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Microcanonical temperature for a classical field: Application to Bose-Einstein condensation
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We show that the projected Gross-Pitaevskii equatl@PB can be mapped exactly onto Hamilton’s
equations of motion for classical position and momentum variables. Making use of this mapping, we adapt
techniques developed in statistical mechanics to calculate the temperature and chemical potential of a classical
Bose field in the microcanonical ensemble. We apply the method to simulations of the PGPE, which can be
used to represent the highly occupied modes of Bose condensed gases at finite temperature. The method is
rigorous, valid beyond the realms of perturbation theory, and agrees with an earlier method of temperature
measurement for the same system. Using this method we show that the critical temperature for condensation in
a homogeneous Bose gas on a lattice with a uv cutoff increases with the interaction strength. We discuss how
to determine the temperature shift for the Bose gas in the continuum limit using this type of calculation, and
obtain a result in agreement with more sophisticated Monte Carlo simulations. We also consider the behavior
of the specific heat.
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I. INTRODUCTION the current authorgl7,18. These calculations are all related
by the fact that they include no damping terms in the GPE,
The Gross-Pitaevskii equatid@GPE has proven to be an and thus rely onergodicity for the system to thermalize.
extremely useful description of macroscopic Bose-EinsteirClassical field methods involving both damping and stochas-
condensate@BECS at or near zero temperatufg]. It is the  tic terms have been considered by Gardieteal. [19], Stoof
first and sometimes only tool to be used in the description ofind Bijlsma[20], and Duine and Stodi21].
many experiments in the field of nonlinear atom optics and While the qualitative results from previous work have
Bose-Einstein condensation. The validity of the GPE forbeen promising, there has been some difficulty in performing
many wide-ranging experimental situations now appears beguantitative calculations using such methods, and in particu-
yond doubt. lar in determining the temperature of the system at equilib-
However, it has been proposed that the GPE can also héum. We partially addressed this issue in previous work us-
used to represent the nonequilibrium dynamics of Bose gasésg a variety of methods to determine the temperature of our
at finite temperaturg2—5]. The underlying argument is that, simulations[17,18. The most reliable of these involved fit-
for modes of the gas with an average occupation much largeing time-averaged quasiparticle occupations and energies to
than 1, the classical dynamics is far more important than théhe classical limit of the Bose-Einstein distribution function.
guantum dynamics. This is analogous to the semiclassicaélowever, this method relies on the existence of a basis that
approximation utilized in laser physics for the electromag-approximately diagonalizes the Hamiltoniéguasiparticles
netic field. A major advantage of using the GPE in suchfor which energies and wave functions can be calculated in
situations is that it is nonperturbative and so can be applieddvance. This method is therefore only applicable in the
in the region of the critical point as long as the condition onrealm of perturbation theory, and fails for even moderate
occupation numbers is observed. In Héf. a finite tempera- temperatures in systems with large nonlinearities. Hence it is
ture Gross-Pitaevskii equation is derived from the quantuntesirable to find a more widely applicable scheme for unam-
many-body Hamiltonian for the Bose gas with this approxi-biguously determining the temperature of numerical simula-
mation in mind. An alternative route to similar equations oftions.
motion is possible via the use of the Wigner representation In a succinct yet insightful paper, Ru§p2] expressed the
[7]. This approach may be more familiar to those from thetemperature of a classical Hamiltonian system in terms of a
guantum optics community. phase space expectation value of a suitable function of the
Some of the first numerical calculations utilizing the GPEcanonical position and momentum coordinates. (19) of
for finite temperature simulations were performed by Damlethis papei] Using the ergodic theorem, this expectation value
et al [8] and Marshallet al [9]. More recently there have over phase space can be interpreted as a dynamical average
been several calculations using the so-called “classical fieldfor a system in equilibrium, and immediately lends itself to
approximation. In particular we mention those ofr@cand  applications in numerical calculations. Rugh developed this
co-workers[10—-12, Sinatra and co-workerEl3—16, and  procedure further ii23], and generalized it to include sys-
tems with other conserved quantities in addition to the en-
ergy [24]. This generalization turns out to be crucial for the
*Electronic address: mdavis@physics.uq.edu.au application of the method to the interacting Bose gas. Rugh’s
"Electronic address: sam@theory.phys.ucl.ac.uk formula for the temperature has been applied to several sys-
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tems to date, for example, in the field of molecular dynamicswhere e; can be chosen to be any scalar value, including
This has led to the notion of a configurational temperatureero. The vector fielk can also be chosen freely within the
for gases, which depends only on the spatial coordinates afonstraints

the particles, in addition to the usual kinetic temperature
which depends only on the momen&6—27.

