work can also be conne
to the issue of the shift in the transition temperature for
homogeneous Bose gas, which has been the subject
number of recent papers. In the weak interaction limit t
shift DTc has the form

DTc

Tc0
5can1/3, ~31!

whereTc0 is the transition temperature for the ideal gas,n is
the density,a is the s-wave scattering length, andc is a
dimensionless constant. The value ofc cannot be determined
by perturbation theory as this breaks down at second-o
phase transitions due to infrared divergences. There h
been several calculations of the value ofc, differing by up to
an order of magnitude and even in sign~see the summary in
@37#!.

The dimensionless constantc has recently been deter
mined via Monte Carlo calculations by Arnold and Moo
@33,37# and by Kashurnikovet al. @38# to bec51.3260.02
and c51.2960.05, respectively. These calculations we
carried out via classicalf4 field theory, which can be sys
tematically matched to the problem of the homogenous
teracting Bose gas. The Monte Carlo calculations procee
by sampling the classical action

S

b
5E d3xFc* ~x!S 2

\2¹2

2m
2meffDc~x!1

U0

2
uc~r !u4G ,

~32!

on a lattice at a fixed temperatureT, whereb5(kBT)21. The
value of meff was adjusted until the critical point wa
reached, and thus the shift in critical densitync5^ucu2& from
the ideal gas valuenc0 could be measured. The shift in crit
cal temperature at a fixed density can then be determ
from

r
ew
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d
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DTc

Tc0
52

2

3

Dnc

nc0
, ~33!

which is easily derived from the formula for the critical tem
perature of the ideal gas. While this procedure see
straightforward, in practice it is necessary to give care
consideration to finite-size effects in the calculation—s
Ref. @33# for a detailed discussion of these matters.

The results of simulations similar to those presented h
can also be used to calculate a value forc, as we are also
sampling the thermodynamic functions of classicalf4 field
theory. The Monte Carlo calculations fix the temperature a
adjust the value ofmeff in Eq. ~32! which then determines th
normalization of the field. In our calculations, we adjust t
energy of the initial state to find the critical point and det
mine the temperature using the method described above.
simulations have a fixed normalization, but the dimensi
less temperatureT̃}T/N, so for a given value ofCnl we can
interpret our results as being at a fixed temperature an
varying density.

The main difference between the methods is the man
in which field configurations are sampled. The Monte Ca
methods can use the most efficient update possible, as
as the samples are canonical at a given temperature.
calculations solve for the evolution of a microcanonical fie
and use the theorem of ergodicity to generate an ensem
We have one minor advantage in that our momentum cu
is spherically symmetric, whereas the Monte Carlo calcu
tions simulate the first Brillouin zone of the lattice. Howev
the molecular dynamics method suffers from critical slowi
down—as the energy of the highest modes is proportiona
k2, we require time steps of orderdt51/kc

2 , wherekc is the
momentum cutoff. Thus our simulations are disproportio
ately less efficient for larger grids compared to the Mo
Carlo calculations and will not be able to generate results
accurately for a given computation time@39#. Nonetheless,
we can use our simulations to confirm qualitatively the
sults of the Monte Carlo analysis, providing an independ
demonstration of the validity and potential usefulness of
temperature determination method.

As a simplified illustration, we follow through the logica
procedure that would be required to calculate a value foc.
To consider the shift in the critical point, we can consider
shift in the critical density given a fixed critical temperatu
T0. In our numerical simulations we keepCnl
58paNbelow/L fixed and measure a shifted critical tempe
ture

T̃c5
kBT0

NbeloweL
. ~34!

HereNbelow is the number of particles below the cutoff. If w
fix the critical temperature atT0 as well as the system sizeL
~and henceeL), we can interpret the increase in the dime
sionless quantityT̃c as a decrease in the value ofNbelow and
hence a decrease in the critical density. The most impor
point to note is that as long as we havekc@k0, wherek0
labels the division between quasiparticle- and particlelike
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citations at the transition temperature, then particles ab
the cutoff will not be significantly affected by the change
the interaction strength.

We therefore calculateNabove5Ntot2Nbelow for the ideal
gas, whereNtot is the total number of particles. This will b
a constant as long askc@k0. We can then calculate
Nbelow(Cnl) and hence the shift in the critical density fro
the simulation data, and by using the relation of Eq.~33!, we
obtain the shift in the critical temperature.

This can then be plotted againstan1/3 and the slope at the
origin determines the coefficientc. This plot is given in Fig.
5, where we have setNbelow(Cnl50)51010. We note that the
method does not depend on the value chosen forNbelow(Cnl
50) as long as it is large enough that^Nk&@1 is well satis-
fied.

By fitting a straight line to the first two points as illus
trated in Fig. 5, we get an estimate for the coefficient

c51.360.4, ~35!

where the error specified is due to the uncertainty in
value of Tc for the data point. This agrees with the valu
determined in Refs.@37,38# — a result that should be treate
with caution. The correct value ofc will be reached only in
the limit of large volume and small lattice spacing, and w
believe we have not reached this regime. For compari
with the results of Arnold and Moore, for our first data poi
we haveLu'325 andualatt'10.2, whereu53T̃Cnl /L and
alatt5L/32. Our other data points have values for these qu
tities that are much larger than this. Arnold and Moore su
gest thatLu>400 andualatt<6 are necessary to get an a
curate result forc without a finite-size scaling analysi
@33,39#.

We could potentially improve our results by performin
such a finite-sized scaling analysis, but there is little rea
to do so given the greater accuracy obtained in Refs.@37,38#.
The purpose of this calculation is to demonstrate a us
application of our temperature determination with the PG
in a nonperturbative regime. In this regard the qualitat

FIG. 5. Shift in the critical temperature with interaction streng
determined from the results presented in this paper w
Nbelow(Cnl50)51010. The dashed line is a linear fit to the first tw
data points and this has a slope of 1.360.4.
5-9
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agreement with earlier more involved and specialized ca
lations provides a pleasing confirmation of the general va
ity of the method.

V. CONCLUSIONS

We have shown that the projected Gross-Pitaevskii eq
tion can be exactly mapped to Hamilton’s equations of m
tion for canonically conjugate position and momentum va
ables. Using this mapping we have described how to uti
the microcanonical thermodynamic method of Rugh@24# to
measure the temperature of PGPE simulations in the non
turbative regime. This method agrees with previous calcu
tions described in Ref.@18#, but has a rigorous theoretica
justification and wider applicability. Using this approach, w
have quantitatively measured the shift in the critical tempe
ture for condensation with the nonlinear constantCnl . We
have also observed that the specific heat reaches a maxi
near the transition point as expected from the theory of c
tinuous phase transitions and that the peak value incre
with the nonlinearity. Finally, we have made a connect
v.

.
. A

ys

28
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between these calculations and Monte Carlo simulations
have determined the shift in the critical temperature w
scattering length of the homogeneous Bose gas in the
tinuum limit. This is further evidence that the projected GP
should be valid for dynamical calculations through the cr
cal region as long as the condition on the occupation nu
bers is satisfied.
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