In this paper we apply the microcanonical formalism of . : )
Rugh to the BEC Hamiltonian to determine the temperatureGeometrlcally this means that the vector figlchas a non-
ero component transverse to tHe= E energy surface, and

of numerical simulations of thermal Bose gases. The methof lel to th faceE. = 1. Th tati e i
is nonperturbative and does not rely on the existence of welll> parailel 1o e surtaces; =1; . 1he expectation value in

defined Bogoliubov quasiparticles. The paper is organized a5d: (3) _'S over all possmle states in the F“'CfOC?‘”O”'Ca' en-
follows. In Sec. Il we briefly summarize the expression forsemble, however, if the ergodic theorem is applicable then it

the temperature and other derivatives of the microcanonicdin €qually well be interpreted as a time average. For further

entropy, and describe their application to the BEC Hamil- etails on the origin of this expression we refer the reader to

tonian. Section Il presents our numerical results for our pro—Rugh,S original paperf22-24, as well as to the derivations

jected GPEPGPH system, while Sec. IV relates our calcu- by Giardinaand Levi[28], Jeppset al. [26], and Rickayzen

lations to other dynamical calculations of classi¢dl field and Powleg29].
theory, as well as to calculations of the shift of the transition

DH-X=1, DF;-X=0, 1l<i=m. (5)

temperature for a homogeneous Bose gas. We conclude in B. Dimensionless BEC Hamiltonian
Sec. V. The full quantum many-body Hamiltonian for the Bose
gas in dimensionless form is
Il. FORMALISM
A. Hamiltonian H:f d3| VW T(X)- VW (x) + V() T(x) W (%)
We consider a classical system witd independent c
modes. The Hamiltonian can be writtentds-H(T’), where + TN@T(Y()(I}T(;)(I}(;){I}(;) , (6)
I'={I';}={Q; ,P;} is a vector of length ®I consisting of the

canonical position and momentum coordinates. In these co- - . . .
ordinates we define the gradient opera¥oin terms of its ~WhereH=Ne_H, N is the number of particles in the system,
componentsV,= g/ dl’; . x=x/L, L is the unit of lengthg, =#2/(2mL?) is the unit of

In the notation of Rugh24], the HamiltoniarH may have  epergymis the mass of the particles, aNgx) is the dimen-

a number of independent first integrals, labeled By sjonless external potential if any is present. The dimension-
=F,, ... F,, that are invariant under the dynamics tof

We could defineFy=E and include the conserved energy ~ o~
with the other constants of motion in this notation, but for 1, J&®(W¥T(x)¥(x))=1, andCy is the nonlinear constant
clarity we consider it separately. A particular macrostate ofdefined as

such a system can be specified by the values of the conserved

less quantum Bose field operaﬁjr(;) is here normalized to

quantities, labeled ad =E,F;=1, . _NU, _8maN )
The expression for the temperature of such a system in the n e L3 L’
microcanonical ensemble is given by
1 9S wherea is thes-wave scattering length. In this expression we
= (_> , (1) have assumed a high momentum cutoff and made use of the
keT | JE F, replacement of the true interatomic potential with the two-

body T matrix V(x) — Uy8(x), whereU,=4x#%%a/m.
where all other constants of motion are held fixed, and where In Ref. [6] the field operator is split into a classical part
the entropy is given by and a quantum part, with the boundary determined by the
requirement that the average occupation numfey) of
es’kszf dr sSSE-HM)]I] 8[1,—F«(I)]. (2  modes below the cutoff satisfi¢sl,)>1. Equations of mo-

i tion were derived for the classical part, before taking the
ean value. This resulted in the finite temperature Gross-
itaevskii equation, which describes the evolution of a clas-

sical field coupled to an effective bath described by a quan-
1 tum Boltzmann-like equation. This equation proves to be
kB_T:(D'X(F))’ ©) somewhat difficult to solve numerically, and in Rdf$7,1§
we reported results focusing on a simplification we termed
where the angle brackets correspond to an ensemble averagfee projected Gross-Pitaevskii equation. This equation de-

In this case, the temperature of the system can be writte
as

and the components of the vector operdioare scribes the evolution of a classical field only, with a cutoff at
a given momentum or energy. It is identical to the usual GPE
Di=e T (4)  exceptthatit evolves a wave function which is restricted to a

i

finite-sized basis satisfying the classical condit{dd)>1.
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The PGPE for a homogeneous system is written explicitly Calculations on a grid

for the homogeneous gas in E6) of this paper. The implementation of a projection operator in the GPE is
In this paper we wish to determine the temperature of the,, essential feature of any classical simulation. While we
restricted system described by the evolution of the PGPR,, e explicitly defined a projection operator in terms of a
Thus the Hamiltonian we consider is the classical version of ;g set, other authors have implicitly chosen a momentum
Eq. (6) obtained by replacing the field operatdr(x) with cutoff by the use of a finite-size grid in their GPE simula-
the classical fieldy(x), subject to the important restriction tions[11,12. The method of temperature determination de-

that ¢(X) is constructed from a finite number of low-energy scribe_d in th?s paper can also be applied to these calculations,
modes. We can therefore write it in the form but with a different choice of postion and momentum coor-

dinates.
~ ~ On a finite grid, the HamiltoniafB) can be discretized in
‘”(X)—gc Crbk(X), (8) real space and the classical equivalent can be written as
where C labels the clas.sical'modes in the coherent region H:hxhyth (Van)2+(VB,)?
below the cutoff, as defined ir6]. n
. . - i Cni
C. Canonically conjugate position and momentum variables +Vn(a'ﬁ+,8ﬁ) + _”(a§+,3ﬁ)2 , (13

. . . 2
We must now make a choice of the canonically conjugate

coordinates of our Hamiltonian. As we are defining our clas\yheren={n, ,n, ,n,} labels the grid pointh, ,hy ,h, are the

sical field in a basis, it seems natural to convert to a basigyig spacings for each axis, and we have defigee

representation. If we choose our basis to be that which diz.j g in this case the appropriate position and momentum
agonalizes the ideal gas Hamiltonifthe first two terms of \5riables are

Eq. (6)] we find
Qn= \/Ean , P,= \/zﬂn . (14

However, we believe that it is important to define the

) ) projector using a basis that is relatively well defined in en-

where the matrix element is ergy at the cutoffwe stress that this does not mean that the
basis has to be well defined in energglowthe cutofj. It

(mnlpq)zf d3X pr(X) % (X)bp(X)hg(X). (100 has previously been showiB0] that the single particle en-

ergy levels of a partially condensed system are essentially

The equation of motion for théc,} is given by the PGPE. those of the trapping potential for energiesEr~3uc,

This problem can be mapped exactly to the one considere§fnere uc is the condensate energy eigenvalue. Thus the

by Rugh by defining real, canonically conjugate coordinate@P0ve cutoff projector can be written

Q, andP,,

1
Qn:\/z—en(c;:_"cn)a Pn:| \/%(C:_Cn)a (11)

with the corresponding inverse transformation

Chn
H= 2 EnC: Cn+ 2n 2 C:WC: Cpcq<m n| pq>1 (9)
n mnpq

QF ()= 3, X f ' gE (IF(K),  (19)

where the{ ¢,} are the basis states appropriate to the poten-
tial, and the notatiork ¢ C describes a summation over all
modes above the energy cutéf . As this basis is complete,

_\/:n . i 5 *_\/:n i 5 the below cutoff projector is simply
TN TN gl poi ¢

12 P=1-0, (16)

. I . - which gives the result written explicitly in E427). We also
With these definitions, the evolution of theg, coefficients require the classical condition

given by the PGPE maps exactly to the evolution of the
coordinatesQ,, and P,, given by Hamilton’s equations. The kgT
PGPE is therefore in one-to-one correspondence with a clas- Ni= En—
sical microcanonical system, and its equilibrium properties

can be studied using the wide variety of techniques that havg, ho|d at the cutoff and so fdEg~3uc this should also be
been developed in classical statistical mechanics. satisfied.

We have performed numerical calculations for the ~ For a trapped Bose gas, the implicit momentum projector
homogeneous PGPE, and so we use a plane wave bagjgsed on the finite-grid method is not at all well defined in
where ¢,(X) =exp(k,-X), n={n,,ny,n,}, and ,=[k,|> energy at the cutoff, and we believe that this may lead to
=(2m|n|)2. However, the method we describe is generaldifficulties. However, this is yet to be invesigated numeri-
and can be applied directly to inhomogeneous systems fazally; for further discussion of this issue we refer the reader
BECs in magnetic and optical dipole traps. to [31].

>1 (17)
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D. Choice of vector field X An exception to this, however, is the conservation of nor-

In order to satisfy the conditionés) we can choose a malizationNzEpc;‘cn. This must be considered explicitly
vector field of the form because there is no coordinate system in which it can be
made to vanish. The constraint dhmeans that the ground
state of the system will, in general, have a finite energy. For
example, a noninteracting gas in a harmonic trap of fre-
quencyw must have at least the zero-point enefigy/2 for
where them+1 coefficients{a,b;} are determined by the each spatial degree of freedom. For a nonideal, homoge-
m+ 1 simultaneous equations in E&). Due to the freedom neous gas the restriction that at least one ofghenust be
in the choice of the vector operat®r we can set any com- nonzero means that there will always be a finite interaction
ponent of the length 12 vectorX to zero. This turns out to energy associated with the ground state enégy: Chil2.
be useful as the components corresponding to the momentumhese energy contributions are not accessible for thermaliza-
and position variables can be of different orders of magnition, however, and including the normalization constraint al-
tude. Two particular choices we make use of later e lows them to be removed. We note, however, that the effect
with D=Dp={0,0/dP;} andXq with D=Dy={d/dQ;,0}.  of this constraint is in general more complicated than a
These lead to two different calculations for the temperaturgimple subtraction of the ground state enefgiich could
that agree in general only if the system is in thermal equilib-be achieved by handand depends on the definition of the
rium. This provides a useful check that the simulations haveperatorD used to calculate the temperature, as shown be-

m

X=aDH+ >, b,DF;, (18)
=1

in fact thermalized. low.

In Rugh’s first two paper§22,23 the only first integral To deal with the normalization constraint, we need to
considered was the energy, and he chd@eV which  choose a vector fiel that satisfies Eqg5) with F;=N
yielded the(dimensionlessformula =3.ckc,. The result is

! \vj vH 19 DH— DN
T vHE (19 - , (20
|DH|*—=\\DN-DH
For the BEC Hamiltonian we consider, however, there are
other first integrals that must be taken into account. Mosiyhere the parameter
importantly, the evolution conserves the normalization of the
wave function, but other first integrals that may occur are DN-DH
both the angular and linear momentum. )\NZW (21)

The effect of including these additional first integrals in
the definition of the vector fielX is to account for the en-
ergy that is associated with a conserved quantity and hence ligoks similar to a chemical potential. For a system on a real
unavailable for thermalization. This ensures that only the apspace grid withD=V and a Hamiltonian given by E¢13)
propriate free energy is used to calculate the temperature. Wee find that\y= ugpe, Where ugpe is the usual Gross-
conjecture that the same result can be achieved by first tranBitaevskii form of the chemical potential, obtained from the
forming to a coordinate system where the total angular antHamiltonian of Eq.(13) by doubling the interaction term.
linear momenta, etc., are all zero and therefore do not corHowever, in general the expression of E2{l) does not have
tribute to the energy of the system. In fact, Rugh demona simple interpretation.
strated this explicitly if24] for a system of particles with a Substituting Eq.(20) into Eq. (3) we find that our full

conserved center-of-mass motion. expression for the temperature is
|
1 [ D’H—\yD’N—D\y-DN (DH—=A\DN) - [D|DH|?— (DH-DN)DAy— AD(DH-DN)] 22
T |DH|2—\\(DH-DN) [|DH|2— Ny (DH - DN)]? '

The second term in this expression is of ordév Land so in  respect to any of the first integrals of the Hamilton[24].
many situations it can reasonably be neglected. However, wia particular, we find that to calculate the quantity
have calculated the full expression for all results presented in
thi r. JS L
S pape (O,,?) , 1],
E. Other thermodynamic quantities ITEF

The method described in this paper can also be used to
calculate first derivatives of the microcanonical entropy withthe constraints on our vector field should be
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DH-X=0, DF;-X=1, DF;-X=0, i#j. (23 We begin with randomized initial fieldg(x) with a given
energy on a three-dimension@D) grid with 32 points in
For the BEC Hamiltonian, we have each dimension and evolve these until the field has reached
equilibrium. We calculate all thermodynamic quantities from
Il (a_s (24)  sampling 200 field configurations in equilibrium.
kgT N Cutoff dependence of simulatioie choice of momen-

. . , . . tum cutoff k,=15X 27 is motivated simply by computa-
and on implementing the required constraints we find that aonal convenience. It also allows for comparison of the

appropriate vector field is that given by Eq0) and (21) Rugh method of temperature measurement with data from
but with the roles oH andN reversed. . )
earlier calculations.

In addition, higher-order derivatives of the entropy can For a given initial energy, the resulting equilibrium tem-

also be determined, making available quantities such as theerature depends on the number of modes below the cutoff
specific heatg, of the systen{23]. This quantity could in b P ’

principle be calculated from the expression This can be easily understood from the equi_partition th_eorem
—if more modes are present, less energy will be contained in
each one and therefore the final temperature will be lower.
Also, the dimensionless critical temperature for a system
with a fixed normalization depends on the cutoff, as can be
seen in the text beneath E@8).
where the vectoiX is determined by Eqs(20) and (21). Work is currently in progress to develop a description of
However, for the BEC Hamiltonian the eXpreSSionS for SUChhe modes above the cutoff and their Coup“ng to the PGPE.
quantities are unreasonably complicated, and we do not cofrhe aim of this work is a complete computational method
sider them in this paper. Instead, higher derivatives will simthat will be insensitive to the exact position of the cutoff.
ply be obtained numerically once the temperature is deterxploring and developing techniques for the nonperturbative

izl_ <D-(XD-X)>, (25
Csp (D-X)?

mined.

IIl. NUMERICAL RESULTS

In this section we apply the formula E@®2) to data from
simulations of the PGPE described|[ih7,18, as well as to

many other simulations with a wider range of energies an
nonlinear parameterS,,;. For a full description we refer the
reader to Ref[18]. Briefly, the calculations evolve the pro-
jected Gross-Pitaevskii equatidé] for the homogeneous

gas in three dimensions

(X - . . -
iLX)z—szp(x)+Cn|73{|z,//(x)|21//(x)}.

T (26)

The nonlinear constant 8,=2mNU,/#%2L, whereN is the
total number of particles in the volume, ahds the period of

the system. Our dimensionless parameterscarg/L, wave
vector k=KL, energye=ele , and time r= ¢ t/%, with
e .=h%/(2mL?. The projection operato® excludes all

components of the nonlinear term in the GPE outside th

coherent region, and is defined ff. Egs.(15) and(16)]

PIFO}= 2, (x| & g (x)F(X'),  (27)
keC

where{¢,} is an orthonormal basis appropriate to the prob-
lem. For the homogeneous system with periodic boundary
conditions, the relevant basis is the plane wave states, and 8
this procedure is simply the application of a forward Fourier

transform, removal of components wik>k., followed by

the inverse transformation. The quantiky defines the mo-

e

classical field is an important part of this program, and we
focus on this aspect of the problem in this paper.

Despite this, there are some equilibrium calculations
which can be carried out immediately using an approximate
treatment of the modes above the cutoff. We present results
or one such calculatiorithe shift in T, with interaction
trength in this paper. These results have only a weak de-
pendence on the cutoff.

Use of the classical field method at TThe classical field
can describe only modes that satisfy the high-occupation
condition. But even at the critical temperature and above, the
lowest-energy states will have the largest occupations—and
for a wide range of parameters, many of these can satisfy
N,>1. These are the modes that are responsible for critical
behavior, such as the shift ifi, and the increase in specific
heat. The remaining moddthat are not simulatgedbehave
essentially as an ideal gas.

As a physical example, consider our simulations for
C,=20000. Choosing-=25 um, and 8'Rb, this corre-
sponds to approximately 38L0° atoms below the cutoff
satisfying N,>10 at T, of about 370 nK. There are
about 1.3< 10° atoms in total, with a total number density of
8.3x 10" cm 3. Thus in this situation nearly 30% of the
atoms are simulated by the PGPE.

A. Comparison of methods of temperature determination

As described in Sec. Il D there are many choices of the
eratorD that may be used in Eq22). The resulting cal-
culations give the same temperature only if the system is in
equilibrium, so this provides an important confirmation that
the system has thermalized. In this paper we consider two
casesDq=1d/9Q;,0} and Dp={0,d/JP;}, and we refer to

mentum cutoff for the coherent region, and for all data prethe temperatures calculated from these operatofBuaand

sented in this paper we ugg=15x 2.

Tp, respectively. AllowingQ or P derivatives only in the
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FIG. 1. Plot of the relative differences of simulation tempera-
turesTq and Tp calculated from Eq(22) with temperaturesT,
determined from the same data plotted in Fig. 9 of RE8]. Open
triangles AT=Tp—Tg; black dotsAT=To—T,. (a) C, =500, (b)
C,,=2000, (c) C,=10000.

FIG. 2. (a) Plot of the condensate fraction versus temperature
for a number of interaction strengths. Solid li@,=0; crosses,
C,=500; solid dots,C,=2000; open circlesC,=5000; pluses,
C,=10000; starsC,=15000; open triangle€,=20 000. (b)

Plot of the transition temperature versus interaction strength. The
transition temperature is determined by the method of Binder cu-

separate definitions of the opera®rsimplifies the calcula- |\ iants as described in the text.

tion of Eq.(22) due to the elimination of mixed derivatives.

We begin by comparind o and Tp with previous results  absolute temperatures. These results therefore validate our
from Ref.[18]. In this earlier work we obtained temperatures earlier nonperturbative method for temperature determina-
using three different methods, two based on Bogoliubov quation in a homogeneous systefdescribed in Sec. VI D of
siparticles and perturbation theory, and a third nonperturbaRef.[18]). Figure 1 also shows that in general the values of
tive calculation. This third method did not have a firm theo-T, and T agree with each other within their error bars. The
retical basis; however, we showed that the results wererror is determined from the standard deviation of the expec-
consistent with the two other calculations in their regime oftation value of Eq.(22) divided by the square root of the
validity, and gave reasonable results more generally. Figure dumber of sample6n this case 200 This estimate assumes
shows the relative differences between the simulation temGaussian statistics, which seems reasonable when the distri-
peraturesT, and Tp calculated from Eq(22) and the tem-  bution of values is plotted as a histogram; however, it may
peraturesT, determined from the earlier method 3. The underestimate the actual error somewhat. The agreement be-
simulation data used are the same as those plotted in Fig.t®een these distinct determinations of temperature confirms
of Ref.[18]. their validity and provides important further evidence that

We can see from Fig. 1 that only a small number of pointsthe PGPE evolves randomized initial states to a thermody-
differ by more than 1% from the previously determined val-namic equilibrium consistent with the microcanonical en-
ues, and even these would be hard to detect on a plot of treemble.
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B. Shift of the transition temperature

Figure Za) plots the equilibrium temperatures and con-
densate fractions for several series of simulations with dif-
ferent nonlinearitie<,,, as well as for the ideal gas. These
can be interpreted to be simulations at a fixed density with a
varying scattering length. It is immediately obvious that
qualitatively the transition temperature increases with in-
creasing nonlinearity, and this was noted 18]. Many more
simulations have been performed for this paper, and we now
have a much more reliable measure of temperature. Thus we
can now look at the shift of the critical temperature with the
nonlinear parametet,, for our PGPE system.

We can calculate the transition temperature for a nonin- 0 : '

: : Lo . 0 0.5 1 1.5
teracting gas with equipartion occupation numbers and a mo- T/T
mentum cutoffk, in the continuum limit via ¢

_ 3
E-E, (10°¢)

N W R OO N 0 ©

e

FIG. 3. The system energy plotted against the temperature,
_ ke d’k kgT scaled in units of the critical temperatufe so that the curves are
N=No+ o (2m)° h2k2/(2m)—,u' (28) distinct in the linear region. Solid lineC,=0; solid dots,C,,
= 2000; plusesC, =10 000; open triangle€ =20 000. The lines
passing through the numerical data points are the smoothing spline
fits

We find that the dimensionless critical temperature for a ho
mogeneous PGPE system with a momentum cutofk of

=2mwklL is T,(Cy=0)=m/«, where the dimensionless corresponds to the shift idimensionlessemperature of the

temperature is defined ®= kgT/(NeL). low-energy states, not the shift in the critical temperature of
Identifying the critical point in a finite-sized system with the complete system, which will be smaller. This will be

interactions, however, is somewhat more difficult. Here wediscussed in more detail in Sec. IV B.

make use of the method of Binder cumulah82], which

have been used in other finite-size calculations for the Bose C. Calculation of the specific heat

gas[33]. We note that the theory behind Binder cumulants is  ajthough the specific heat can theoretically be determined

derived entirely f_rom canor_lical statistical mechanics._ I-_|ow-by a similar procedure to that used for the temperature, the
ever, the calculations of Caiaet al. [34,35 suggest that itis ¢t formulas are rather complicated and difficult to calcu-

valid as a numerical tool in the microcanonical ensemble|ate Instead. in this section we use numerical methods to
and we shall follow their lead. The Binder cumulant can becalculate curves for the specific heat.

written as The calculation of numerical derivatives is difficult for

<N2) data with statistical errors. Here we have applied a smooth-
= —02, (29 ing spline fitting technique to the raw numerical data for
(No) energy and temperature and calculated the derivative from

this fit. Examples of the spline fits to the numerical data are
whereNg is the population of the zero-momentum conden-pjotted in Fig. 3.
sate mode in our simulations. This quantity changes The specific heat curves calculated from the data in Fig. 3
smoothly from 1 for the condensed systéondered phasdo  are shown in Fig. @). The units of the vertical axis are
2 for the uncondensed systefdisordered phagewith the  scaled by the specific heat of the ideal Bose gas for the same
width of the transition region decreasing with increasing |at-system afT=0. We can see that there is a strong peak near
tice size. However, in lattice field theory the chemical poten-the critical temperature that increases with increasing
tial at which curves ofC vs T intersect for different lattice Sca"ng theory for critical points in the thermodynamic limit
sizes is universal for a given universality class, which iSsuggests that the specific heat will be peaked at the phase
three-dimensionaK'Y for our system. It has been calculated transition. In our case the peak is not exactlyTat as per-
by Campostriniet al. [36] that this critical value isC.  haps would be expected. We presume that this is due to to a
=1.243q1)(5), where the first number in parentheses iscombination of finite-size effects and numerical errors in the
due to statistical errors and the second is due to systematfgting procedure, which we estimate to be a few percent.
errors. Similar behavior has also been noted[B¥]. Figure 4b)

We therefore determine the critical temperature from oulshows the maximum value of the specific heat plotted versus
simulations by finding the energy at which the Binder cumu-c ;.

lant takes the valu€, in equilibrium. Due to our limited
statistics from 200 field samples, the results are somewhat IV. RELATION TO OTHER WORK

noisy, but we are able to identiff, for the simulations to an
accuracy of approximately 1%.

We note that for the case @&,=20000 the predicted The results presented in this paper for the homogeneous
shift in critical temperature is more than 60%. However, thisBose gas have many similarities to classi¢él lattice field

A. Dynamics of ¢* lattice field theory
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3 - T distinct from those of this paper by virtue of being second
I,f" (a) order in time. Their paradigm Hamiltonian éhdimensions is
25¢ il H —Jddlz + 2w 24 220+ St
: I [$]= | dG (0 + S[VA(X) P+ 520 + 7 H*(x),
-ch' ] \ (30
) ol o
'(C) | with the canonipal position variableg(x) and conjugate
= B! momentamr(X) = ¢(X), whereg is a vector quantity with up
8 15} Bl to four dimensions. We note that as this Hamiltonian is of the
Q form H=x?/2+V(¢), both the temperature and specific
N heat of these simulations can be calculated from expectation
1 values of the kinetic energy. This is not possible for the
Hamiltonian we consider in this paper where the interaction
term mixes powers of the position and momentum coordi-
05 nates.
0 Also, in Ref. [35] the parameters used werk=1\

=0.6, and for Ref[34] the valuesl=1, A=0.1, and\=4

are specifically mentioned. Thus these calculations appear to
be in quite a different regime from the results presented here.
3 . ' ' _ Despite these differences, however, it seems that many of
their numerical results are qualitatively similar to ours.

B. Shift of T, in the continuum limit

n
3,
X

The results presented in this work can also be connected
to the issue of the shift in the transition temperature for the
x homogeneous Bose gas, which has been the subject of a

] number of recent papers. In the weak interaction limit the
shift AT, has the form

AT,
TcO

=can'?, (31

Specific heat peak
o~

(b) whereT is the transition temperature for the ideal gass
the density,a is the swave scattering length, and is a

X
Tex ' dimensionless constant. The valuecafannot be determined
0 S 10 15 20 by perturbation theory as this breaks down at second-order
1()'3 C phase transitions due to infrared divergences. There have
nl been several calculations of the valuecptliffering by up to

FIG. 4. (a) The numerically calculated specific heat curves for gn order of magnitude and even in sigee the summary in
various interaction strengths. The peaks occur at temperatures a fq_\g7])

percent below the identified transition temperature. We estimate the Tﬁe dimensionless constasthas recently been deter-

error for these curves to be of the order of a few percent. Solidyined via Monte Carlo calculations by Arnold and Moore
black line, Cy=0; dashed line,C,=2000; dotted line,Cri 133 37 and by Kashurnikoet al. [38] to bec=1.32+0.02

=10 OOO;.anh'dOt lineCyy =20 000. (b) Th? maximum va_lue of - and c=1.29+0.05, respectively. These calculations were
the specific heat plotted versus the dimensionless interaction

. . . 4 . . _
strengthC,,,. For both(a) and (b), the specific heat is plotted rela- carried out via classicap” field theory, which can be sys

tive to the corresponding value &=0, and so the quantities are temat!cally matched to the problem of the hqmogenous In-
dimensionless. teracting Bose gas. The Monte Carlo calculations proceeded

by sampling the classical action

theory, which is often studied in relation to second-order S o] . h2v2 Uy .
phase transitions. In such studies the field is discretized on a E:f ¥ " (0| = 5 = et | ) + [0,
lattice with the spatial derivatives of the Hamiltonian being (32)
approximated by finite difference methods. Monte Carlo
simulations are then performed to study the thermodynamicsn a lattice at a fixed temperatufewhereg= (kgT) . The

However, there have also been “molecular dynamic”value of u.s was adjusted until the critical point was
simulations of such field theories, and in particular we notereached, and thus the shift in critical density=(||2) from
the work of Caianket al., who considered the phase transition the ideal gas valua., could be measured. The shift in criti-
via dynamical simulation of thes* model in both two[35]  cal temperature at a fixed density can then be determined
and three dimensiong34]. Their equations of motion are from
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AT, 2 An, 5 T
Teo 3 Neo ' 33 ! X
4 /’ x
which is easily derived from the formula for the critical tem- |
perature of the ideal gas. While this procedure seems Bl x
straightforward, in practice it is necessary to give careful ~, /
consideration to finite-size effects in the calculation—see 5 -
Ref. [33] for a detailed discussion of these matters. o 2 ,’
The results of simulations similar to those presented here |
can also be used to calculate a value dpas we are also 1 *
sampling the thermodynamic functions of classigél field !
theory. The Monte Carlo calculations fix the temperature and ¥
adjust the value ofi¢ in Eq. (32) which then determines the 03 : ' ' '
o ' : . 0 5 10 15 20 25
normalization of the field. In our calculations, we adjust the 10¢ an'”®

energy of the initial state to find the critical point and deter-
mine the temperature using the method described above. Our fiG_ 5. shift in the critical temperature with interaction strength
simulations have a fixed normalization, but the dimensionyetermined from the results presented in this paper with

less temperaturiocT/N, so for a given value o, we can  Npeou Cn=0)=10". The dashed line is a linear fit to the first two
interpret our results as being at a fixed temperature and @ata points and this has a slope of £34.
varying density.

The main difference between the methods is the mannegitations at the transition temperature, then particles above
in which field configurations are sampled. The Monte Carlothe cutoff will not be significantly affected by the change in
methods can use the most efficient update possible, as lorifje interaction strength.
as the samples are canonical at a given temperature. Our We therefore calculat®lpoye= Nior— Npeiow for the ideal
calculations solve for the evolution of a microcanonical fieldgas, whereNy is the total number of particles. This will be
and use the theorem of ergodicity to generate an ensembla. constant as long a&.>k,. We can then calculate
We have one minor advantage in that our momentum cutofNpeion{Cr) @nd hence the shift in the critical density from
is spherically symmetric, whereas the Monte Carlo calculathe simulation data, and by using the relation of B8), we
tions simulate the first Brillouin zone of the lattice. However, obtain the shift in the critical temperature.
the molecular dynamics method suffers from critical slowing  This can then be plotted agairest® and the slope at the
down—as the energy of the highest modes is proportional terigin determines the coefficient This plot is given in Fig.
k2, we require time steps of ordét=1/k?, wherek, is the 5, where we have &ty o,(Cn=0)=10". We note that the
momentum cutoff. Thus our simulations are disproportion-method does not depend on the value chosemfg[y(Ch
ately less efficient for larger grids compared to the Monte=0) as long as it is large enough th#{,)>1 is well satis-
Carlo calculations and will not be able to generate results afied.
accurately for a given computation tini@9]. Nonetheless, By fitting a straight line to the first two points as illus-
we can use our simulations to confirm qualitatively the re-trated in Fig. 5, we get an estimate for the coefficient
sults of the Monte Carlo analysis, providing an independent c=1.3+0.4, (35)
demonstration of the validity and potential usefulness of our

temperature determination method. where the error specified is due to the uncertainty in the
As a simplified illustration, we follow through the logical ygjye of T, for the data point. This agrees with the value
procedure that would be required to calculate a valuecfor getermined in Refd37,38 — a result that should be treated
To consider the shift in the critical point, we can consider theyith caution. The correct value afwill be reached only in
shift in the critical density giVen a fixed critical temperature the limit of |arge volume and small lattice Spacing’ and we
To. In our numerical simulations we keepC,  pelieve we have not reached this regime. For comparison
=8maNpeion/ L fixed and measure a shifted critical tempera-ith the results of Arnold and Moore, for our first data point

ture we havel u~325 anduay~10.2, whereu=3TC, /L and
5 keTo a,a1= L/32. Our other data points have values for these quan-
TC:N—' (34) tities that are much larger than this. Arnold and Moore sug-
below€L gest thatLu=400 andua,,;<6 are necessary to get an ac-

curate result forc without a finite-size scaling analysis
HereNyq 0w iS the number of particles below the cutoff. If we [33,39.
fix the critical temperature &ty as well as the system site We could potentially improve our results by performing
(and hencee ), we can interpret the increase in the dimen-sych a finite-sized scaling analysis, but there is little reason
sionless quantityl; as a decrease in the value M., and to do so given the greater accuracy obtained in R8538.
hence a decrease in the critical density. The most importarithe purpose of this calculation is to demonstrate a useful
point to note is that as long as we hakg>k,, wherek, application of our temperature determination with the PGPE
labels the division between quasiparticle- and particlelike exin a nonperturbative regime. In this regard the qualitative
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agreement with earlier more involved and specialized calcubetween these calculations and Monte Carlo simulations that
lations provides a pleasing confirmation of the general validhave determined the shift in the critical temperature with
ity of the method. scattering length of the homogeneous Bose gas in the con-
tinuum limit. This is further evidence that the projected GPE
V. CONCLUSIONS should be valid for dynamical calculations through the criti-

] ) . cal region as long as the condition on the occupation num-
We have shown that the projected Gross-Pitaevskii equasers is satisfied.

tion can be exactly mapped to Hamilton’s equations of mo-
tion for canonically conjugate position and momentum vari-
ables. Using this mapping we have described how to utilize
the microcanonical thermodynamic method of RygH] to
measure the temperature of PGPE simulations in the nonper- The authors are grateful to Peter Arnold and Guy Moore
turbative regime. This method agrees with previous calculafor their insightful comments on the relation of this work to
tions described in Ref.18], but has a rigorous theoretical that of Refs[33,37. We also thank Crispin Gardiner for his
justification and wider applicability. Using this approach, we useful comments. M.J.D. would like to thank Tim Vaughan,
have quantitatively measured the shift in the critical temperaKaren Kheruntsyan, Joel Corney, and Peter Drummond for
ture for condensation with the nonlinear constent. We  several useful discussions at various stages of this work.
have also observed that the specific heat reaches a maximuvhJ.D. acknowledges the financial support of the University
near the transition point as expected from the theory of conef Queensland and the Australian Research Council Center
tinuous phase transitions and that the peak value increase$ Excellence Grant No. CE0348178. S.M. would like to
with the nonlinearity. Finally, we have made a connectionthank the Royal Society of London for financial support.
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